用户名: 密码: 验证码:
三种纳米农药制备、性能评价及缓释机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药是防御重大生物灾害,保障粮食生产,促进农产品产量持续稳定增长的重要物质。目前我国农药制剂发展较快,但仍以传统剂型为主,有效利用率低,农药残留与环境污染也非常严重。农药污染造成的食品安全、健康风险与生态环境问题,已经成为国民密切关注的社会问题。水基化、无尘化、控制释放等成为农药新剂型的发展方向。
     海藻酸钙凝胶是一种天然生物多糖,具有生物相容性和生物粘连性好、孔隙结构丰富、负载能力强、化学性能稳定、制备方法温和、来源广泛、价格低廉等特性,将药物包埋或镶嵌在其孔隙中,既可延长药物释放作用时间,又能阻止药物与周边环境的接触,防止敏感性药物降解,提高药物稳定性。采用先进的纳米材料制备与加工技术,制备高效、安全的纳米缓控释农药新剂型,是减少农药环境污染,保障人民健康,促进农药产业可持续发展的重要途径。本论文根据农药理化性质的差异,开拓性的对海藻酸钙纳米囊(CANC)、阿维菌素纳米混悬液(ANS)、缓控释井冈霉素纳米囊(CRVNC)和Zn3P2/海藻酸钙纳米囊(NC-Zn3P2/CA)进行了研究,为农药新剂型的开发提供先进的思路和方法。
     结果表明:(1)以海藻酸钠与CaCl2为原料、溴化十六烷基三甲铵(CTAB)为表面活性剂、异丙醇为助表面活性剂,采用W/O型反相微乳聚合法,制备了CANC。该CANC呈规则球形,粒径分在130-480nm之间,平均粒径为252±16nm,粒子分散系数(PDI)为0.222,比表面积(BET)为260m2·g-1,在其表面与内部有大量的孔隙,平均孔径为6.2nm。海藻酸钠溶液、CTAB、异丙醇三种物质的加入量对其BET均有显著影响。
     (2)以井冈霉素作为亲水性药物代表,以海藻酸钠与CaCl2为合成原料,通过聚合反应,对井冈霉素进行包埋,制备了平均粒径为281±18nm、PDI为0.082的CRVNC。井冈霉素原药和海藻酸钠的加入量对其负载效果和缓控释性能有显著影响。该CRVNC在水中具有明显的“突释现象”,对立枯丝核菌具有很好的抑制作用,抑菌率随井冈霉素有效浓度的提高而增大。在较短的时间内,CRVNC对立枯丝核菌的作用效果弱于井冈霉素原药,但随着试验时间的延长,CRVNC体现出缓控释性能的优越性,抑菌效果逐渐超过井冈霉素原药。
     (3)以Zn3P2作为既非亲水性又非疏水性药物代表,利用现代纳米加工技术,在反相微乳液中通过聚合反应,制备了粒径分布在220-580nm之间,平均粒径为354±23nm,PDI为0.195的NC-Zn3P2/CA。与Zn3P2原药相比,该NC-Zn3P2/CA无臭无味,大幅度改善了适口性和药效,其摄食系数提高了1.2-2.3倍,毒杀效果提高了4倍。缓控释测试表明,NC-Zn3P2/CA具有“突释现象”,海藻酸钙与Zn3P2的质量比(mCA/mZn3P2)对NC-Zn3P2/CA的载药率和缓控释性能均具有显著影响。当mCA/mZn3P2为1︰2时,NC-Zn3P2/CA对Zn3P2的负载达到了饱和。
     (4)以阿维菌素原药为疏水性药物代表、亚甲基二萘磺酸钠(NNO)为分散剂、海藻酸钠为助悬剂、二甲基聚硅氧烷为消泡剂、聚甲氧基聚氧乙烯甲基丙烯酸酯为稳定剂,使用砂磨机,通过湿法研磨,制备ANS。该ANS呈不规则球形,澄清,半透明,在水中均匀分散,平均粒径为586±20nm,表面Zeta电位为-19.5mV,且具有良好的悬浮性能和热稳定性能。研磨时间、阿维菌素原药与NNO的加入量对ANS的粒径有一定的影响。
     本论文研究证实,采用现代纳米加工技术,制备水基化的农药纳米混悬液或缓控释农药纳米囊等农药新剂型,既可提高农药的生物活性与利用率,又可减少各种有机溶剂与表面活性剂的使用量,对于缓解环境污染,维护生态平衡,促进绿色农业发展具有重要意义。
Pesticides are important materials for defending major biological disasters, safeguarding grainproduction and promoting agricultural output steady growth. Pesticide formulations are still based ontraditional dosage forms, in spite they’are rapidly developing in our country, and the effective utilizationof pesticides is generally low. There’re very serious pesticide residues and environmental pollution.People pay close attention to food safety, health risks and ecological environment problems, which arecaused by pesticide pollution. Water-based, dust-free and controlled-release dosage forms become thedevelopment direction of new pesticide formulations.
     Calcium alginate gel is a kind of natural biological polysaccharide, and has good biocompatibilityand biological adhesion, rich pore structure, strong loading capacity, stable chemical performance, mildpreparation method, wide source and low price. It can prolong the acting time of pesticides release, andprevent sensitive pesticides degradation through stopping pesticides contacting with the surroundingenvironment after they are embedded or inlaid in the pores of calcium alginate gel. Therefore, it canenhance the stability of pesticides. Using advanced nano-materials and nano-technology to produce newnano controlled-release pesticide formulations, which are efficient and safe, is an important way toreduce environment pollution, protect people’s health, and promote sustainable development ofpesticide industry. According to the different physical and chemical properties of pesticides, we firstlyconducted a study on calcium alginate nanocapsules (CANC), abamectin nanosuspension (ANS),controlled-release validamycin nanocapsules (CRVNC) and Zn3P2/calcium alginate nanocapsules(NC-Zn3P2/CA), in order to provide an advanced idea and method to research on new pesticideformulations.
     The results showed that:(1) CANC are synthesized by W/O reverse microemulsion polymerizationmethod, using sodium alginate and CaCl2as raw materials, cetyltrimethyl ammonium bromide (CTAB)as a surfactant and isopropanol as a cosurfactant. They are good globular, and particle size distributesbetween130nm to480nm, average particle size is252±16nm, particle dispersion index (PDI) is0.222,specific surface area (BET) is260m2·g-1. There’re a large number of pores distributing in the interior ofCANC, and the average pore size is6.2nm. The content of sodium alginate solution, CTAB andisopropyl alcohol has a significant effect on BET of CANC.
     (2) CRVNC is prepared by embedded through polymerization reaction using sodium alginate andCaCl2as raw materials, and the average particle size is281±18nm, PDI is0.082. Loading effect andcontrolled-release performance are significantly influenced by the addition amount of validamycintechnical and sodium alginate. It has an obvious sudden release phenomenon in water, and there’s avery good inhibitory effect to rhizoctonia solani. Antibacterial rates increase with the increase ofvalidamycin effective concentration. Antibacterial effect of CRVNC on rhizoctonia solani is weakerthan validamycin technical in a relatively short period of time. As prolonging test time, CRVNC startsto reflect superiority of controlled-release, and antibacterial effect of CRVNC on rhizoctonia solani is better than validamycin technical, gradually.
     (3) NC-Zn3P2/CA is synthesized by inverse microemulsion polymerization method using modernnano processing technology. The particle size distribution is between220nm to580nm, averageparticle size is354±23nm, and PDI is0.195. They are odourless and tasteless, palatability andpharmaceutical efficacy are greatly improved and enhanced, and the ingestion index increased1.2timesto2.3times, killing rate increased4times, compared with Zn3P2technical. There’re obvious suddenrelease phenomenons for NC-Zn3P2/CA. The mass ratio of calcium alginate and Zn3P2(mCA/mZn3P2) hasa significant impact on loading rate and controlled-release performance of NC-Zn3P2/CA. Loadingcapacity of Nano-Zn3P2/CA to Zn3P2reached the saturation point, when the mCA/mZn3P2is1:2.
     (4) ANS is produced by using sand mill through wet grinding, using methylene naphthalenesulfonate (NNO) as a dispersant, dimethyl polysiloxane as a defoaming agent, poly methoxypolyoxyethylene methyl acrylate as a stabilizer, sodium alginate as a suspension agent. It’s irregularspherical, clear, translucent, evenly dispersed in the water, and the average particle size is586±20nm.There’re some negative charges on the surface, and the surface Zeta potential is-19.5mV. It has a goodsuspension performance and thermal stability. Milling time, and the addition amount of abamectintechnical and NNO have certain impacts on particle size of the ANS.
     These studies confirmed that using modern nanomanufacturing technology to prepare water-basedpesticide formulations, such as pesticide nanosuspension and controlled-release pesticide nanocapsules,which can raise biological activity and utilization of pesticides, and reduce the usage of various organicsolvent and surfactant. It has a great significance to alleviate environment pollution, maintain ecologicalbalance, and promote the development of green agriculture.
引文
1.艾秀娟,陈建海,平渊,等,高压均质技术在纳米制剂制备中的应用.医药导报,2007,26(9):1055-1058.
    2.鲍久圣,阴妍,刘同冈,等,蒸发冷凝法制备纳米粉体的研究进展.机械工程材料,2008,2(32):4-7.
    3.曹永松,侯樱,陈莹莹,等,纳米TiO2光催化降解溴虫腈.精细化工,2005,9(22):663-667.
    4.陈锦毅,林贤科,林中魁,等,机械合金法制备(Mg2Ni)100-xAgx粉体及其储氢性质研究.过程工程学报,2006,6(2):258-262.
    5.陈丽娜, Fe3O4纳米材料的制备及应用[硕士论文].重庆:西南大学,2008.
    6.陈时健,张颂函,沈雁君,10%噁唑酰草胺乳油在直播水稻田应用技术评价.世界农药,2011,33(6):32-36.
    7.陈文汨,万新华,气体雾化法制备锡粉的技术研究.粉末冶金工业,2002,12(3):33-36.
    8.丁振华,中生菌素缓释粒剂研制及控释机理研究[硕士论文].郑州:河南农业大学,2003.
    9.窦卫红,多孔氧化铝模板的制备及模板法合成镍纳米线[硕士论文].西安:西安建筑科技大学,2008.
    10.高龙柱,纳米氧化锆制备及晶型控制的水热法研究[硕士论文].南京:南京工业大学,2004.
    11.高学绪,李纪恒,朱洁,等,气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能.金属学报,2005,45(10):1267-1271.
    12.郭丽,董显林,向平华,等,共沉淀法制备富错PzT粉体及其烧结特性的研究.无机材料学报,2002,17(6):1141-1146.
    13.付佳,溶剂热法制备纳米四氧化三铁研究[硕士论文].西安:西安建筑科技大学,2007.
    14.付延明,李凤生,包覆式超细复合粒子的制备.火炸药学报,2002(1):33-35.
    15.韩熹莱,农药概论.北京:中国农业大学出版社,1995.
    16.韩润生,竺培显,陶瓷超细粉末的合成方法综述.中国陶瓷,1993,131(4):53-56.
    17.憨勇,郑修麟,刘正堂,化学气相沉积法ZnS块材料的生长.无机材料学报,1997,12(3):346-350.
    18.贺卫卫,李玉平,以海泡石为缓释载体的杀虫涂料.中国涂料,2004,5:20-24.
    19.滑培临,伊茂清,磷化锌原药.中华人民共和国化工行业标准, HG2855-1997,1997.
    20.吉顺莉,张春燕,戈延茹,纳米载药系统的研究进展.中国药业,2010,14(19):82-83.
    21.季颖,黄修柱,王国联,等,农药热贮稳定性测定方法.中华人民共和国化工行业标准,GB/T19136-2003,2003.
    22.贾进伟,张绍勇,张爽,等,负载戊唑醇的壳聚糖纳米胶囊的制备与性能研究.农药学学报,2013,15(5):582-586.
    23.姜斌,王均甫,用高频感应加热器快速测定丁苯胶乳的固含量.化学世界,1988,10:455-458.
    24.蒋才武,陈超球,梁利芳,阿维菌素的生物合成、理化性质及其应用.西师院学报(自然科学版),1999,16(1):98-101.
    25.李玲,纳米药物载体研究.材料导报,2002,7(16):58-59.
    26.李阳,崔秀兰,郭俊文,溶胶-凝胶法制备超细二氧化硅的研究.内蒙古大学学报,2007,38(6):707-711.
    27.梁晓飞,壳聚糖季铵盐多功能靶向纳米微球的制备及在药物载体方面的应用[博士论文].天津:天津大学,2008.
    28.梁艳辉,梅向东,宁君,等,控制释放技术在植物病虫害防治中的应用.现代农药,2011,6(10):1-6.
    29.凌世海,农药剂型进展评述.农药,1998,37(8):6-9.
    30.刘步林,农药剂型加工技术.北京:化学工业出版社,1998.
    31.刘阳,季宏伟,周德凤,等, TiO2/LaFeO3微纳米纤维的可控制备及光催化性能.高等学校化学学报,2014,35(1):19-25.
    32.楼风光,王世凯,王孟,等,溶胶凝-胶法制备Al3+、Yb3+掺杂石英光纤纤芯的研究.无机材料学报,2014,4(29):393-398.
    33.门振,温沛宏,徐波勇,等,生物源杀虫剂-甲氨基阿维菌素苯甲酸盐.农药,2001,40(5):43-46.
    34.钱长英,浅谈农药可湿性粉剂的配方研制及加工工艺.安徽化工,2005,1:37-38.
    35.蹇华丽,红法夫酵母酶法破壁提取虾青素及其β-环糊精包合的研究[博士学位论文].广州:华南理工大学,2005.
    36.邱德文,我国生物农药现状分析与发展趋势.植物保护,2007,33(5):27-32.
    37.邱勇,宋心琦,可控释放技术.大学化学,1992,7(5):25-26.
    38.师奇松,控制农药缓释的淀粉基可降解材料的研究[硕士论文].哈尔滨:黑龙江大学,2002.
    39.尚青,冯树波,郑和堂,阿维菌素水悬纳米胶囊剂的研制.农药,2006,45(12):831-833.
    40.宋健,陈磊,李效军,微胶囊化技术及应用.北京:化学工业出版社,2001.
    41.孙长娇,崔海信,刘琪,等,介孔活性炭阿维菌素载药系统的性能研究.农药学学报,2010,12(2):214-220.
    42.孙建析,朱勇,朱丽秋,等,生物农药阿维菌素的NEL和ADI研究.农药,2007,46(5):319-322.
    43.台立民,刘冬雪,沈永嘉,化学型农药缓释剂.农药,2000,39(6):5-13.
    44.田震,李晋平,杜志刚,等,机械合金法的应用与开发.科技情报开发与经济,1997,2:11-12.
    45.童建华,阿维菌素生产与应用现状.农药,1999,38(9):38-39.
    46.王穿才,农药概论.北京:中国农业大学出版社,2009.
    47.王俊超,程春河,张进华,等,增效溴敌隆对几种害鼠的毒杀作用.植物保护,2012,38(5):174-178.
    48.王毓明,微胶囊化技术.涂料工业,1999(5):33-35.
    49.吴敏,卢建树,姚远,沉淀法制备SnS纳米粉体.材料科学与工程学报,2008,26(5):746-749.
    50.谢建军,施鹰,胡耀铭,等,共沉淀法合成制备Ce3+掺杂Lu3Al5O12纳米粉体.无机材料学报,2009,24(1):79-82.
    51.熊若兰,陆伟根,纳米混悬剂研究进展.世界临床药物,2007,28(2):117-121.
    52.徐华蕊,李凤生,陈舒林,等,沉淀法制备纳米级粒子的研究.化工进展,1996(5):29-31.
    53.徐建峰,都有为,高频感应加热法制备Zn超细颗粒及分析.粉体技术,1996,2(2):18-22.
    54.许珂敬,杨新春,田贵山,等,采用引入晶种的水热合成法制备α-Al2O3纳米粉.硅酸盐学报,2001,6(29):576-579.
    55.许时婴,张晓鸣,夏书芹,微胶囊技术——原理与应用.北京:化学工业出版社,2006.
    56.阎建辉,黄可龙,王跃龙,等,环保型烯酰吗啉纳米农药的制备及其性能.科学通报,2004,49(23):2416-2421.
    57.严锐,赵华,胡永琪,农药控释技术研究进展.农药,2006,45(7):437-439.
    58.杨冬清,王永睿,慕旭宏,等, SAPO-34分子筛晶化过程的研究.中国科学:化学,2014,1(44):138-145.
    59.杨蕾,叶非,农药缓释剂的研究进展.农业科学与管理,2009,30(10):36-39.
    60.杨南如,余桂郁,溶胶-凝胶法的基本原理与过程.硅酸盐通报,1992,2:56-63.
    61.杨南如余桂郁,溶胶凝胶法名词解释和测试方法.硅酸盐通报,1993,3:62-63.
    62.杨淑珍,农药缓释剂研究进展.山西农业科学,2012,40(2):186-188.
    63.叶红勇,赖宏伟,吴淑杰,等,常温直接沉淀法制备ZnO纳米棒.高等学校化学学报,2007,28(2):312-315.
    64.余桂郁,杨南如,溶胶凝胶法工艺过程.硅酸盐通报,1993,6:60-66.
    65.张浩,张高校,吴相伟,等, PVP溶胶-凝胶法制备锂稳定Na-β-Al2O3纳米粉体.无机材料学报,2013,9(28):916-920.
    66.张立德,牟季美,超细材料和超细结构.北京:科学出版社,2001.
    67.张丽萍,国内外农药加工现状.山西农业科学,2000,28(1):71-74.
    68.张填昊,一维SrAl2O4:Eu2+纳米发光材料的制备和表征[硕士论文].沈阳:沈阳工业大学,2009.
    69.张占文,唐永建,李波,等,旋转涂层法制备聚酰亚胺薄膜.强激光与粒子束,2006,7(18):1109-1112.
    70.张志琨,崔作林,超细技术与超细材料.北京:国防工业出版社,2000,85-159.
    71.周德璧,屠赛琦,任志伟,等,微乳液法合成Fe-Co-Ni合金纳米微粒.中南大学学报(自然科学版),2007,4(38):706-710.
    72.郑和堂,缓释性氟氯氰菊酯纳米胶囊的研制.第25界全国卫生杀虫药械学术交流暨产品展示会资料汇编,2008,46-48.
    73.朱富龙,袁海滨,杨斌,等,对中真空条件下铝蒸气相变形核及冷凝的研究.2011,31(2):163-168.
    74.朱剑莉.张峰,陈成,等, La0.9Sr0.1Ga0.8Mg0.2O3-α的微乳液法合成及其质子导电性研究.无机材料学报,2007,9(23):1621-1626.
    75.朱攀,桑梅,王晓龙,等,旋转涂覆法制备碳纳米管薄膜.功能材料与器件学报,2012.18(4):337-340.
    76.朱银燕,张高勇,洪昕林,等,微乳中纳米胶囊的复凝胶法制备.化学学报,2005,16(63):1505-1509.
    77. Ain-Ai A., Gupta P.K., Effect of arginine hydrochloride and hydroxypropyl cellulose asstabilizers on the physical stability of high drug loading nanosuspensions of a poorly solublecompound. Int J Pharm,2008,351(1-2):282-288.
    78. Amsden B., Turner T., Diusion characteristics of calcium alginate gels. Biotechnol Bioeng,1999,65:605-610.
    79. Astbury W.T., Structure of alginic acid. Nature1945,155:667-668.
    80. Betigeri S.S., Neau S.H., Immobilization of lipase using hydrophilic polymers in the form ofhydrogel beads. Biomaterials,2002,23(17):3627-3636.
    81. Bloomr A., Matheson Ⅲ, Environmental assessment of avermectin by the US food and drugadministration. Vet Paras-itd,1993,48(1-4):281-294.
    82. Bouwmeester H., Ekkers S., Noordam M.Y., et al, Review of health safety aspects ofnanotechnologies in food production. Regul Toxicol Pharmacol,2009,53:52-62.
    83. Cammas S., Suzuki K., Sone C., et al, Thermo-responsive polymer nanoparticles with acore-shell micelle structure as site-specific drug carriers.Control Release,1997,48:157-164.
    84. Campbell W.C., Benz G.W., Ivermectin: a review of efficacy and safety. J Vet PharmacolTher,1984,7:1-16.
    85. Cao Y.S., Tan H.H., Shi T.Y., et al, Preparation of Ag-doped TiO2nanoparticles forphotocatalytic degradation of acetamiprid in water. J Chem Technol Biot,2008,83:546-552.
    86. Celi R.,Hermosi M.C.,Carrizosa M.J.,et al, Inorganic and organic claysas carriers for controlrelease of the herbicide hexazinone. J Agric Food Chem,2002,50(8):2324-2330.
    87. Champion T., Yannick M., Evaporation and condensation for metallic nanopowders. AnnChim-Sci Mat,2006,31(3):281-289.
    88. Chen J.F., Song J.R., Wen L.X., et al. Preparation and characterization of agglomeratedporous hollow silica supports for olefin polymerization catalyst. J Non-Cryst Solids,2007,353:1030-1036.
    89. Chen J.F., Zhang J.Y., Shen Z.G., et al. Preparation and characterization of amorphouscefuroxime axetil drug nanoparticles with novel technology: high-gravity antisolventprecipitation. Ind Eng Chem Res,2006,45(25):8723-8727.
    90. Christopher J., Stephen P., John D., et al, Novel Avemreetins Porduced by MutationalBiosynthesis. J Antibioties,1991,44(3):357-365.
    91. Cui H.X., Jiang J.F., Gu W., et al, Photocatalytic inactivation efficiency of anatase Nano-TiO2sol on the H9N2avian influenza virus. Photochem Photobiol,2010,86:1135-1139.
    92. De V.P., Hamel A.F., Tatarkiewicz K., Considerations for successful transplantation ofencapsulated pancreatic islets. Diabetologia,2002,45(2):159-173.
    93. Del G.S., Bracci C., Nilsson K., et al, Entrapment of dispersed pancreatic islet cells inCultiSpher-S macroporous gelatin microcarriers: preparation, in vitro characterization, andmicroencapsulation. Biotechnol Bioeng,2001,75:741-744.
    94. Dellicolli H.T., Seed treatment method with aqueous suspension of alkali lignin. US:4624694,1986.
    95. Drobne D., Nanotoxicology for safe and sustainable nanotechnology. Arh Hig Rada Toksikol,2007,58(4):471-478.
    96. Doares S.H., Syrovets T., Wieler E.W., et al, Oligogalacturonides and chitosan activate plantdefensive gene through the octadecanoid pathway. Proc Natl Acad Sci,1995,92(10):4095-4098.
    97. Donbrow M., Microcapsules and nanoparticles in medicine and pharmacy. Crc Press.1992.
    98. Dong Y.C., Feng S.S., Methoxy poly(ethylene glycol)-poly(lactide)(MPEG-PLA)nanoparticles for controlled delivery of anticancer drugs. Biomaterials,2004,25:2843-2849.
    99. Draget K.I., Taylor C., Chemical, physical and biological properties of alginates and theirbiomedical implications. Food Hydrocolloids,2011,25:251-256.
    100.Dylan E.H., Jorge N.Q., Stephen J.P., et al, Effects of solvent evaporation rate on "skin"formation during spin coating of complex solutions. Proc of SPIE,2000,3943:280-284.
    101.Eikmeier H., Rehm H.J., Stability of calcium-alginate during citric acid production ofimmobilised Aspergillus niger. Appl Microbiol Biotechnol,1987,26:105-111.
    102.Fanun M., Microemulsions: properties and applications. Boca Raton: CRC Press:2008.
    103.FAO/WHO expert meeting on the application of nanotechnologies in the food and agriculturesectors: Potential food safety implications. Food and Agriculture Organization of the UnitedNations, World Health Organization,2009.
    104.Fatima S., Alegria C., Celia M., Controlled release of the herbicide nomurazon into waterfrom ethylcellulose formulations. J Agric Food Chem,2005,53(9):3540-3547.
    105.Francesco P, Francesca I, Umile G.S., et al, Polymer in Agriculture: a Review. Am J AgriculBiol Sci,2008,3(1):299-314.
    106.Frederiksen H.K., Kristensen H.G., Pedersen M., Solid lipid microparticle formulations of thepyrethroid gamma-cyhalothrin-incompatibility of the lipid and the pyrethroid and biologicalproperties of the formulations. J Control Release,2003,86:243-252.
    107.Friedman A.J., Phan J., Schairer D.O., et al, Antimicrobial and anti-inflammatory activity ofchitosan–alginate nanoparticles: a targeted therapy for cutaneous pathogens. J InvestDermatol,2012,133:1231-1239.
    108.Gerardo F.G., Handling the particle size and distribution of Fe3O4nanoparticles through ballmilling. Solid State Commun,2004,130:783-787.
    109.Glage S., Lewis A.L., Mertens P., et al, Evaluation of biocompatibility and anti-gliomaefficacy of doxorubicin and irinotecan drug-eluting bead suspensions in alginate. Clin TranslOncol,2012,14:50-59.
    110.Grant G.T., Morris E.R., Rees D.A., et al, Biological interactions between polysaccharidesand divalent cations: the egg-box model. FEBS Lett,1973,32:195-198.
    111.Guan H.N., Chi D.F., Yu J., et al, Dynamics of residues from a novel nanoimidaclopridformulation in soyabean fields. Crop Prot,2010,29:942-946.
    112.Hafner E.D., Holley B.W., Holdom K.S., et al, Bnarehed-chain fatty acid requierment foravermectin production by a mutant of streptomyces avermitilis lacking branched-chain2-OXO acid dehydrogenase activity. J Antibiotics,1991,44:349-356.
    113.Hans M. L., Lowman A.M., Biodegradable nanoparticles for drug delivery and targeting. CurrOpin Solid St,2002,6:319-327.
    114.Haslam L. H., Woods J., Verle W., Seed treating suspension and method of seed treatment.US:4192095,1980.
    115.Hessien M., Singh N., Kim C., et al, Stability and tunability of O/W nanoemulsions preparedby phase inversion composition. Am Chem Soc,2011,27:2299-2307.
    116.Honiger J., Balladur P., Mariani P., et al, Permeability and biocompatibility of a new hydrogelused for encapsulation of hepatocytes. Biomaterials,1995,16(10):753-759.
    117.Horii S., Iwasa T., Kameda Y., Studies on validamycins, new antibiotics. V. Degradationstudies. J Antibiot (Tokyo),1971,24(1):57-58.
    118.Hygnstrom S.E., McDonald P.M., Virchow D.R., Efficacy of three formulations of zincphosphide for managing black-tailed prairie dogs. Int Biodeter Biodegr,1998,42:147-152.
    119.Iwasa T., Yamamoto H., Shibata M., Studies on validamycins, new antibiotics. I.Streptomyces hygroscopicus var. limoneus nov. var., validamycin-producing organism. Jpn JAntibiot,1970,23(6):595-602.
    120.Jiang J.F., Cui H.X., Cao Y., Preparation and property studies of Zn3P2/calcium alginate,Nano,2014,9(2):1450014, DOI:10.1142/S1793292014500143.
    121.Jonsson B., Lindman B., Holmberg K., et al, Surfactants&polymers in aqueous solutions.2nd ed. UK: John Wiley&Sons, Chichester,1998.
    122.Korbutt G.S., Mallett A.G., Ao Z., et al, Improved survival of microencapsulated islets duringin vitro culture and enhanced metabolic function following transplantation. Diabetologia,2004,47:1810-1818.
    123.Kyosseva S.V., Kyossev Z.N., Elbein A.D., Inhibitors of pig kidney trehalase. Arch BiochemBiophys,1995,316(2):821-826.
    124.Lamprecht A., Ubrich N., Design of rolip ram-loaded nanoparticles: comparison of twopreparation methods. J Control Rel,2001,71(2):297-306.
    125.Lamprecht A., Ubrich N., Biodegradable monodispersed nano-particles prepared by pressurehomogenization-emulsification. Int J Phar,1999,184(1):97-105.
    126.Lamprecht A., Ubrich N., Influences of process parameters on nanoparticle preparationperformed by a double emulsion pressure homogenization technique. Int J Phar,2000,196(1):177-182.
    127.Lav R.K., Sindhuja S., Joe M.M., et al, Applications of nanomaterials in agriculturalproduction and crop protection: A review. Crop Prot,2012,35:64-70.
    128.Leal D., Matsuhiro B., Rossi M., et al, FT-IR spectra of alginic acid block fractions in threespecies of brown seaweeds. Carbohyd Res,2009,343:308-316.
    129.Li M., Huang Q.L., Wu Y., A novel chitosan-poly (lactide) copolymer and its submicronparticles as imidacloprid carriers. Pest Manag Sci,2011,67:831-836.
    130.Li Z.Z., Chen, J.F., Li Y., et al, Adsorption of avermectin on porous hollow silicananoparticles by supercritical technology. J Nanosci Nanotechno,2007,7:535-541.
    131.Li Z.Z., Chen J. F., Liu F, et al, Study of UV-shielding properties of novel porous hollowsilica nanoparticle carriers for avermectin. Pest Manag Sci,2007,63:241-246.
    132.Li Z.Z., Xu S.A., Wen L.X., et al, Controlled release of avermectin from porous hollow silicananoparticles: influence of shell thickness on loading efficiency, UV-shielding property andrelease. J Control Release2006,111(1-2):81-88.
    133.Lim C.J., Basri M., Omar D., et al, Green nanoemulsion-laden glyphosate isopropylamineformulation in suppressing creeping foxglove (A. gangetica), slender button weed (D.ocimifolia) and buffalo grass (P. conjugatum). Pest Manag Sci2013,69:104-111.
    134.Lipinski C.A., Drug-like properties and the causes of poor solubility and poor permeability. JPharmacol Toxicol Methods,2000,44(1):235-249.
    135.Marc A.T., William J.P., Assessment of Chitosan Gels for the Controlled Release ofAgrochemicals. Ind Eng Chem Res,1990,29:1205-1209.
    136.Margni M., Rossier D., Crettaz P., et al, Life cycle impact assessment of pesticides on humanhealth and ecosystems. Agric Ecosyst Environ,2002,93:379-392.
    137.Matthew H., Richard K., Alan J.R., et al, Calcium alginate microencapsulation of ovarianfollicles impacts FSH delivery and follicle morphology. Reprod Biol Endocrin,2005,3(47):1-8.
    138.Merisko L.E., Liversidge G.G., Cooper E.R., Nanosizing: a formulation approach for poorlywater soluble compounds. Eur J Pharm Sci,2003,18(2):113-120.
    139.Mrozik H., Eskola P., Linn B.O., Discovery of novel avermectins with unprecedentedinsecticidal activity. Experientia,1989,45(3):315-316.
    140.Naggar A.R., Mahdy N., Zinc phosphide toxicity with a trial of tranexamic acid in itsmanagement. J Adv Res,2011,2:149-156.
    141.Nair R., Varghese S.H., Nair B.G., et al, Nanoparticulate material delivery to plants. Plant Sci,2010,179:154-163.
    142.Overhoff K.A., Johnston K.P., Tarn J., et al, Use of thin film freezing to enable drug delivery:a review. J Drug Del Sci Tech,2009,19:89-98.
    143.Page C.M.E., Pinto A.H., Oure V.M., et al. Developmeht of ciprofloxacin-loadednanop-articles: physicochemical study of the drug carrier. J Control Release,1998,56:23-32.
    144.Pandey R., Khuller G.K., Chemotherapeutic potential of alginate–chitosan microspheres asanti-tubercular drug carriers. J Antimicrob Chemother,2004,53:635-640.
    145.Pasquali I., Bettini R., Giordano F., Supercritical fluid technologies: an innovative approachfor manipulating the solid-state of pharmaceuticals. Adv Drug Deliv Rev,2008,60(3):399-410.
    146.Patel Arvind D, Water soluble invert emulsions. US:5990050,1999.
    147.Peltier S., Oger J.M., Lagarce F., et al, Enhanced oral paclitaxel bioavailability afteradministration of paclitaxel-loaded lipid nanocapsules. Pharmaceutical Research,2006,23(6):1243-1250.
    148.Peppas N.A., Langer R., New challenges in biomaterials. Science,1994,263:1715-1720.
    149.Posanksi U., Ghyczy M., Bauer K.H., et al, Liquid active ingredient concentrates forpreparation of microemulsions, US4567161A,1986.
    150.Qian H.F., Hu B.L., Wang Z.Y., et al, Effects of validamycin on some enzymatic activities insoil. Environ Monit Assess,2007,125:1-8.
    151.Qian K., Shi T.Y., Tang T., et al. Preparation and characterization of nano-sized calciumcarbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani.Microchim Acta,2011,173:51-57.
    152.Ramon B.R., Manuer S., Factors involved in the p roduction of liposomeswith a high pressurehomogenizer. Inter J Phar,2001,213(1):175-186.
    153.Report of FAO technical round table sessions of international conference on food andagriculture applications of nanotechnologies, Nano Agri,2010.
    154.Sasaki T., Koshizaki N., Yoon J.W., et al, Photoelectrochemical behavior of the pt/TiO2nanocomposite electrodes prepared by cosputter deposition. J Photoch Photobio A,2001,145(1-2):11-16.
    155.Schwartz L., Wolf D., Markus A., Controlled-release systems for the insect growth regulatorpyriproxyfen. J Agric Food Chem,2003,51(20):5985-5989.
    156.Scott N.R., Chen H., Nanoscale science and engineering for agriculture and food systems.Washington, DC: National planning workshop,2002, November18-19.
    157.Shoop W.L., Egerton J.R., Eary H.W., et al, Eprinomecin: a novel avermectin for use as atopical endectocide for cattle. Int J Parasitol,1996,26(11):1237-1242.
    158.Shoop W.L., Haines H.W., Michael B.F., Mutual resistance between avermectins andmilbermycins: oral activity of ivermectin and moxidectin against ivermectin-resistance andsusceptible nematodes. Vet Rec,1993,133:445-447.
    159.Singh B., Chauhan G.S., Kumar S., et al, Synthesis, characterization and swelling responsesof pH sensitive psyllium and polyacrylamide based hydrogels for the use in drug delivery (I).Carbohydrate Polymers,2007,67:190-200.
    160.Smith M.R., Haan A.D., Bont J.A.M., The effect of calcium alginate entrapment on thephysiology of Mycobacterium sp. strain E3. Appl Microbiol Biotechnol,1993,38:642-648.
    161.Solei C., Maestro A., Pey M., Nano-emulsion preparation by low energy methods in an ionicsurfactant system. Colloid Surface A,2006,288:138-143.
    162.Souilem I., Muller R., Holl Y., et al, Novel low-pressure device for production ofnanoemulsions. Chem Eng Technol,2012,35(9):1692-1698.
    163.Sterner R.T., Ramey C.A., Edge W.D., et al, Efficacy of zinc phosphide baits to control volesin alfalfa-an enclosure study. Crop Prot,1996,15:727-734.
    164.Storm R.M., Price D.C., Lubetkin S.D., Aqueous dispersion of agricultural chemicals. USPatent,20010051175.
    165.Tang S., Li J.C., Zhang X.L., et al, Preparation and characterization of bifenthrinnanoemulsions. Plant Diseases Pests,2011,2(2):77-80.
    166.Taylor R.R., Tang Y., Gonzalez M.V., et al, Irinotecan drug eluting beads for use inchemoembolization:in vitro and in vivo evaluation of drug release properties. Eur J Pharm Sci,2007,30:7-14.
    167.Trotta M., Gallarate M., Carlotti M.E., et al. Preparation of griseofulvin nanoparticlesfromwater-dilutablemicroemulsions. Int J Pharm,2003,254(2):235-242.
    168.Tsuji K., Microencapsulation of pesticides and their improved handling safety. JMicroencapsul,2001,18:137-147.
    169.Ueno Y., Futagawa H., Takagi Y., et al, Drug-incorporating calcium carbonate nanoparticlesfor a new delivery system. J Control Release,2005,103(1):93-98.
    170.Vandana, G., Mukund V.D., Kishore M.P., Perspectives for nano-biotechnology enabledprotection and nutrition of plants. Biotechnol Adv,2011,29:792-803.
    171.Wang C.Y, Liu H.X, Gao Q.X, et al, Alginate–calcium carbonate porous microparticle hybridhydrogels with versatile drug loading capabilities and variable mechanical strengths.Carbohyd Polym,2008,71:476-480.
    172.Wang L.J., Li X.F., Zhang G.Y., et al, Oil-in-water nanoemulsions for pesticide formulations.J Colloid Interf Sci,2007,314(1):230-235.
    173.Wang X., Wenk E., Matsumoto A., et al., Silk microspheres for encapsulation and controlledrelease. J Control Release,2007,117(3):360-370.
    174.Yan J.H., Huang K.L., Wang Y.L., et al, Study on anti-pollution nanopreparation ofdimethomorph and its performance. Chin Sci Bull,2005,50(2):108-112.
    175.Zazouli M.A., Nasseri S., Ulbricht M., Fouling effects of humic and alginic acids innanofiltration and influence of solution composition. Desalination,2010,250:688-692.
    176.Zhang W., Kim J. H., Franco C. M. M., et al, Characterisation of the shrinkage of calciumalginate gel membrane with immobilised Lactobacillus rhamnosus. Appl MicrobiolBiotechnol,2000,54:28-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700