用户名: 密码: 验证码:
粤东大规模增养殖区柘林湾海洋微生物的生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粤东柘林湾是广东省大规模海产增养殖区之一。近年来,海水增养殖业的迅猛发展导致了该湾富营养化的加剧和生态条件的恶化,有害赤潮频发,养殖难度加大。为了了解生态退化和有害赤潮频发的原因,作者及其研究小组从2000年起对柘林湾生态系统的结构及其功能进行了长期的综合性调查。本文着重介绍有关大量营养盐分布和海洋微生物生态学的调查结果。
     调查时间为2000年5月至2005年8月。其中2004和2005年的调查频率为每季度一次,其余年份则为每月一次。长期调查的位共有9个,包括湾内7个和湾外2个。采样时用HQM-1型有机玻璃采水器采集表(离水面0.5m)、底(离水底0.5m)层水样各5L,将其中100ml水样装于无聚乙烯塑料瓶,冷藏带回实验室处理。沉积物样品采集使用彼得森采泥器(曙光HNM_(1-2)型,采样面积0.1m~2),每一点每次采样一次,取采泥器中央表层0-3cm未受干扰的泥样约50g,封装于无培养皿中,冷藏带回实验室进行处理。取部分水样进行群活体培养,其余加入经0.22μm微孔滤膜过滤的无颗粒甲醛固定,并使其最终浓度为5%(v/v),用于测定细总数。将带回的沉积物样混匀后准确称取约10g,置于盛有90mL含1%Tween80无无颗粒海水(经0.2μm滤膜过滤)的150mL锥形瓶中,充分振荡,使微生物分散均匀后,用无取样器定量吸取上清液,测定方法同水样。总细计数采用荧光显微镜直接计数法(AODC),异养细分离采用Zobell 2216E培养基平板计数法,弧分离采用选择性培养基TCBS平板计数法,硫酸盐还原(SRB)采用MPN法计数,选用乳酸钠液体培养基。氨氮(NH_4-N)、硝态氮(NO_3-N)、亚硝态氮(NO_2-N)、总无机氮(DIN)、无机磷(DIP)、硅酸盐(SiO_4-Si)等因子使用荷兰SKALAR水质微量流动注射分析仪和日本岛津UV-501紫外/可见分光光度计进行测定。温度(T)、盐度(S)、溶氧(DO)、pH等物理指标使用美国YSI6600水质分析仪现场测定。年度划分均以当年的1-12月为一个年度。数据处理与相关性分析采用软件Origin7.0进行。
     调查海域溶解性无机氮、磷、硅的含量都明显偏高,总平均值分别达到31.02、1.35、36.30umol/L,其中氮、磷含量均超过国家三类海水的水质标准。由于湾顶黄冈河和湾周边排污排废的影响,营养盐的分布基本上表现出湾内高于湾外、近岸向离岸递减的格局。大规模增养殖业造成的二次污染对该湾营养盐的时空分布具有重要的影响。但以Justic和Dortch等的标准来衡量,该湾浮游植物生长受控于单一营养盐限制因子的出现率为磷46.54%,硅15.04%和氮11.46%。过量的N及高N/P值特性且持续升高的趋势可能是柘林湾地
Abstract: Zhelin Bay is one of the most important bays for large-scale mariculture in Guangdong Province, China. Due to the increasing human population and mariculture in the last decades, the ecological environment has changed dramatically, e.g., the large-scale of harmful algal bloom (Phaeocystis) occurred in 1997 and 1999, respectively. Although degenerative and eutrophic environment has brought serious economic loss and made mariculture becoming more and more difficult, especially in caged fish culture, few studies have been performed. To evaluate the environmental condition of Zhelin Bay, from May 2000 our group initiated an ecological investigation around Zhelin Bay. The paper describes the investigated results on nutrients and marine microbial ecology.
    Samples were monthly collected once per month from May of 2000 to December of 2003, but only once per quarter in 2000 and 2005. There were totally 9 sampling stations, including 7 inside the bay and 2 outside the bay. Five liters of water samples were collected with HQM-1 sampling bottles 0.5 m under the surface and 0.5 m above the bottom at each station, and 100ml water from each sample were aliquoted into sterile polythylene bottles, then transported in ice to the laboratory. Samples of sediment were once collected by HNM_(1-2) grab at each station, then 50g were aliquoted from the central surface of sediment without turbulence into sterile dish and transported to laboratory for analyzing. Some water samples were used for assessing the live microorganisms, others were immediately fixed with 5% formaldehyde (final concentration) for direct count of bacteria. After 10g samples of sediment and 90ml sterile sea water (adding 1% Tween 80) filtered through 0.22um polycarbonate filters were mixed completely, supernate were for further analyze. Total bacteria were counted with AODC, heterotrophic and vibrio bacteria were measured with agar plate of Zobell 2216E and TCBS, individually. SRB were enumerated with MPN in liquid medium of sodium lactate. The NH_4-N, NO_3-N, NO_2-N, DIN and PO_4-P were analyzed by the SKALAR Channel Seawater Segmented Flow Nutrient Analyzer. TH SiO_3-Si was analyzed by the SHMADZU UV-2501 PC. Temperature, salinity, dissolved oxygen and pH were determined in situ with a portable instrument for water quality analysis (YSI6600-02, USA).Yearly division was from January to December in a same year. Relations between nutrients, the microorganism abundance and environmental variables were analyzed by means of the linear fit using the software of Origin 7.0
    The results showed that the concentration of dissolved inorganic nitrogen, dissolved inorganic phosphate and silicate were high greatly, with an average concentration of 33.19、 1.48、
引文
[1]Anderson L, Rydberg L. Trends in nutrients and oxygen conditions within the Kattegat: effects of local nutrient supply. Estuarine, Coastal and Shelf Science, 1988, 26: 559-579
    [2]Angelo D, Linda H, JamesT,et al. Incidence of vibrio parahaemolyticus in U.S coastal waters and oysters. Appl.Environ.Microbiol, 1990, 2299-2302
    [3]Anonymous. Marine eutrophication. Ambio, 1990, 19: 101-176
    [4] Austin B, Austin D A. Bacterial fish pathogens:disease of farmed and wild fish, 3rd (revised) Edn. Springer-Praxis, Godalming. 1999
    [5]Austin B, Austin DA. Bacterial fish pathogens: diseases in farmed and wild fish. Ellisdorwood, Chichester UK, 1993, 265-314
    [7]Azam F, Fenchel T, Gray J G, et al. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser, 1983, 101: 257
    [8]Azam F, Steward G F, Landry et al. Bacterial transformation and transport of organic matter in the Southern California Bight. Prog in Oceanogr, 1992, 30 (4): 151-156
    [9]Ball P W. Nutrient inputs to estuaries from nine Scottish east coast river: influence of estuarine process on inputs to the North Sea. Estuarine, Coastal and Shelf Scicence, 1994, 39: 329-352
    [10]Benlloch S, Rodriguez-Valera F, Martinez-Murcia A J. Bacterial diversity in two coastal lagoons deduced from 16S rDNA PCR amplication and partial sequencing. FEMS Microbiology Ecologyl, 1995, 18: 267-280
    [11]Berman T, Hoppe H, Gocke K. Responses of aquatic bacterial production to substrate enrichment. Mar Ecol Prog Ser, 1994, 104: 173-184
    [12]Billen G, Servais P, Becquevort S. Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic enviroments: bottom-up or top-down control. Hydrobiologia, 1990. 207: 37-42
    [13]Bode A, Varela M, Canle M, et al. Characterization of carbon and microbial biomass pools in shallow water coastal sediments of the southern Baltic Sea. Marine Ecology Progress Series, 2001, 214: 25-41
    [14]Brugmann L, Bachor A.Present state of the Baltic coastal waters off Mecklenburg-Vorpommern. Germany GeoJournal, 1990, 22 (2): 185-194
    [15]Bu-Olayan A H, Al-Hassan R, Thomas B V, et al. Impact of trace metals and nutrients levels onphytoplankton from the Kuwait coast. Environment International, 2001, 26: 199-203
    [16]Butlin K R. Some malodorous activities of sulphate-reducing bacteria. Proc. Soc. Appl. Bact., 1949, (2): 39-42
    [17]Cabecadas G, Nogueira M, Brogueira M J. Nutrient dynamics and productivity in three European estuaries. Marine Pollution Bulletion, 1999 (38): 1092-1096
    [18]campbell L, Liu H, Nolla HA, et al. Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at Station ALOHA during the 1991-1994 ENSO event. Deep-Sea Research I, 1997, 14 (2): 167-192.
    [19]Caron DA, EL Lim, RW Sanders, et al. Responses of bacterioplankton and phytoplankton to organic carbon and inorganic nutrient additions in contrasting oceanic ecosystems. Aquatic Microbial Ecology, 2000, 22: 175-184.
    [20]Cho B C, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature (London), 1988, 332: 441-443
    
    [21]Cho B C, Azam F. Biogeochemical significance of bacterial biomass in the ocean's euphotic zone. Marine ecology progress series, 1990, 63 (23): 253-259
    [22]Cole J, Pace M. Bacteria production in frsh and salt water ecosystems: a cross-system overview. Mar Ecol Prog Sen 1988, 43: 1-10
    [23]Colwell RR, Grimes D J. Vibrio disease of marine fish population. Helgoland Meeresunters, 1984, 37: 265-287
    [24]Costa-Pierce B A, Craven D B, Karl D M, et al. Correlation of in situ respiration rates and microbial biomass in prawn (Macrobrachium rosenbergii) pond. Aquaculture, 1984, 37: 157-168
    [25]Cota G F, Pomeroy L R, Harrison W G, et al. Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy. Marine Ecology Progress Series, 1996, 135: 247-258.
    [26]Daniel Kent, David Hirshleifer, Avanidhar Subrahmanyam. Investor Psychology and Security Market Undter- and Overreactions. The Journal of Finance, 1998, 53 (6): 1839-1885
    [27]Danovaro R, Marrale D. Bacterial response to seasonal changes in labile organic matter composition on continental shelf and bathyal sediments of Cretan Sea. Progress in Oceanography, 1999, 46: 345-366
    [28]Dortch Q and Whitledge T E. Does nitrogen of silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont. Shelf. Res., 1992, 12: 1293-1309
    
    [29]Ducklow H W, Carlson C A. Oceanic bacterial production. Adv Microb Ecol, 1992, 12: 113-181
    [30]Dufour P, Torreton J P, Colon M. Advantages of distinguishing the active fraction in bacterioplankon assemblages: some examples. Hydrobiologia, 1996, 207: 295-301
    
    [31]Egidius E. Vibriosis: pathogenicity and pathology : a review. Aquaculture, 1987, 67: 15-28
    [32]Eilers E, PernthalerJ, Amann.R. Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts. Appl.Inv.Microbial, 2000, 66: 4634-4640
    [33]Eilers H, PernthalerJ , Glockner F O, et al .Culturability and in situ abundance of pelagic bacteria from the North Sea. Applied and Environmental Microbiology, 2000, 7: 3044-3051.
    [34]Fisher M, Klug J L, Lauster G, et al. Effects of resources and trophic interactions on freshwater bacterioplankton diversity. Microbial Ecology, 2000, 4: 125-138.
    [35]Fuhrman J A, Azam F. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and Southern California. Appl Environ Microbial, 1980, 39 (1): 1085-1095
    [36] Funge-Smith S J, Brigs M R P. Nutrients budgets in intensive shrimp ponds: implications for sustainablitiy. Aquaculture, 1998, 164 (1): 117~13
    [37] Fusham M J R. Flows of energy and materials in marine ecosystem. New York: Theory and Practice Plenumn Press, 1984, 753
    [38] Gatesoupe F J, Lambert C, Nicolas J L. Pathogenicity of vibrio splendidus strains associated with turbot larvae, Scophthalmus Maximus. J. Appl. Microbiol., 1999, 87 (5): :757~763
    [39] Goeyens L, Elskens M, Catralano G. Nutrient depletion in the Ross Sea and their relation with pigment stocks. Journal of Marine System, 2000 (27): 195~208
    [40] Goulder R. Attached and free bacteria in an estuary with abundant suspended solids. App. Bacterial., 1977, 43: 399~405.
    [41] Gowen R J, Bradbury N B. The ecological impact of salmonid farming in coastal waters: a review. Oceanogrophy Marine Biology Annual Review, 1987, 25: 563~575.
    [42] Graf G. Benthic-pelagic coupling: a benthic view. Oceanogr Mar Biol Annu Rev, 1992, 30. 149~190
    [43] Graf G, Paraskevi N P, Antonio P, et al. Benthic microbial abundance and activities in an intensively trawled ecosystem (Thermaikos Gulf, Aegean Sea). Continental Shelf Research, 2005 (25): 2570~2584
    [44] Grossart H P, Simon M. Bacterioplankton dynamics in the Gulf of Aqaba and the northern Red Sea in early spring. Marine ecology progress series, 2002, 239: 263~276.
    [45] Griffith P, Shiah F, Gloersen K., et al. Activity and distribution of attached bacteria in Chesapeake Bay. Mar Ecol Prog Ser, 1994, 108:1~10
    [46] Hagstrom A, Larsson U, Horsted P, et al. Frequency of dividing cells, new approach to the determination of bacterial growth rates in aquatic environments. Appl Environ Microbiol, 1979, 37:805~812
    [47] Hagstroem A, Azam F and Andersson A, et al. Microbial loop in an oligotrophic pelagic marine ecosystem. Marine ecology progress series, 1998, 49: 171~178.
    [48] Hatcher A, Grant J, Schofield B. Effect of suspended mussel culture on sedimention benthic respiration and sediment nutrient dynamics in a coastal bay. Mar Ecol Prog Ser, 1994, 115:219-235
    [49] He J, Chen B, Kang SH, et al. Biomass of bacterioplankton and protist and their ecological importance in the Berlin Sea. Ocean and Polar Research, 2004, 26 (2): 113~120.
    [50] Hedlung B P, Staley J T. Vibrio Cyclotrophicus sp. Nov., a polycyclic aromatic hydrocarbon (PAH)-degradingmarinebacterinm. Int, J. Syst. Evol. Microbial, 2001, 51:61~66
    [51] Hidetoshi Urakawa, Kumiko K T and Kouichi Ohwada. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbioloogy, 1999, 145:3305~3315
    [52] Hobbie J E. Use of nuclepore filters for counting bacteria by fluoresence microscopy. Appl Environ Microbial, 1977, 33:1225~1228
    [53] Hollibaugh J T, Azam F. Microbial degradation of dissolved proteins in seawater. Limnol Oceanogr, 1983, 28: 1104~1116
    [54]Hopkinson C, Giblin A E, Garritt R H, et al. Influence of benthos on growth of planktonic estuarine bacteria. Aquat Microb Ecol, 1998, 16: 109-118
    [55]Huang Ch J, Dong Q X, Lin J.Two large-scale blooms of harmful algae occurred on Southeast Coast of China and the relationship with meteorological factors. J .Plankton Res. 2002
    [55]Imai I, Ishida Y, Hata Y. Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan. Mar Biol, 1993, 116: 527-532
    [56]Jennifer C, James AAE, Ellen T M. Utlization and turnover of labile dissolved organic matter by bacterial heterotrophs in eastern North Pacific surface waters. Mar Ecol Prog Ser, 1996, 139: 267-279
    [57]Johan Vandeberghe, Fabiano I., Thompson, Bruno Gomez-Gil, Jean Swing.Phenotypic diversity amongest vibrio isolates from marine aquaculture system. Aquaculture, 2003, 219: 9-20
    [58]Jones A K. The interaction of algae and bacteria. In: Bull A T, Slater J H ed. Microbial Interaction and communities. London: Academic Press, 1982, 189-227
    [59]Justic D, Rabalais N N, Turner R E. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar.PoUu.Bull., 1995, 30 (1): 41-46
    [60]Kathreen R O, Stephen H J, Grimes D J. Seasonal incidence of vibrio vulnificus in the Great Bay Estuary of New Hamphshire and Marine.Appl. Environ. Microbiol, 1992, 3257-3262
    [61]Kelly M T. Effect of temporature and salinity on vibrio (beneckea) vulnificus occurrence in a gulf coast environment. Appl Environ Microbiol, 1982, 44 (2): 820-824
    [62]Kirchman D L, Keil R G, Simon, et al..Biomass and production of heterotrophic bacterioplankton in the ocean sub-arctic pacific. Deep-Sea Research I, 1993. 40: 967~988
    [63]Kircman D L, Rich J H, Barber R T. Biomass and biomass production of heterotrophic bacteria along 140oW in the equatorial Pacific: Effect of temperature on the microbial loop. Deep- Sea Research, 1995, 42: 603-609
    [64]Kphcc AE. Marine Microbiology (Deep Sea) [M].Translate by Sun G Y, Li S Z, .Beijing: Science Press, 1964
    [65]Kuall W, Froelich P N. Modeling estuarine nutrient geochemistry in a simple system. Geochim CosmochimActa, 1984, 48: 1417-1433
    [66]Landry M R, Kirchman D L. Microbial community structure and variability in the trophic Pacific. Deep-Sea Research II, 2002, 49: 2669-2693
    [67]Lee S K, Wang H Z, Law S H, et al. Analysis of the 16S-23SrDNA intergenic spacers (IGSs) of marine vibrio for species specific signature DNA sequences. Mar. Pollut. Bull, 2002, 44(5): 412-420
    [68]Laznik M, Stalnacke P, Grimvall A, et al. Riverine input of nutrients to the Gulf of Riga-temporal and spatial variation. Journal of Marine System, 1999, 23: 11-25
    [69]Letelier R M, Bidigare R R, Hebel D V, et al.Temporal variability of phytoplankton community structure based on pigment analysis. Limnology and Oceanography, 1993,38 (7): 1420-1437.
    [70]Little B, Wagner P. Standard practice in the united states for quantifying and qualifying SRB in MIC.AD-A250698, 1992
    [71]Little B, Wagner P. Trends in MIC testing. AD-A286854, 1995
    
    [72]Manini E, Fiordelmondo C, Gambi C, et al. Benthic microbial loop functioning in coastal lagoons: a comparative approach. Oceanologica Acta, 2003, 26: 27-38
    [73]Marianne Holmer and Peter storkholm. Sulphate reduction and sulfer cycling in lake sediments: a review. Freshwater Biology, 2001, 46: 431-451
    [74]McGowan J A, Cayan D R, Dorman L M. Climate-ocean variability and ecosystem response in the Northeast Pacific. Science, 1998, 281: 210-217
    [75]Mc Ghie T K, Crawford C M, Mitchell I M, et al. The degradation of fish cage waster in sediments during fallowing. Aquaculture, 2000, 187: 351-366
    [76]Meyer-rell L, Koester M. Eutrophication of Marine Water: Effects on Benthic Microbial Communities. Marine Pollution Bulletin, 2000, 41: 255-263.
    [77]Middelboe M, Kroer N, Jorsensen N O., et al. Influence of sediments on pelagic carbon and nitrogen turnover in a shallow Danish estuary. Aquat Microb Ecol, 1998, 14: 81-90
    [78]Moffat A. Global nitrogen overload problem grows critical. Science, 1988,279: 988-999
    [79]Naganuma T, H Seki. Abundance and productivity of bacterioplankton in a eutrophication gradient of Shimoda Bay. Journal of Oceanography, 1993,49: 657-665.
    [80]Naganuma T, Miura S. Abundance, production and viability of bacterioplankton in the Seto Inland Sea. Japan. Journal of Oceanography, 1997, 45: 435-442.
    [81]Natalia Gonzalez, Ricardo Anadon, Leticia Viesca.Carbon flux through the microbial community in a temperate sea during summer: role of bacterial metabolism. Aquatic Microbial Ecology, 2003, 33: 117-126.
    [82]Nehring D. Eutrophication in the Baltic Sea. In Marine Coastal Eutrophication, eds Vollenweider et al, pp:676-682
    [83]Odonr J M. Industrial and environmental concerns with sulphate reducing bacteria. ASM News, 1990, 56: 473-476
    [84]Officer C B, Biggs R B, Taft J L, et al. Chesapeake Bay anoxia: orgin, development, and significance. Science, 1984, 223: 22-27
    [85]Ohta S, Chang T, Ikegami N et al. Antibiotic substance produced by a newly isolated marine microalga, Chlorococcum HS 101. Bull Environ Contem Toxicol, 1993, 50: 171-178
    [86]Paezosuna F, Zazuetapadilia H M, Osunalopez J I. Biochemical-compositon of the oysters crassostrea-iridescens hanley and crassostrea-corteziensis hertlein in the northwest coast of Mexico-seasonal-changes, Journal of experimental maring biology and ecology, 1993, 170 (1): 1-9
    [87]Panades R, Ibarz A, Esplugas S. Photodecompositon of carbendaziom in aqueous solutions. Wat Res, 2000, 34 (11): 2951-2954
    [88]Pedros-Alio C, Brock T D. Assessing biomass and production of bacteria in eutrophic Lake Mendota, Wisconsin. Applied and Environmental Microbiology, 1982, 32: 155-183.
    [89]Ramaiah N., Hill R T., Chun J., Ravel J., et al..Use of a chiA probe fro detection of chitinase genes in bacteria from the Chesapeake Bay. FEMS Microbiol Ecol.34 (1): 63-71.Ringo E., Birkbeck T H.1999.Intestinal microflora of fish larvae and fry.Aquac. Res. 2000, 30: 73-93
    [90]Ramaiah N., Kenkre V D., Verlecar X N. Marine environmental pollution stress detection through dirct viable counts of bacteria. Water Res. 2002, 36: 2383-2393
    
    [91]Rheinheimer G Pollution in the Baltic Sea. Naturwissenschaften, 1998, 85: 318-329
    [92]Rivkin RB, Putland J N, Anderson M R, et al. Microzooplankton bacterivory and herbivory in the NE subarctic Pacific. Deep-Sea Research II, 1999, 46: 2579-2618.
    [94]Roberto D, Elen M, Antonio D A. Higher abundance of bacteria than of viruses in deep Mediterranean sediments. Applied and Environmental Microbiology, 2002, 68 (3): 1468-1472
    [95]Rogora M, Garibaldi L, Morabito G et al. Presents trophic level of Lake Alserio (Northern Itality) and prospect for its recovery. JLimnol, 2002, 31 (1): 27-40
    [96]Rosenberg R. Eutrophication—the future marine coastal nuisance? Marine Pollution Buttetin, 1985, 16 (6): 227-231
    [97]Rowe G T, Demings J W. The role of bacteria in the turnover of organic carbon in deep-sea sediments. Journal of Marine Research, 1985, 43: 925-950
    [98]Sander R W, Carbon D A, Berninger V G Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar Ecol Prog Ser, 1992, 86: 1-14
    [99]Scaria D. On the role of bacteria in secondary production. Limnology and Oceanography, 1988, 33: 1220-1224.
    [100]Sherwood C R, Jay D A, Haarvey B, et al. Historical changes in the Columbia river estury. Progress in Oceangraphy, 1990, 25: 299-352
    [101]Sherr E B, SherrB F. Role of microbes in pelagic food webs: A revised concept. Limnology and Oceanography, 1988, 33: 1225-1227.
    [101]Shiah F K, Ducklow H W. Multiscale variability in bacterioplankton abundance, production and specific growth rate in a temperate salt-marsh tidal creek. Limnol Oceanogr, 1995, 40: 55-56
    [102]Shiah F k, Ducklow H W. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeale Bay. Limnology and Oceanography, 1994, 39(6): 1243-1258.
    [103]Simidu U, Tsukamoro K. 1985. Habitat segregation and biochemical activities of marine members of the familiy Vibrionaceae. Applied and Environmental Microbiology, 50: 781-790
    
    [104]Smayda T. Primary production and the global epidemic of phytoplankton bloom in the sea: a linkage.pp: 449-483. In: Novel phytoplankton blooms-Coastal and estuarine studies 35, EM Cosper, V M Bricelj, E J. Carpenter (Eds.) . 1989.Springer-Verlag, New York, NY., USA.
    
    [105]Smith S V. Phosphorus versus nitrogen limitation in the marine environment. Limnol Oceanogr, 1984, 29 (6): 1149-1160.
    [106] Steward G F, Wikner J, Cochlan W P, et al. Estimation of virus production in the sea 2: Field results. Mar Microb Food Webs, 1992, 6 (2): 79~90
    [107] Wallin M, Haakanson L. Nutrient loading models for estimating the environmental effects of marine fish farms. In : Marine Aquaculture and Environment, edited by Makinen, T.(ed). Nordic Council of Ministers, Copenhagen, 1991, (22): 39~56.
    [108] Weisse T, E Maclsaac. Significance and fate of bacterial production in oligotrophic lakes in British Columbia. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57: 96~105.
    [109] Takami H, Inoue A, Fuji F, Horikoshi K. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiology Letters, 1997, 152 (2): 279~285
    [110] Thomas Soltwedel and Kay Vopel. Bacterial abundance and biomass in response to organism-generated habitat heterogeneity in deep-sea sediments. Marine Ecology Progress Series, 2001, 219:291~298
    [111] Tiziana LR, Simone M, Antonio M et al. Benthic microbial indicators of fish farm impact in a coastal area of the Tyrrhenian Sea. Aquaculture, 2004 (230): 153~167
    [112] Turner R E, Rabalais N N, Zhang Z N. Phytoplankton biomass, production and growth limitation on the Huanghe (Yellow River) continental shelf. Continental Shelf Research, 1990, 10: 545~571
    [113] Uye S I. Replacement of large copepods by small ones with eutrophication of embayments: cause and consequence. Hygrobiologica, 1994, 292/293: 513~519
    [114] Ventura M, Camarero L, Buchaca T et al. The main feature of seasonal variability in the external forcing and dynamics of a deep mountain lake (Redo, Pyrenees). J Limnol, 2000, 59 (supl 1): 97~108
    [115] Vester F, Ingvorsen K. Improved MPN method to detect suphate reducing bacteria with natural media and radiotracer. Appl Environ Microbiol, 1998, 64 (5): 1700~1707
    [116] Widdel F. Biology of anaerobic organisms. New York: Academic Press, 1988, 114
    [117] Wu R S S, Lam KS, MacKay D W. Impact of marine fish farming on water quality and bottom sediment: a case study in the sub-trophic environment. Mar. Environ. Res., 1994, 34:115~145
    [118] Wu R S S. The environmental impact of marine fish culture: towards a sustainable future. Mar. Pollt. Bull, 1995, 31:159~166
    [119] Xuo T Y. Marine Bacteriology[M]. Beijing: Science Press,1962.
    [120] Young K., Morse G K., Scfimshaw M D. The relation between phosphorus and eutrophication in the Thames catchment, UK. The science of Total Environment, 1999, 228:157~183
    [121] ZoBekk C E. Marine Microbiology, Chronica Botanica, Waltham, Mass, 1946.
    [122] 白洁,张吴飞,李岿然等.海洋异养浮游细生物量及生产力的制约因素.中国海洋大学学报,2004,34(4):595~602.
    [123] 蔡爱智.粤东柘林湾的泥沙来源与沉积环境.厦门大学学报(自然科学版),1994,33(4):515~520.
    [124] 陈浩文.胶州湾潮间带和沿岸区硫酸盐还原含量分布.海洋环境科学,1999a,18(2):27~30.
    [125] 曾活水,林燕顺,姚瑞梅.厦门西海域赤潮成因与细量相关性的研究.海洋学报,1993,15(6):105~110.
    [126] 陈浩文,李培英,王波.浙江-闽北陆架沉积物硫酸盐还原及与生物地球化学因子关系的分析.环境科学学报,2000,20(4):478~482.
    [127] 陈浩文,徐家声.北部湾东侧沉积物硫酸盐还原含量及其意义.广西科学院学报,1999b,15(3):103~107.
    [128] 陈皓文.桑沟湾表层水细与生态环境因子的关系.海洋环境科学,2001a,20(3):29~33
    [129] 陈皓文.桑沟湾细的研究.海岸工程,2001b,20(1):72~80.
    [130] 陈皓文,李培英,王波.浙江-闽北陆架沉积物硫酸盐还原及其生物地球化学因子关系的分析.2000,24(4):478~482.
    [131] 陈皓文.海南岛西南侧海域底质硫酸盐还原分析.海岸工程,2000,29(2):10~15.
    [132] 陈善文,高亚辉,杜虹等.双环海链藻(Thalassiosira diporocy Hasle)赤潮.海洋与湖沼,2004,39(2):130~137.
    [133] 陈绍铭,康玉彪.厦门沿岸底质异养细的生态分布,海洋通报.1989,8(9):25~31.
    [134] 陈伟珍,林轩,邓秀清.湛江港水产养殖区水体氮磷含量及潜在营养化程度分析.海洋渔业,2004,26 (2):99~102
    [135] 陈月琴.一起副溶血弧食物中毒.浙江预防医学,2001,13(4):33~3
    [136] 杜虹,黄长江,陈善文等.2001~2002年粤东柘林湾浮游植物的生态学研究.海洋与湖沼,2003,34(6):604~617.
    [137] 杜虹,黄长江,陈善文等.粤东柘林湾海域富营养化评价与分析.生态科学,2003,22(10):13~17.
    [139] 高爱国,陈荣华等.楚科奇海及白令海海洋地质研究进展.海洋科学,2001,25(12):41~45.
    [139] 高爱国,陈皓文,孙海青.北极沉积物中硫酸盐还原与生物地球化学要素的相关分析.环境科学学报,2003,23(5):619~624.
    [140] 高亚辉,荆红梅,黄德强等.海洋微藻胞外产物研究进展.海洋科学,2002,26(3):35~38
    [141] 甘居利,林钦,李纯厚等.柘林湾网箱养殖场不同区域环境因子的强度变化.浙江海洋学院学报(自然科学版),2001a,20(1):18~22.
    [142] 甘居利,林钦,李纯厚等.柘林湾网箱养殖海域溶解氧分布及其影响因素.海洋水产研究,2001b,22(1):69~74.
    [143] 甘居利,林钦,黄洪辉等.大鹏澳网箱养殖海域海水溶解氧浓度影响因素分析.海洋环境科学,2004,23(3):1~3
    [144] 郭平,许美美.对虾养殖池水域环境细的动态变化.91年全国海水养殖学术讨论会论文集,1992.
    [145] 国家技术监督局.海洋调查规范.北京:中国标准出版社,1992,GB12763.
    [146] 郭志刚,杨作升.东海颗粒碳的垂直转移过程.海洋与湖沼,1997,28(6):659-664
    [147] 何家箢,施之新,张银华等.一种棕囊藻的形态特征与毒素分析.海洋与湖沼,1999,30(2):172~179.
    [148] 何清溪,张穗,方正信等.大亚湾沉积物中氮和磷的地球化学形态分配特征.热带海洋,1992,11(2):38~45.
    [149] 何悦强,郑庆华,温伟英等.大亚湾海水网箱养殖与海洋环境相互影响研究.热带海洋,1996,15(2):21~27.
    [150] 黄标,钱鲁闽,刘家富.福建三都澳水产养殖区水体氮磷含量及潜在性富营养化程度分析.台湾海峡,2002,21(4):411~415.
    [151] 黄长江.海洋环境与资源保护对渔业资源可持续利用的重要意义.南海研究与开发,1997,4:56~59.
    [152] 黄长江,董巧香,郑磊.1997年底中国东南沿海棕囊藻赤潮的生物学与生态学特征.海洋与湖沼,1999a,30(6):581~590.
    [153] 黄长江.赤潮研究及其展望.生命科学,1999b,11:115~118.
    [154] 黄长江,董巧香.1998年春季珠江口桂山岛赤潮原因生物的形态分类和生物学特征—Ⅲ.海洋与湖沼,2001,32(1):1~6.
    [155] 黄长江,陈善文,何歆等.2001~2002年粤东柘林湾浮游动物的生态学研究.海洋与湖沼,2003,34(2):117~130.
    [156] 黄长江,董巧香,吴常文等.大规模增养殖区柘林湾叶绿素a的时空分布.海洋科学,2005,27(22):127~134.
    [157] 黄长江,杜虹,陈善文等.2001~2002年柘林湾大量营养盐的时空分布.海洋与湖沼.2004,35(1):127~134.
    [158] 黄宏辉,王寓平.大亚湾网箱养殖区生物—化学特性与营养状况的周日变化.湛江海洋学报,2001,21(2):35~43
    [159] 黄美珍,吴立峰,罗冬莲.厦门对虾养殖水域异养细和弧的研究,1997,4:1~5.
    [160] 黄文魁.从日本资源型管理渔业探讨我市近海渔业资源可持续发展的对策.汕头海洋资源开发与利用,1998,183~190.
    [161] 黄志坚,何建国.鲑点石斑鱼细病原的分离鉴定和治病性.中山大学学报(自然科学版),2002,41(5):64~67
    [162] 季如宝,毛兴华,朱明远.贝类养殖对海湾生态系统的影响.黄渤海海洋,1998,26(1):21~27.
    [163] 贾后磊,温琰茂,谢健.哑铃湾网箱养殖自身污染状况.海洋环境科学,2005,24(2):5~8,
    [164] 贾俊涛,吕艳,李筠.对虾围隔生态系底泥中细数量动态研究.动物医学进展,2003,24(4):76~78
    [165] 将红,崔毅,陈碧娟等.渤海近20年来营养盐变化趋势研究.海洋水产研究,2005,26(6):61~67
    [166] 姜胜,黄长江,周凯等.柘林湾浮游桡足类生态研究.生态科学,2002,21(1):045~049.
    [167] 李春雁,杨永亮,牟晓燕等.山东荣成湾月湖细生态学研究,2000,23(1):67~71.
    [168] 李广玉,叶思源,高宗军等.胶州湾底层水营养盐的分布特征及有机污染状况分析.世界地质,2005,24(2):194~199
    [169] 李金,董巧香,杜虹等.柘林湾表层沉积物中氮和磷的时空分布.热带海洋学报,2004,23(4):63~71.
    [170] 李金.粤东柘林湾沉积物中氮和磷的时空分布.2004
    [171] 李楠,倪学勤,潘康成.蛭弧的特性及其在动物养殖上的应用概况.饲料工业,2004,25(8): 58-62
    [172] 李悍东,孟伟,郑丙辉等.渤海大沽河河口底质—水界面耗氧特性.环境科学研究,2004,17(5):19~22
    [173] 李清雪,陶建华.天津近岸海域浮游植物生态特征的研究.天津大学学报,2000,33(4):465~469.
    [174] 林美兰,倪纯治,刘文华等厦门同安西柯对虾养殖池的细数量动态.台湾海峡,1998,17(2):156~161
    [175] 李亚治.福建东山湾水质状况分析与污染防治对策.海洋环境科学,2000,19(1):64~67.
    [176] 林钦,李纯厚,林燕棠等.柘林湾网箱养殖对周围海域环境的影响.华南师范大学学报(自然科学版),1998(增刊):36~46.
    [177] 林伟,陈驭,刘秀云等.饵料微藻培育系统内海洋弧生长特点.海洋与湖沼,2000a,31(4):398~403
    [178] 林伟,陈驭,刘秀云等.海洋微藻除及除与自然带微藻生长特点比较.海洋与湖沼,2000b,31(6):647~652
    [179] 林伟,陈驭,刘秀云.海洋微藻培育系统抗弧作用机理.海洋与湖沼,2001,32(1):7~17
    [180] 刘国才,李德尚,徐怀恕等.海水养虾池细数量动态及细生产力的研究.应用与环境生物学报,1997,3(4):340~344
    [181] 刘国才,李德尚,董双林等.对虾养殖围隔生态系中的细碳代谢.水产学报,1999,23(4):357~362
    [182] 刘国才,李德尚,董双林.对虾综合养殖围隔中浮游细生产力的研究.2000b,20(1):124~128.
    [183] 刘国才,李德尚,董双林.对虾养殖围隔生态系浮游动物对细的摄食作用.黄渤海海洋,2000,18(1):45~49.
    [184] 刘国才,李德尚,董双林等.对虾养殖围隔生态系细的生物量,2000a,29(1):48~53.
    [185] 刘文华等.厦门浔江牡蛎养殖区弧研究.台湾海峡,1996,15(4):412~415.
    [186] 刘震坤.华南秋旱持续,西南阴雨绵绵.气象,2005,31(1);90~93.
    [187] 刘子琳,越川海,宁修仁等.长江冲淡水区细生产力研究.海洋学报,2001,23(4):93~99.
    [188] 陆均天.2002年我国天气气候特点.气象,2003,29(4):32~36
    [189] 罗延馨,宋金明.生源要素的海洋生物地球化学过程研究进展.海洋科学集刊,1999,41:65~78
    [190] 马继波,董巧香,黄长江.粤东大规模海水增养殖区柘林湾浮游细的时空分布研究.生态学报,待刊
    [191] 倪世焕,方建光,孙慧玲等.桑沟湾海水中悬浮颗粒物的动态变化.海洋水产研究,1996,17(2):60~67
    [192] 潘建明,扈传昱,陈建芳等.南海海域海水中各种形态磷的化学分布特征.海洋学报,2001,26(1):40~47
    [193] 彭安国,黄弈普,刘光山等.大亚湾细生产力研究,2003,25(4):83~90.
    [194] 乔永民.粤东近岸海域沉积物重金属环境地球化学研究 2004
    [195] 祁铭华,马绍赛,曲克明等.沉积环境中硫化物的形成及其与贝类养殖的关系.海洋水产研究,2004,25(1):85~89.
    [196] 秦培兵,卢继武.滤食性贝类对浅海养殖系统中营养盐循环的影响.海洋科学,2001,25(5):27~29.
    [197] 乔永民,林潮平,黄长江.两种王水消化方法对测定近海沉积物中重金属含量的比较研究.海洋技术,2004,23(2):34~37
    [198] 邱耀文,王肇鼎,朱良生.大亚湾海域营养盐与叶绿素含量的变化趋势及其对生态环境的影响.台湾海峡,2005,24(2):131~139
    [199] 曲丽梅,姚德,丛丕福.辽东湾氮磷营养盐变化特征及潜在性富营养评价.环境科学,2006,27(2):263~267
    [200] 任玲,张曼平,李铁等.胶州湾内外海水中营养盐的分布.青岛海洋大学学报,1999,29(4):692-698.
    [201] 日本水产学会.水圈富营养化与水产养殖,东京:恒星社厚生阁,1973,92~103.
    [202] 申玉春,刘国才,包文仲等.池塘细生长与pH、COD、水温以及浮游生物的关系.河北渔业,1996,5:8~10.
    [203] 施建荣,张立,邹伟明等.舟山渔场近岸海水中营养盐的分布特征.海洋环境科学,1999,18(2):43-48
    [204] 史君贤,郑国兴,陈忠元等.长江口区海水沉积物中异养细的生态分布.海洋通报,1984,6(3)59~63.
    [205] 史君贤,陈忠元,宁修仁等.长江口及其附近海域细和三磷酸腺苷的分布特征.海洋与湖沼,1992,23(3):288~296.
    [206] 舒廷飞,罗琳,温琰茂等.海水养殖对近岸生态环境的影响,海洋环境科学,2002(2):74~79.
    [207] 舒廷飞,温琰茂,贾后磊等.哑铃湾网箱养殖对水环境的影响.环境科学,2004,25(5):97~101
    [208] 商少凌,张彩云,洪华生.气候—海洋变动的生态响应研究进展.海洋学研究,2005,23(3):14~22
    [209] 谭洪新,胡煜昂,梅志平.鱼池生态系统中影响浮游细生长制约因素的研究.应用生态学报,2002,13(1):95~100.
    [211] 唐和倩.微生物腐蚀中游历氧的作用.材料保护,1992,25(4):24~29
    [212] 万海清,苏仕军,朱家骅等.硫酸盐环境的生长因子及脱硫性能的研究.高校化学工程学报,2004,18(2):218~223
    [213] 万由令,李龙海,甘欣欣.厌氧处理废水过程中硫酸盐还原的生态特性.农机化研究,2004,5:106~109
    [214] 王保坤,余俊红,李筠等.花鲈弧病病原(哈维氏弧)的分离与鉴定.中国水产科学,2002,9(1):52~55
    [215] 王超.粤东大规模增养殖区柘林湾浮游植物生态学的长期研究.2006
    [216] 王明义,梁小兵,郑娅萍等.硫酸盐还原鉴定和检测方法的研究进展.微生物学杂志,2005,25(6):81~84.
    [217] 王玮,许武林,刘健.硫酸盐还原的污染与防治办法.环境污染与防治,2000,22(5):31~36
    [218] 王文琪,钱振儒.胶州湾水域异养细、大肠杆和石油降解的生态分布,海洋科学,2000,24(1):37~39.
    [219] 王宪,邱海源,郑盛华.厦门西港网箱养殖区底层水体污染状况分析.台湾海峡,2003,22(3):325~328.
    [220] 王毅,张天相,徐学仁等.辽东湾北部至辽西沿岸海域营养盐分布及水质评价.2001,20(2):63~70
    [221] 韦献革,温琰茂,陈憬璇等.哑铃湾网箱养殖海区表层沉积物磷的含量特征.水产科学,2005,24(8):4~7.
    [222] 吴建华,刘光洲等.海洋微生物腐蚀的研究方法.腐蚀与防护,1999,20(5):231~237
    [223] 吴琴瑟.我国的海水养殖业与可持续发展的对策,科学养鱼,2000,(9):22~23.
    [224] 席峰,郑天凌,张瑶等.深海微生物生态分布的若干特点.海洋科学,2004,28(2):64-68
    [225] 下平三郎.细对金属的腐蚀.应用微生物,1973,6:27~33
    [226] 肖天.海洋浮游细的生态学研究.地球科学进展,2001,16(1):60~64.
    [227] 肖天,王荣.东海异养细生产力的时空分布.海洋与湖沼,2000,31(6):664~670.
    [228] 肖天,王荣.渤海异养细生产力.海洋学报,2003,23:58~65.
    [229] 谢文阳,丘秀慧.海洋弧多样性.世界科技研究与进展,2005,27(2):34~41
    [230] 徐怀恕,R R Colwell.霍乱弧的越冬方式—活的非可培养状态及其检测方法.青岛海洋大学学报,1989,19(2):77~83.
    [231] 徐娟儿.2002年福建省水产养殖病害测报分析,福建水产,2003,(1):44~50.
    [232] 徐宁,李德尚,董双林.海水养殖池塘溶氧平衡的试验研究.中国水产科学,1999,6(1):69~74.
    [233] 徐永健,钱鲁闽.海水网箱养殖对环境的影响.应用生态学报,2004,15(3):532~536
    [234] 姚少慧.粤东大规模增养殖区柘林湾浮游动物生态学的长期研究.2005
    [235] 杨红生,周毅.滤食性贝类对养殖海区环境影响的研究进展,海洋科学,1998(2):42~44.
    [236] 杨庆宵,蒋岳文,张听阳.虾塘残饵腐解对养殖环境影响的研究.海洋环境科学,1999,18(3):11~15
    [237] 杨秀环,唐宝英,吴京洪等.柘林湾赤潮与Fe、Mn、se和营养盐指数的关系.中山大学学报(自然科学版),2000,35(4):574~580.
    [238] 叶德赞,倪纯治,周宗澄等。厦门西海域水体德细动力学研究和环境容量评估.海洋学报,1994,16(4):102~112
    [239] 俞敦义,彭芳明,刘小武等.环境对硫酸盐还原生长的影响.材料保护,1996,29(2):1~2
    [240] 于占国,林凤翱,贺杰.异养细与虾病关系的研究.海洋学报,1995,17(3):85~91
    [241] 张经.若干北方河口中的营养要素—黄河、滦河、大辽河、鸭绿江.见:张经.中国主要河口的生物地球化学研究.海洋出版社,北京:1997:205~218.
    [242] 张均顺,沈志良.胶州湾营养盐结构变化的研究.海洋与湖沼,1997,28(5):529~535.
    [243] 张强,肖风劲.2004年全国干旱灾害及其影响.中国减灾,2005,4:38~40.
    [244] 张晓华,Peter Robertson,冯娟等.中国对虾育苗池水中哈维氏弧的检测.中国海洋大学学报.1998,28(1):70~74.
    [245] 张志南.水层—底栖耦合生态动力学研究的某些进展.青岛海洋大学,2000,30(1):115~122
    [246] 赵三军,肖天,岳海东.秋季东、黄海异养细的分布特点.海洋与湖沼,2003,34(3):295~305.
    [247] 赵一阳,鄢明才.中国浅海沉积物地球化学.北京:科学出版社,1997
    [248] 郑天凌,洪静,郑志成,周美英.闽南—台湾浅滩上升流区拮抗的初步研究.海洋科学.1994,4:67~71.
    [249] 郑天凌,王斐,徐美珠,洪华生.台湾海峡海域细产量、生物量及其在微食物环中的作用.海洋与湖沼,2002,33(4):425~423.
    [250] 周凯,黄长江,姜胜,黄文魁,董巧香.2000~2001年柘林湾浮游植物群落结构及数量变动的周年调查.生态学报,2002,22(5):688~698.
    [251] 周凯,黄长江,姜胜等.2000~2001年粤东柘林湾营养盐分布.生态学报,2002a,22(12):2116~2124.
    [252] 周凯,黄长江,姜胜等.2000~2001年柘林湾浮游植物群落结构及数量变动的周年调查.生态学报,2002b,22(5):688~698.
    [253] 郑莲,黄翔鹄,刘楚吾等.两种微藻对凡纳滨对虾养殖环境中细数量变化的影响.台湾海峡,2005,24(2):178~182
    [254] 周毅,杨红生,张福绥.海水双壳贝类的生物沉积及其生态效应.海洋科学,2003,27(2):23~25.
    [255] 周玉琴.厦门西港海域水质污染状况分析.海洋环境科学,1998,17(4):59~64.
    [256] 周宗澄,姚瑞梅,梁子原.南海中部海域异养细的生态分布,海洋通报,1989,8(3):57~64.
    [257] 朱叶,苏镜娱.海藻中的细胞毒活性及抗成分.天然药物研究与开发,1992,8(4):80~89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700