用户名: 密码: 验证码:
冲绳海槽天然气水合物成因及资源潜力评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物是近三十多年发展起来的一种新类型能源,由于其分布面积广、储量规模大、能量密度高、燃烧后无污染,被誉为21世纪洁净替代燃料。笔者根据东海陆坡“215”专项采集的717.7km高分辨率地震、800.25km常规多道地震、86个低层大气样品、“126”专项采集的90个浅表层沉积物样品、200个底水样品、400多个海底地壳热流数据以及中国科学院海洋研究所实测的124个站位海底温度数据等资料、以及ODP204航次4个站位共11个样品的烃类气体组分和碳同位素测试分析,在研究区开展了天然气水合物区域地质条件分析、地球化学异常分析、天然气水合物成因探讨、地球物理识别及重点地段的特殊地震资料处理和解释,在综合分析的基础上初步圈出了冲绳海槽天然气水合物战略选区的位置,在前人研究的基础上,对研究区天然气水合物的资源潜力进行了初步的评价。主要成果和认识有:
     1.冲绳海槽具有良好的天然气水合物成矿地质条件
     冲绳海槽在大地构造上隶属太平洋沟-弧-盆体系中一个典型的弧后盆地,平均水深在1000m以上,沉积厚度大(可达12000m),沉积速率高(最高可达100-400m/Ma),有机质丰富。水深大于500m的海区,海底温度较稳定。虽然海底热流值变化较大,但海槽南部热流值较低。地形地貌多样,断裂、底辟构造等发育,具有良好的天然气水合物成矿背景。
     2.天然气水合物地球化学异常主要分布在中南部
     90个样品的酸解烃分析结果显示,CH_4异常分布区主要位于北纬27°30′以南和冲绳海槽轴部断裂以西的槽坡或陆坡区。其中,以钓鱼岛附近海域异常值最高,分布最集中。200个底水甲烷的分析结果显示,CH_4异常主要分布在两个区域,一是钓鱼岛附近海域,一是冲绳海槽中部。另据前人对冲绳海槽槽坡沉积物中矿物组分的分析,在海槽中南部见有多处由方解石、高镁方解石组成的碳酸盐结核、姜状结核及黄铁矿富集区。由此可见,冲绳海槽地球化学异常主要集中在中南部,其中钓鱼岛附近海域,各种异常标志显示最好,也最集中,可能是天然气水合物最可能聚积的地方。
     3.CO_2水合物可能是冲绳海槽一种重要的水合物类型
     经与已知区天然气水合物的成因相比较,笔者认为,冲绳海槽天然气水合物可能具有三套气源:生物成因气、热解成因气和无机成因的CO_2气,其中,有机成因气中,又以生物成因气为主,热解成因气为辅。冲绳海槽低层大气检测结果显示,低层大气中的主要气体成份为CO_2,其含量普遍偏高,约为区域背景值的3倍,同时低层大气中CO_2的碳同位素值偏重。这与前人在海槽槽底发现CO_2水合物相符。由此笔者提出,CO_2水合物可能是冲绳海槽一种重要的水合物类型。
     4.天然气水合物地球物理特征明显
     根据含天然气水合物沉积层所具有的典型地球物理特征,在东海陆坡-冲绳海槽区的常规地震和高分辨率地震剖面上分别识别出了BSR、振幅空白带、速度反转等异常信息,通过进一步对异常特征明显的地震测线进行特殊处理(如,AVO)和解释,初步圈出了10个天然气水合物有利分布区和战略选区的位置。总体上,研究区由地球物理特征指示的天然气水合物具有如下的分布规律:
     1)天然气水合物有利区分布在水深300-2625m的海域,海底埋深70-781m,储层主要为第四系;
     2)有利区所处的地貌单元以槽底平原和陆坡为主;
     3)有利区所处的构造单元以陆架前缘坳陷为主;
     4)天然气水合物异常区主要分布于冲绳海槽南部;
     5)有利区多平行于海底地形呈条带状分布,与水深和气源断层有关。
     5.天然气水合物甲烷的预测资源量约为4万亿m3天然气水合物资源量的估算方法采用容积法。研究区天然气水合物的分布面积和稳定带厚度按其高分辨率地震剖面资料的实际估算值,孔隙度和孔隙充填率则采用国际上常用的统计值。计算结果显示,东海陆坡天然气水合物有利区的甲烷资源量约为4万亿m~3。
     综上所述,不论从区域地质条件、还是地球化学异常和地球物理标志等都可以看出,冲绳海槽具有天然气水合物形成和聚集的条件与可能性,其蕴藏的天然气水合物资源十分丰富,研究区的中南部将很可能是天然气水合物最有利的聚集区。因此,从资源的角度和维护我国海洋权益的角度出发,都应继续加大冲绳海槽天然气水合物的调查和研究工作。
Gas hydrate is a newly developed potential energy source in recent thirty years. Due to its big distribution area, large reservoir scale, intensive energy density, little combustion pollution effect, gas hydrate is believed to be an alternative fuel. Based on 717.7km-long high-resolution seismic data, 800.25km-long conventional multi-channel seismic data, 86 low atmosphere samples from“215”project, 90 subsurface sediment samples, 200 bottom water samples, more than 400 heat flow data from“126”project, and 124 bottom water temperature measurements from the Institute of Oceanography of Chinese Academy of Sciences, and light hydrocarbon test and C isotopic analysis for 11 samples from 4 Sites of ODP204,the regional geological analysis for gas hydrate formation conditions, the geochemical anomaly and geophysical indication analyses for possible gas hydrate occurrence as well as the special seismic data process and interpretation for the key seismic section are conducted in the study area, and discussion for possible origin of gas hydrate. After comprehensive integration, the strategic locations for gas hydrate potentials are preliminarily figured out in the continental slope of the East China Sea. Combined with the predecessors’achievements, the energy resource estimation for gas hydrate potentials is roughly calculated, and the possible gas sources and the formation mechanics are initially discussed. Main points are as fellows:
     1. Good geological settings for gas hydrate formation conditions in Okinawa trough
     The Okinawa trough belongs to one typical back-arc basin of the pacific trench-arc-basin system in tectonics. Its average water depth is more than 1000m; the sedimentation accumulation is big (reaching 12000m); the sedimentation rate is high (the maximal amounts to 100-400m/Ma); the organic matter is rich. In the area with water depth greater than 500m, the bottom subsurface temperature is stable. Although the heat flow varies largely, the general heat flow is relatively low in the south of the trough. The topographical and morphological characteristics are various, and faults and diapirs are well developed. These characteristics are suitable for gas hydrate formation conditions.
     2. Gas hydrate geochemical anomalies are mainly located in the middle to south of the study area
     The ninety subsurface sediment acid-degassing analytical results show that methane anomalies are mainly located in the trough or continental slope, to the south of 27°30′and to the west of the trough axis. The anomalies are the most intensive and extensive around the Diaoyu Island. The 200 bottom-water hydrocarbon analytical results indicate that methane anomalies are mainly located in the two areas: one is around the Diaoyu Island and the other is in the middle of the Okinawa trough. Additionally according to the predecessors’mineral analyses of the trough sediments, carbonate crusts and ginger-shaped crusts, composed of ordinary calcite and high magnesium-content calcite, and sulfides are common in the middle to south of the trough. Hence it is suggested that the geochemical anomalies mainly occur in the middle to south of the trough, especially the intensive and extensive ones around the Diaoyu Island, possibly indicating the gas hydrate potential accumulations.
     3.CO_2 hydrate is probably an important type in Okinawa trough
     In comparison with the origins of gas hydrate from ODP 204, gas hydrate possibaly has three kinds of gas supply in Okinawa trough: biogenic, pyrolysis and inorganic gas. The low atmosphere gas analytic results show that CO_2 is the major component and its contents are commonly high, about three times of the regional background, and the carbon isotope of CO_2 out of low atmosphere gases is a little heavy. This is coincident with the discovery of CO_2 hydrate near the black chimney by Japanese scientists with the use of deep submersible. Hence, I suggest that CO_2 hydrate probably be an important type of gas hydrate in the Okinawa trough.
     4.Geophysical indications for gas hydrate are obvious
     In comparison with the typical geophysical characteristics of gas hydrate-bearing sediments, BSR, amplitude-blanking zone, velocity inversion, etc. are identified from the conventional and high-resolution seismic profiles in the continental slope and the Okinawa trough. After the further special seismic process such as AVO analysis on obviously anomalous geophysical profiles, 10 hydrate potentials or strategic prospecting areas are preliminarily selected, whose distribution range is about 410km long (BSR). Generally geophysical-indicated gas hydrate potentials have the following characteristics:
     1) The water depth of gas hydrate potentials is about 300-2625m; the deposit occurs 70-781m below seafloor and the quaternary serves as the reservoir;
     2) The morphology is characteristic of the trough plain and the continental slope;
     3) The major structural unit is the shelf-frontal depression;
     4) Gas hydrate-related anomalies are mainly within the south of the trough;
     5) Gas hydrate potentials are banded-distributing, parallel with the seafloor topography, which is related to water depth, gas source and faulting.
     5.Gas hydrate resource estimation is about 4000 billion cubic methane
     The method used for gas hydrate resource estimation is based on the conventional volume calculation. The gas hydrate distribution area and its thickness are figured out from the high-resolution seismic profiles in the study area; the porosity and the saturation are taken from the internationally statistic values. The calculated result indicates that the methane resource out of the gas hydrate potentials is about 4000 billion cubic in the Okinawa trough.
     Accordingly, from the regional geological settings, the geochemical anomalies and the geophysical indications, it can be seen that there exist the conditions and the possibility of gas hydrate formation and accumulation in the continental slope of the East China Sea; its potential resource is possibly highly enriched and the middle to south of the study area is probably the accumulation area. Therefore, from both the standpoints of resources and ocean rights and interests, it is necessary to further conduct the investigation and research-related work on gas hydrate in the Okinawa trough.
引文
陈丽蓉, 翟世奎, 申顺喜. 冲绳海槽浮岩的同位素特征及年代测定. 中国科学(B 辑),1993, 23(3):324~329.
    陈萍,方念乔,等.天然气水合物在地质过程中变化的探讨.地球科学,2002,27(4):
    程思海,陈道华,张欣,等.海底天然气水合物地球化学探测技术.海洋地质动态,2003,19(10):30-34
    陈永峤 ,刘 彬,朱建辉. 天然气水合物形成模式及其控制因素初探,2003,石油试验地质,259(3):280-284
    戴金星,戴春森,宋岩,等.中国一些地区温泉中天然气的地球化学特征及碳、氦同位素组成。中国科学(B 辑),1994,24(4): 423-433。
    丁培民,袁迎如,等.冲绳海槽地貌及沉积物研究.海洋地质专刊。1986:1-142
    方银霞,金翔龙,杨树锋,等.冲绳海槽西北边坡天然气水合物的初步研究,海洋学报,2000,22(增刊):175-179.
    方银霞.申屠海港.宋海斌,等.海底天然气水合物稳定带的特征分析.海洋地质和第四地质, 2001, 21(1):103-106.
    方银霞,黎明碧,金翔龙. 东海冲绳海槽天然气水合物的资源前景.天然气地球科学,2001,12(6):32-37
    方银霞,黎明碧,金翔龙,等. 东海冲绳海槽天然气水合物的形成条件. 科技通报,2003,19(1):1-5
    付少英,海底沉积物中不同形式烃类气体的地球化学意义.地学前缘(中国地质大学(北京),2005,12(3):253-257
    樊栓狮,刘 锋,陈多福.海洋天然气水合物的形成机理探讨.天然气地球科学,2004,15(5):524-530
    龚建明,气体水合物的结构、成因及在我国海域的可能分布,海洋地质动态,1999,No.11,3-5
    龚建明,天然气水合物勘探中地震测线的布设:以冲绳海槽盆地为例,海洋地质动态,2000,16(9):1-4
    龚建明,海底地貌与天然气水合物的关系,海洋地质动态,2000,16(11):12-14
    龚建明,刘守全,许红,等.天然气水合物的聚积与断层的关系,地球科学,2001. Vol.26(增刊):42-45
    龚建明,东海天然气水合物的区域地质特征及可能的远景区,海洋地质动态,2001,17(7):20-23
    龚建明,戴春山,蔡峰,等.天然气水合物的成因类型初探[J].海洋地质动态,2001,17(11):1-5
    龚建明,卢振权,栾锡武,等.新一代卫星遥感技术在国际海底天然气水合物勘查中的应用,海洋地质动态,2002,18(2):29-31
    龚建明, 陈建文,戴春山,等.中国海域天然气水合物资源远景,海洋地质动态,,2003,19(8):53-55
    龚建明,陈建文,李刚,《Hydrocarbon test in lower-layer atmosphere to predict deep-sea petroleum or hydrate in the Okinawa Trough: an example》,海洋学报(英文版),2003,22(4):569-576(SCI-E)
    龚建明,陈建文,天然气水合物稳定带顶、底深度和稳定带厚度预测,海洋地质动态,2004,20(6):18-21
    龚建明,张莉,陈建文,等.ODP204 航次天然气水合物的可能有利储层——浊积层,现代地质,2005,19(1):21-25
    龚建明,卢振权,吴必豪.天然气水合物地球化学三维识别方法,海洋地质动态,2006,22(12):6-8
    侯增谦,张绮玲.冲绳海槽现代活动热水区 CO2-烃类流体:流体包裹体证据.中国科学(D辑),1998,28(2):142-148.
    黄福林、张训华、夏响华,等.中国东部和海域低层大气甲烷及其同系物分布. 科学通报,1998,43(16).
    蒋少涌,凌洪飞,杨竞红,等.海洋浅表层沉积物和孔隙水的天然气水合物地球化学异常识别标志,2003,海洋地质与第四纪地质,23(1):87-94
    金翔龙,喻普之. 冲绳海槽的构造特征与演化. 中国科学(B 辑),1987, 2: P196-203
    金性春,戴南浔. 冲绳海槽异常地幔与地壳性质初步分析,海洋地质与第四纪地质. 1984, 4(3): 17-25
    江为为,刘少华,郝天姚,等.冲绳海槽及其邻域地球物理场与地壳结构特征. 地球物理学进展, 2003, 18(2): 287-292.
    李凤业,史玉兰,何丽娟,等.1999,冲绳海槽晚更新世以来沉积速率的变化与沉积环填的关系. 海洋与湖沼,30(6):540-545
    李乃胜. 冲绳海槽断裂构造研究,海洋与湖沼. 1988, 19:345-358
    李培英,王永吉,刘振夏.冲绳海槽年代地层与沉积速率.中国科学(D 辑),1999,29(1):50-56.
    李巍然,杨作升,王琦,等.冲绳海槽陆源碎屑峡谷通道搬运与海底扇沉积,海洋与湖沼,2001,32(4):371-380
    李巍然,杨作升,王永吉,等.冲绳海槽火山岩岩石化学特征及其地质意义. 岩石学报,1997,13(4):538-550
    李学伦,李桂群,林振宏,等.冲绳海槽构造活动的差异性及其非同步发展,青岛海洋大学学报,1991,21(4):111-121
    刘昌岭,业渝光,任宏波,等.天然气水合物储气量直接测定的实验技术.天然气工业,2005,25(3):44-47
    陆尊礼,凌洪飞,蒋少涌,等. 稳定同位素在天然气水合物地球化学勘查中的应用简介.海洋地质动态,2003,19(2):28 -32.
    卢振权。吴必豪.海底水合物地球化学探测方法试验研究.现代地质,2002,16(3):299-304.
    卢振权,龚建明,吴必豪,等.东海天然气水合物的地球化学标志与找矿远景,海洋地质与第四纪地质,2003,23(3):77-81
    栾锡武, 初凤友, 赵一阳,等.我国东海及邻近海域气体水合物可能的分布范围,沉积学报,2001,19(2):315-319
    栾锡武, 秦蕴珊, 张训华, 龚建明. 东海陆坡及相邻槽底天然气水合物的稳定域分析. 地球物理学报,2003,46(4):467-475
    栾锡武,秦蕴珊. 冲绳海槽宫古段西部槽底海底气泉的发现。科学通报,2005,50(8):802-810 高爱国.ODP 与冲绳海槽海底热水活动研究[J].海洋科学,1996(3):25-30.
    孟宪伟,刘保华, 石学法,等.冲绳海槽中段西陆坡下缘天然气水合物存在的可能性分析, 沉积学报,2000,18(4):629-633
    孟宪伟,王永吉,吕成功.冲绳海槽中段沉积地球化学分区及其物源指示意义[J].海洋地质与第四纪地质,1997,17(3):37-42.
    潘志良,石斯器,冲绳海槽沉积物及其沉积作用的研究,海洋地质与第四纪地质,1986,6(1):17-29
    戚学贵,陈则韶.天然气水合物研究进展. 自然杂志,2001,23(2):79-82
    沙志彬,杨木壮,梁劲. 天然气水合物成矿的沉积控制因素,海洋地质动态,2003,19(6): 16-20
    沈建东, 王胜杰, 郝妙丽,等.沉积层水合物的生成动力学模型. 天然气地球科学, 2004, 15(4): 436-440.
    史斗. 天然气水合物形成的地质模式. 天然气地球科学,1998,9(3-4):1-8
    史斗译.Kyrac P H.1996. 1998.黑海盆地气水合物形成的地热观点.天然气地球科学,3-4:25-31).
    宋海斌,译.Satoh,M 著.南海海槽等海域天然气水合物资源评价.天然气地球科学,2003,14(6):512-513.
    吴必豪,张光学,祝有海,等. 中国近海天然气水合物的研究进展.地学前缘,2003,10(1):177 -186
    吴传芝译, Roger Sassen 等著,墨西哥海湾深层水中石油渗漏与油气发现点的关系,油气化探,1994,1(4): 99~102。
    王宏语,孙春岩,黄永样,等.海上气态烃快速测试与西沙海槽天然气水合物资源调查.现代地质.2002,16(2):l86-l90.
    王家生,Suess E . 天然气水合物伴生的沉积物碳、氧稳定同位素示踪. 科学通报,2002,47(15):1172-11 76
    王舒玫,梁寿生。冲绳海槽盆地的地质特征与盆地演化历史. 海洋地质与第四纪地质,1986,(2)17~29
    王万春译:智利三岔点附近气水合物带底部的游离气。天然气地球科学,1998.9(3-4): 61-65
    夏新宇, 戴金星, 宋岩.海底天然气水合物气源及资源评价问题.天然气地球学, 2001, 12(1-2):11-15.
    肖国林,冲绳海槽盆地地震相、沉积特征与油气潜能分析,海洋地质与第四纪地质,1995, 15(增刊)
    杨文达,王震宇,曾九岭. 冲绳海槽轴线地质特征;海洋地质与第四纪地质,2001,21(2):1~6
    翟世奎,陈丽蓉,申顺喜. 冲绳海槽早期扩张作用中岩浆活动的演化,海洋学报,1994, 16(3):61-73
    翟世奎,陈丽蓉等. 冲绳海槽的岩浆作用与海底热液活动,第一版,北京:海洋出版社,2001
    翟世奎,干晓群. 冲绳海槽海底热液活动区玄武岩的矿物学和岩石化学特征及其地质意义,海洋与湖沼,1995, 26(26):115-123
    张光学,黄永样,祝有海,等.南海天然气水合物的成矿远景.海洋地质与第四纪地质,2002,22(1):75-81.
    张光学.世界海域水合物地震调查研究综述.海洋地质,2001,(1):1-l8
    张景廉,于均民,崔永强等.天然气水合物成因探讨及中国海域勘探前景,海洋石油,2003,23(1):51-56
    赵金海,唐建,薄玉玲.关于东海新生代盆地油气勘探的若干见解.中国海上油气地质,2003,17(1):14-19.
    赵一阳,翟世奎等. 冲绳海槽中部热水活动的新纪录,科学通报,1996, 41(14):1307-1310
    赵一阳. 现代海底热液活动调查研究在中国,海洋科学,1995, 19(4):53-55
    赵洪伟,龚建明,陈建文,等.冲绳海槽天然气水合物综合异常特征及成藏地质条件. 海洋地质与第四纪地质,2004,24(1):93-9
    郑铁民,徐善民,徐志明, 冲绳海槽表层沉积物沉积特证的初步研究海洋与润沼,1989,20(1) :113-121
    赵祖斌, 杨木壮, 沙志彬. 天然气水合物气体成因及其来源, 海洋地质动态,2001,7(7):38-41
    赵汗青,吴时国,徐宁,等.东海与泥底辟构造有关的天然气水合物初探, 现代地质,2006,20(1):115-122
    周祖翼,廖宗廷,金性春,等.冲绳海槽--孤后背景下大陆张裂的最高阶段,海洋地质与第四纪地质,2001, 21(1): 51-55
    祝有海, 张光学, 卢振权, 等.南海天然气水合物成矿条件与找矿前景.石油学报,2001,22(5):6-10.
    祝有海,饶 竹,刘 坚,等.南海西沙海槽 S14 站位的地球化学异常特征及其意义,现代地质,2005,19(1):39-44
    杨文达,陆文才. 东海陆坡-冲绳海槽天然气水合物初探,海洋石油,2000,4:23-28
    杨文达. 冲绳海槽轴线地质特征. 海洋地质与第四纪地质,2001,21(2)
    杨涛,薛紫晨,杨竞红,等. 南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征.地球学报,2003,24(6):511-514
    杨廷槐,刘聚海.海底气体水合物资源远景及其勘查开发. 国外地质科技,1998,(2):l7-2l
    杨木壮译,Soloviev, V.A.“大洋矿产国际会议-天然气水合物专题” 论文摘要, 海洋地质. 2002, 3:24-44.
    业治铮,张明书.潘志良.1983 冲绳海槽晚更新世— 全新世沉积物的初步研究海洋地质与第四纪地质,3(2):1-19
    于晓果,李家彪,龚建明,等.Cascadia 边缘与天然气水合物共生沉积物中有机质碳、氮同位素组成及意义,中国科学 D 辑,2006,36(5),421-429(SCI)
    地矿部海洋地质调查局. 冲绳海槽地貌及沉积物研究,海洋地质专刊 1985,2(1):112-127
    秦蕴珊,赵一阳,陈丽蓉,等.东海地质[M].北京:科学出版社,1987.
    喻普之,李乃胜主编. 东海地壳热流,第一版,北京:海洋出版社,1992
    金翔龙主编。东海海洋地质。北京:海洋出版社,1992 204-215 , 215-219 ,123-12
    阮天健,费琪. 石油天然气地球化学勘探.武汉:中国地质大学出版社.1992.
    戴金星,宋岩,戴春森,等.中国东部无机成因气及其气藏形成条件,1995,北京:科学出版社,P258。
    程同锦,王者顺,吴学明,等.烃类运移的近地表显示与地球化学勘探.石油工业出版社,1999, P198。
    周怀阳.天然气水合物.北京:海洋出版社,2000
    翟世奎,陈丽蓉,张海启, 冲绳海槽轴的岩浆作用与海洋热液活动。海洋地质出版社,2001, P240: 10-11,160-170。
    张光学,黄永样,陈邦彦,主编.海域天然气水合物地震学,海洋出版社,2003,P254,龚建明:东海天然气水合物地震特征,P248-252。
    蔡乾忠等,编著.中国海域油气地质学,海洋出版社,2005,P406,龚建明,李武,卢振权:中国海域地球化学勘探技术应用,P322-343
    刘锡清等,编著.中国海洋环境地质,海洋出版社,2006,P492,龚建明,卢振权:海洋矿产开发与环境,P387-414
    丁培民,袁迎如,孙家淞,等.冲绳海槽地形地貌、底质第一航次调查报告,1981,3.
    丁培民,张明书,孙家淞,李良骏,高金满. 冲绳海槽第二航次调查报告,1982,10.
    丁培民,袁迎如等. 冲绳海槽地形地貌、沉积物调查研究报告,1983,8.
    曾久岭,谢仁海等. 东海地质构造和地壳结构及其演化研究报告,2001,6.
    Andreassen K,Hart P E, Grantz A.1995. Seismic studies of a bottom simulating reflection related to gas hydrate beneath the continental margin of the Beaufort Sea. J. Geophys. Res.,100(B7):12659-12673.
    Bemard B.Brooks J,Sackett W.Natural gas seep age in the Gulf of Mexico.Earth and Planetary Science Letters. 1976. 31:48-54.
    Borowski W S,Paull C K,Ussler W Ⅲ.Global end local variations of interstitial sulfate gradients in deep-water。continental margin sediment: sensitivity to underlying methane and gas hydrates[J].Mar. Geo1., 1999。159(1-4): 131-154.
    Brown K M,Bangs N L.The nature,distribution,and origin of gas hydrate in the Chile triple junction region.Earth and Planetary Science Letters,1996,139:471-483
    Claypool G,Kvenvolden K.Methane and other hydrocarbon gases in marine sediment. Annual Reivew of Earth and Planetary Sciences,1983。11:299-327.
    Collett T S,Bird K J,Kvenvolden K A,M agoon L B.1988.Geologic interrelations relative to gas hydrates within the North Slope of Alaska. U.S. Geological Survey Open—File Report 88-389,150.
    Collett T.S., Natural gas hydrate of the Prudhoe Bay and Ku-paruk River area, North Slope, Alaska, American Association of Petroleum geologists Bulletin, 1993, 77: 793-812
    Collett T.S.Energy resource potential of natural gas hydrates.AAPG Bulletin,2002,86: 1971-1992.
    Dickens G R. The potential volume of oceanic methane hydrates with variable external conditions.Organic Geochemistry,2001a,32: 1179-1193.
    Dillon W P,Paull C K.Marine gas hydrates-II:Geophysical Evidence.Cox J L.Natural gas hydrates-properties,occurrence and recovery.Boston:Butterworth Publishers. 1983.73-79.
    Ginsberg, G D,Guseynov, K A, Dadashey A A,et.a1.Gas hydrate of the southern Caspian.International Geology Review,1992,34(8):765-782.
    Ginsburg G D ,Soloviev V A.Submarine gas hydrate estimation:theoretical and empirical approaches.Proceedings of Offshore Technology Conference. Houston,T X,l995,l: 5l3-5l8.
    Ginsburg G D,Milkov A V,Soloviev V A,et a1.Gas hydrate accumulation at the Haakon Mosby mud volcano.Gee Marine Letters,1999,19:57-67
    Ginsburg G D,Soloviev V A.Submarine Gas Gydrates.St Petersburg:VNII Okeangeologia,1998.215.
    Horita J.,Berndt M.E.. A biogenic methane formation and isotopic fractionation under hydrothermal conditions[J]. Scienec,1999,285:1055~1057.
    Kimura, M., Back arc rifting in the Okinawa Trough. Marine Petroleum geology, 1985, 2:22-240
    Kinoshita, M., Yamano, M., Post, J., Heat flow measurement in the Southern and Middle Okinawa Trough on R/V SONNE in 1988. Bull. Earthquake Research Institute, University Tokyo, 1990, 65:571-588,
    Kraemer,L.M.,Owen,R.M., Dickens,G.R.,Lithology of the upper gas hydrate zone, Blake Outer Ridge: a link between diatoms,porosity,and gas hydrate.In Paull,C K ,Matsumoto,R ,Wallace,P J,and Dillon,W P(Eds) Proc.ODP,Sci.Results,l64 :229-236
    Kvenvolden K A ,Barnard L A. Hydrates of natural gas in continental margins.In:Watkins J S,Drake C L(Eds.),Studies in Continental Margin Geology.AAPG Menoir,l983.34:631-640.
    Kvenvolden K A, Barnard L A. 1984. Gas hydrates of the Blake Outer Ridge,Site 533,DSDP Leg 76. Init.Repts.,DSDP,76:353-365.
    Kvenvolden KA, McDonald TJ., 1985. Gas hydrate of the Middle America Trench-Deep Sea Drilling Project Leg 84. In: von Huene, R., et. Al. (Eds.), Initial Reports of the Deep Sea Drilling Project, 84. US Government Printing Office, Washington DC, 667-682
    Kvenvolden K A ,Claypool G E.Gas hydrates in oceanic sediment.USGS Open—File Report,l988,88-2l6,
    Kvenvolden K A,Grantz A.Gas hydrates of the Arctic Ocean region.In:Grantz A,Johnson L,Sweeney J F(Eds.),The Artic Ocean Region. The Geology of North America.L Geological Society of America,Boulder,Colorado,1990,539-549.
    Kvenvolden K.A.,Kastner M.Gas hydrate of the Peruvian outer continental margin.Proceedings ODP Scientific Results,1990. 112:517- 526.
    Kvenvolden K A.Gas hydrates geological perspective and global change.Renews of Geophysics,1993,31(2):173-187
    Kvenvolden KA . A review of the geochemistry of methane in natural gas hydrate[J].OrgGeochem,1995,23(11-12):997-1008.
    Kvenvolden,KA. 2002, Methane hydrate in the global organic carbon cycle. Terra Nova 14, 302-306
    Max M D,Dilion W P. 1998. Oceanic methane hydrate:the character of the Blake Ridge hydrate stability zone,and the potential for methane extraction.J.Petro1.Gco1.,21:343- 358.
    Milkov A V,Clapool G E,Lee Y j,Dickens G R,Xu W ,Borowski W S.and the ODP Leg 204 Scientific Party,in situ methane concentrations at Hydrate Ridge offshore Oregon:new constraints on the global gas hydrate inventory from an active margin.Geology,2003,3l:833-836.
    Milkov A V,Sassen R.Estimate of gas hydrate resource.northwestern Gulf of Mexico continental slope.Marine Geology,2001,179:71-83.
    Milkov A V,Sassen R.Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope.Marine and Petroleum Geology,2003b,20: 111-128.
    Milkov A V. Sassen R. Economic geology of offshore gas hydrate accumulations and provinces.Marine and Petroleum Geology,2002,19: 1-11.
    Milkov A V.Global estimates of hydrate-bound gas in marine sediments:how much is really out there, Earth—Science Reviews,2004,66: l83-l97.
    Milkov A V.Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology,2000,167:29-42
    Milkov AV., Sassen R., 2003. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope. Marine and Petroleum Geology 31, 833-836
    Paull C K,Matsumoto R,Wallacepl.Proceedings on ODP,Initial Reports (Leg.164).Texas:College Station(Ocean Drilling Program),1996.
    Reed D L,et a1.Relations between mud volcanoes,thrust deformation,slope sedimentation, and gas hydrate,offshore north Panama.Marine and Petroleum Geology,1990,7(1):44-45
    Sakai, H., Gamo T., Kim E-S et al. Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa Trough backarc basin. Science, 1990, 248:1093-1096.
    Sloan E D.Clathrate Hydrates of Natural Gases.2nd.New York:Marcel Dekker Incorporation,1998.1-628.
    Soloviev V.A. Global estimation of gas content in submarine gas hydrate accumulations.Russian Geology and Geophysics,2002,43: 609-624.
    Suess E,Torres M E,Bohrmann G,et a1.Sea floor methane hydrates at Hydrate Ridge,Cascadia margin.American Geophysical Union Geophysical Monograph,2001,24:87-98.
    Suess E,yon Huene R,Wallace P J and Shipboard Scientists. 1988, Proceedings of the Ocean Drilling Program,Initial Reports.College Station,TX,112:597-647
    Xu,W., Ruppel, C. Predicting the occurrence,distribution and evolution of methane gas hvdrate in porous marine sediments.J.Geo-phys. Res.,1999,104:5081-5096.
    Yamano M,Uyeda S,Fruukawa Y,et. a1. Heat flow measurements in the north and middle Ryukyu arc area on R/V SONNE in 1984.Bull. Earthq. Res. Inst. Univ. Tokyo, 1986b,61:311-327
    Yamano M,Uyeda S,Kinoshita H,et. a1.Report on DELP 1984 cruises in the Middle Okinawa trough,Part IV:Heat flow measurements. Bull. Earthq. Res. Inst. Univ. Tokyo,1986a,61:251-267
    Yasui M ,Epp D,Nagasaka K,el a1.Terresstrial heat flow in the seas round the Nansei Shoto(Ryukyn Islands).Tectonophysics,1970,10:225-234

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700