用户名: 密码: 验证码:
中国边缘海典型海域沉积物早期成岩过程中硫的循环
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫是海水的主要化学组分之一。硫在海洋沉积物成岩过程中的生物地球化学反应和循环导致了地球表面的氧化还原环境和大气组分的地质历史演化,直接影响和控制了海洋碳循环和一系列化学元素-尤其是对海洋生态环境有重要影响的重金属元素的海洋生物地球化学循环。另外,鉴于海洋硫循环和碳循环之间的密切关系,对硫循环的研究将对我们了解和探测埋藏在大陆坡沉积物深部的人类21世纪的新型能源-天然气水合物有重要意义。因此,海洋沉积物早期成岩过程中硫的生物地球化学循环很久以来一直是国际海洋研究的重点之一,在我国近年来也逐渐受到关注。
    本论文利用取自黄海陆架、胶州湾李村河口及南海陆坡三处不同沉积环境中的沉积物样品,用冷扩散法分析了沉积物中酸可溶硫化物(AVS)的含量,用逐级提取法分析了沉积物中黄铁矿的含量,结合沉积物粒度、有机质、活性铁、黄铁矿硫同位素及孔隙水中常量组分离子浓度等数据,并参考前人在东海所作的硫化物方面的工作,对中国不同典型海域沉积环境下,沉积物早期成岩硫循环过程中硫化物的形成及其主要控制因素进行了探讨。通过对胶州湾李村河口沉积物中痕量金属活性组分与黄铁矿化金属组分的分析,结合其与硫化物的关系,探讨了沉积物中AVS向黄铁矿的转化,以及痕量金属在AVS和黄铁矿组分中的分布。通过分析黄海沉积物中活性金属的分布特征,讨论了其对环境氧化还原条件的响应,从而有助于对硫循环中硫化物分布特征的理解。通过对南海NH-1孔沉积物粒度环境敏感组分的分析,探讨了NH-1孔的沉积环境变化特征,并结合AVS、黄铁矿硫同位素、无机碳及有机质等数据,探讨了可能下部来源有机碳(甲烷)存在对硫循环的影响,及其对水合物存在的指示。
    对南黄海和南海柱状沉积物粒度进行了测试与分析,探讨了不同前处理方法对沉积物粒度特征的影响。结果表明,不同前处理方法获得样品的粒度特征差异不大,样品在去除碳酸岩和有机质后所测的粒度结果能较好的反应陆源碎屑的粒度特征。南海NH-1对沉积环境敏感的粒度组分范围分别为1.3~2μm、10~15μm和28~50μm。其中细粒组分(1.3~2μm与10~15μm)组分可能代表了悬浮物沉降来的沉积物,而28~50μm可能是底床运动的产物。根据环境敏感组分含量在深度上的变化剖面可识别出9个明显的沉积物波动旋回。
Sulfur is one of the major components in seawater. Sulfur cycle in marine sedimentsduring diagenesis resulted in the geological evolution of the redox condition on thesurface of the Earth and that of the atmospheric composition. It has direct influence andcontrol on the marine carbon cycle and the biogeochemical behaviors or cycles of largenumber of trace elements, particularly heavy metals that may play an important role in themarine ecosystem. In addition, as marine sulfur cycle is found to be intertangled with themarine carbon cycle, study on the marine sulfur cycle will certainly shed light on thegas-hydrate, a potential new energy resource for the 21th century, that are usually burieddeep in the continental shelf or slope sediments. Consequently, the sulfur cycle has longbeen an important subject of study, and recently, it started to attract the attention of theChinese marine scientists.
    In this dissertation, the sediment samples taken from the Yellow Sea continental shelf,the Licun estuary of the Jiaozhou Bay, and the South China Sea continental slope, wereanalysed for grain size, contents of acid volatile sulfide (AVS), contents of pyrite, reactiveFe, organic carbon, pore water sulfate concentration, pyrite and its sulfur isotope. Basedon our data and the data in the East China Sea from previous work by others, theformation of sulfide and its controlling factors in the process of sulfur cycle in theChinese marinal seas were discussed. Based on the analysis of the reactive metals and thepyritized metals in the sediments of the Licun estuary, the transformation of AVS to pyriteand trace metals distribution in AVS and pyrite were discussed. The redox condition,which is crucial for the distribution of sulfides in the sediments, was discussed throughanalysis of the reactive metal profiles in the sediments of the Yellow Sea. Based on theenvironmentally sensitive group of grain size data, the characters of sedimentaryenvironments were discussed. Combining AVS, sulfur isotope of pyrite, organic carbon,
    inorganic carbon and N/C ratio, the abnormality of the sulfur cycle caused by upwardmethane flux and the indication of gas hydrate formation at depth were discussed.We determined the gain sizes of sediments collected from the Yellow Sea and theSouth China Sea, applying three different pretreatment schemes. Our data indicated thatsediment grain size, measured after organic matter and carbonate removal, reflected wellthe characteristics of terrigenic fraction of the sediment. At site NH-1 of the South ChinaSea, three size fractions (i.e.,1.3~2μm、10~15μm, and 28~50μm) of sediment wereidentified to reflect sedimentary environments. The fine-grained fractions (1.3~2μm and10~15μm) consisted mainly of particles that settle from the upper water column, whilefraction 28~50μm were composed of materials that were transported by bottom watercurrents.AVS content in the sediments of the Yellow Sea and the South China Sea wasdetermined. We found that AVS content decreased in the following order: Licun estuary inthe Jiaozhou Bay > Jiaozhou Bay > the East China Sea continental slope > the Yellow Seacontinental shelf > the East China Sea continental shelf > the South China Sea slope.Based upon our results of sulfide, reactive metals, and pyritization of sediment corescollected from the Yellow Sea and South China Sea, and published results of sedimentsfrom the East China Sea, we concluded that sediment organic carbon content was themajor factor that controlled the formation of sulfide in sediments of the Chinese MarginalSeas. Reactive iron would become the controlling factor only in environments with veryhigh organic carbon supply, such as the Licun estuary. The quantity and quality of organicmatter, sedimentation rate, redox condition, bottom water temperature, and burial time allcould influence the formation, quantity and transform of sulfides in the sediments.In sediment core NH-1, retrieved from the South China Sea, a pyrite contentmaximum was found at the depth of 141.5cm. Extensive sulfate reduction took place atdepths between 120-141.5cm. Combining previous results obtained from cores collectedto the west of our core, we thought that the depth of 141.5cm might represent theboundary of Late Pleistocene glacial and Holocene post-glacial period. The high AVScontents appeared near the bottom of the sediment core, which was abnormal as AVS inmost marine sediments had mid-depth maximum. Both δ34S of pyrite and AVS contentshowed abnormal value at the 247.5~380.5cm interval of the sediment core NH-1,suggesting intensive methane upward flux and possibly the formation of gas-hydrate atgreater depth at this location.
    Both active Fe and Mn profiles showed maximums at the surface layer to subsurfacelayer. The depth of Fe maximum was usually deeper than that of Mn, which was inaccordance with the fact that Fe reduction began at deeper depth than Mn's reduction.Reactive Mn, therefore, had a higher mobility in the sediment than reactive Fe. ReactiveMn enrichment in oxidizing environment and its absent in reducing environment couldserve as a sensitive indicator of bottom water redox conditions.
引文
陈道公,支霞臣,杨海涛, 地球化学. 合肥:中国科学技术大学出版社. 1994, 307~313
    陈多福, 陈先沛, 陈光谦, 2002. 冷泉流体沉积碳酸盐岩的地质地球化学特征. 沉积学报, 2002, 20(1): 34~40
    陈荣华,徐建, 孟翊等,2003. 南海东北部表层沉积中微体化石与碳酸盐溶跃面和补偿深度. 海洋学报, 25(2): 48-56.
    陈庆, 1981. 南黄海沉积物中自生黄铁矿的研究.地质学报, 第 3 期, 232-244.
    陈史坚, 陈特固,徐锡祯等,1985. 浩瀚的南海. 北京: 科学出版社,27~65.
    陈志华, 石学法, 王相芹, 2000. 南黄海表层沉积物碳酸盐及 Ca、Sr、Ba 分布特征. 海洋地质与第四纪地质, 20(4): 9-16.
    程鹏, 高抒, 2000. 北黄海西部海底沉积物的粒度特征和净输运趋势. 海洋与湖沼, 31(6): 604-615.
    程鹏, 高抒, 李徐生, 2001. 激光粒度仪测试结果及其与沉降法、筛析法的比较. 沉积学报,19(3): 449-455.
    程业勋,章哗,王南萍,等.土壤天然热释光测量在油田勘探中的初步应用.物探与化探.1996,20(4):188~294.
    初凤友, 陈丽蓉, 申顺喜等, 1995. 南黄海自生黄铁矿成因及其环境指示意义. 海洋与湖沼, 26(3), 227-233
    杜德莉, 1991. 台西南盆地地质构造特征与油气远景[J]. 海洋地质与第四纪地质.11(3): 21~33.
    杜德莉,曾维军.吴能友, 1998. 南海及邻域中、新生代盆地类型与油气资源关系探讨[J]. 地质论评, 14(3): 580-589.
    段伟民, 陈丽蓉, 1993. 黄、东海早期成岩过程中黄铁矿的形成史. 中国科学(B), 23(5): 545~552
    冯文科, 薛万俊, 杨达源, 1988. 南海北部晚第四纪地质环境. [M]广州:广东科技出版社: 156~162.
    甘居利, 李纯厚, 贾晓平等, 2001. 南海北部渔场表层沉积物中的硫化物. 湛江海洋大学学报, 21(2), 44-47.
    高抒, 2000. 海细颗粒沉积物通量与循环过程. 世界科技研究与发展, 22(5): 73-77.
    高抒. 2000. 示踪沉积物方法的理论框架. 科学通报, 45(3):329-334.
    国家海洋局第一海洋研究所港湾室, 1984.胶州湾自然环境[M].北京: 海洋出版社.
    管秉贤, 1978. 南海暖流-广东外海一支冬季逆风流动的海流. 海洋与湖沼, 9(2): 117~127.
    郭忠信,杨天鸿,仇德忠, 1985. 冬季南海暖流及其右侧德西南向海流. 热带海洋, 4(1): 1~9.
    黄唯, 汪品先, 1998. 末次冰期以来南海深水区的沉积速率. [J] 中国科学, 28(1): 13~17.
    贾建军, 高抒, 薛允传, 2002. 图解法与矩法沉积物粒度参数的对比. 海洋与湖沼, 33(6), 577-582
    蒋少涌,凌洪飞,杨竟红,等。同位素新技术方法及其在天然气水合物研究中的应用。海洋地质动态,2001,7(7),24~29.
    姜学钧, 李绍全, 申顺喜, 2000. 南黄海 YSDPl02 孔冰消期以来的重矿物组合特征. 海洋地质与第四纪地质, 20(2): 27-31.
    雷坤, 杨作升, 郭志刚, 2001. 东海陆架北部泥质区悬浮体的絮凝沉积作用. 海洋与湖沼, 32(2): 288-295.
    李安春, 陈丽蓉, 申顺喜, 1991. 南黄海H-106岩柱中自生黄铁矿的硫同位素研究. 科学通报, 1991,第12期: 928-930.
    李凡, 1998. 黄海埋藏古河道及灾害地质图集. 济南出版社.
    李凤业, 高抒, 贾建军等, 2002. 黄、渤海泥质沉积区现代沉积速率. 海洋与湖沼, 33(4),364-369.
    李凤业, 史玉兰, 申顺喜等, 1996. 同位素记录南黄海现代沉积环境. 海洋与湖沼, 27(6), 584-589.
    李风业,宋金明,李学刚,汪亚平,齐君, 2003. 胶州湾现代沉积速率和沉积通量研究. 海洋地质与第四纪地质, 23(4): 29-33.
    李军, 2003. 冲绳海槽晚更新世以来的沉积过程与记录. 中国科学院海洋研究所博士学位论文.
    李善为, 1983. 从海湾沉积物特征看胶州湾的形成演变. [J]海洋学报,5: 328~339.
    李志珍, 1989. 南海深海表层沉积物中的火山碎屑矿物及火山作用. [J]海洋学报, 1(2):176~184.
    李志珍, 张富元, 1990. 南海深海铁锰微粒的元素地球化学特征. [J] 海洋通报, 9(6): 41~50.
    林晓武, 陈俊铭, 黄国铭, 1993. 控制硫酸盐还原作用在台湾东北海域陆棚与陆坡沉积物之机制. Acta Oceanographica Taiwanica, 30, 66-76
    刘海生, 程业勋, 王南萍, 等. 沉积物天然热释光在海洋油气勘查中的应用. 海洋地质与第四纪地质, 2001, 21(1): 107~112.
    刘海生, 王南萍,等. 海洋沉积物热释光-潜在天然气水合物找矿方法. 物探与化探. 2002, 26(4): 264~267,278
    刘健, 朱日详, 李绍全, 等, 2003. 南黄海东南部冰后期泥质沉积物中磁性矿物的成岩变化及其对环境变化的响应. 中国科学, 33(6): 583-592.
    刘竟春, 严重玲, 胡俊, 2004. 水体沉积物中酸可挥发性硫化物(AVS)研究进展. 生态学报, V24(4): 812-818.
    刘昭蜀, 赵焕庭, 范时清等, 2002. 南海地质. 北京: 科学出版社,9~11.
    鹿化煜,安芷生,1997. 前处理方法对黄土沉积物粒度测量的实验研究. 科学通报,42(23): 2535-2538.
    卢武长, 稳定同位素地球化学. 成都地质学院出版社, 成都, 1986, 53;138;191.
    卢振权, 吴必豪, 2002. 海底水合物地球化学探测方法的试验研究. 现代地质, 2002, 16(3):299~304
    马淑兰, 柴之芳, 毛雪演等, 1987. 南海铁锰沉积物的中子活化研究. [J]东海海洋, 5: 146~152. 秦蕴珊, 赵一阳, 陈丽蓉等, 1989. 黄海地质. 海洋出版社.
    仇德忠, 杨天鸿,郭忠信, 1984. 夏季南海北部一支向西流动德海流. 热带海洋, 3(4): 65~73.
    史君贤, 陈忠元, 杨季芳, 胡锡钢, 1998. 东太平洋铁锰结核区微生物的丰度及其成矿作用研究. 海洋与湖沼, 29(5): 458-466.
    申顺喜, 1993. 南黄海陆架沉积学研究. 海洋科学, 5, 24-28.
    宋进喜, 李金成, 王晓蓉, 刘康, 马俊杰, 2004. 太湖梅梁湾沉积物中酸挥发性硫化物垂直变化特征研究. 环境科学学报, 24(2): 271-274.
    孙东怀, 安芷生, 苏瑞侠,等. 2001. 古环境中沉积物粒度组分分离的数学方法及其应用. 自然科学进展, 11(3): 269-276.
    孙有斌. 2002. 海洋与陆地的古气候记录对比. 中国科学院海洋研究所博士后研究工作报告.
    孙有斌, 高抒, 鹿化煜, 2001. 前处理方法对北黄海沉积物粒度的影响. 海洋与湖沼, 32(6): 665-671.
    孙有斌, 高抒, 李军, 2003. 边缘海陆源物质中环境敏感粒度组分的初步分析. 科学通报, 48(1): 83-86.
    王德杰, 范代读, 李从先,2003. 不同预处理对沉积物粒度分析结果的影响. 同济大学学报, 31(3): 314-318.
    汪福顺, 刘丛强, 梁小兵, 魏中青, 2003. 贵州阿哈湖沉积物-水界面生物活动及其对微量元素再迁移富集的影响. 科学通报, 48(19): 2073-2078.
    王宏斌,张光学,杨木壮等.2003.南海陆坡天然气水合物成藏的构造环境.海洋地质与第四纪地质,23(1):81—86.
    王宏语,黄永样等,2002. 海上气态烃快速测试与西沙海槽天然气水合物资源勘查. 现代地质.2002,16(2): 186-190
    王慧中, 周幅根, 翦知缗, 1992. 中沙台缘碳酸盐软泥中的火山碎屑及其古环境意义, 南海晚第四纪古海洋学研究(业治锋、汪品先主编), [M]青岛:青岛海洋大学出版社: 42~55.
    王家生,Suess, E., 2002. 天然气水合物伴生的沉积物碳、氧稳定同位素示踪. 科学通报,47, 15: 1172~1176
    王红霞, 林振宏, 文丽, 姜学钧, 张志殉, 2004. 南黄海西部表层沉积物中碎屑矿物的分布. 海洋地质与第四纪地质, 24(1): 51-56.汪品先著, 1995. 十五万年来的南海. [M]上海: 同济大学出版社: 12.
    王锡福,杨晓元,孙六一,等. 鄂尔多斯盆地油气化探基本理论和方法. 王锡福. 鄂尔多斯盆地非地震油气勘探. 北京:地质出版社, 1992. 11~26.
    王文海, 王润玉, 张书欣. 胶州湾的泥沙来源及其自然沉积速率. [J]海岸工程, 1(1): 83~90.
    魏国彦, 李孟扬, 段威武等, 1999. 南海东北部末次冰期-全新世古海洋学[J]. 海洋地质与第四纪地质, 19(3):19-27.
    吴朝东, 曾凡刚, 雷家锦, 1999. 湘西黑色页岩多种形态硫的分离与同位素指示意义. 科学通报, 44(6):661-665.
    喻祖祥, 苏育嵩,俞光耀, 李凤歧, 1989. 长江口及济洲岛附近近海域变性水团的初步分析. 青岛大学学报, 19(1), 132-144
    青岛-石岛近海反气旋中尺度涡漩存在证据及数值模拟. 海洋学报, 1999, 21:18-26.
    许东禹, 刘锡清, 张训华等主编, 1997. 中国近海地质. 北京: 地质出版社.
    杨群慧, 林振宏, 张富元, 林晓彤, 季福武, 2002. 南海东部重矿物分布特征及其影响因素. 青岛海洋大学学报, V32(6): 956~964.
    杨群慧, 林振宏, 张富元, 等, 2002. 南海中东部表层沉积物矿物组合分区及其地质意义.[J]海洋与湖沼, 33(6): 27~35.
    杨群慧, 张富元, 林振宏, 周怀阳, 2004. 南海东北部晚更新世以来沉积环境演变的矿物-地球化学记录. 海洋学报, 26(2): 72-80.
    杨涛, 薛紫晨, 杨竟红, 蒋少涌, 2003. 南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征. 地球学报, 24(6): 511-514.
    杨育标, 1990. 南海晚第四纪火山沉积物及其起源探讨. [J]热带海洋, 9(1): 52~59.
    张光学,黄永样,祝有海等.2002.南海天然气水合物的成矿远景.海洋地质与第四纪地质,22(1):75—81.
    张丽洁, 王责, 姚德, 段国政, 2003. 胶州湾李村河口沉积物重金属污染特征研究. 山东理工大学学报, V17(1): 8~14.
    赵一阳, 李凤业, 1991. 南黄海沉积速率和沉积通量的初步研究. 海洋与湖沼, 22(1), 38-43.
    赵一阳,鄢明才著, 1994. 中国浅海沉积物地球化学. 北京: 科学出版社, 179-193.
    赵祖斌 梁劲等,2001. 沉积物间隙水中硫酸盐与与烷相互关系的研究进展.海洋科学,25(9), 24~29.
    郑开富, 1998. 江苏地区第四系浅层天然气的分布与勘探前景. 天然气工业, 18(3), 20-24
    中国海湾志编纂委员会, 1998. 中国海湾志(Ⅲ、Ⅳ分册)[Z]. 北京: 海洋出版社.
    周伟华, 吴云华, 陈绍勇, 2003. 南沙群岛海域表层沉积物中有机物铁和锰的分布特征. 热带海洋学报, 22(1): 43-49.
    祝有海,张光学,等, 2001. 南海天然气水合物成矿条件与找矿前景.石油学报, 2001, 22(5): 6~10
    Abdollahi, H., and Nedwell, D. B., 1979. Seasonal temperature as a factor influencing bacterial sulfate reduction in a salt marsh sediment. Microbial Ecology, V. 5: 73-79.
    Aharon, P., Fu, B., 2000. Microbial sulfate reduction rates and sulfur isotope fractionations at the oil and gas seeps in deepwater Gulf of Mexico. Geochimica et Cosmochimica Acta 64, 233-246.
    Alexander, C.R., DeMaster, D.J., Nittrouer, C.A., 1991a. Sediment accumulation in a modern epicontinental-shelf setting: the Yellow Sea. Mar. Geol. 98, 51–72.
    Aller, R. C., and Yingst, J. Y., 1980. Relationship between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA: Narine biology, V. 56: 29-42.
    Ankley, G. T., Leonard, E. N. and Mattson, V. R., 1994. Prediction of bioaccumulation of metals from contaminated sediments by the oligochaete. Lumbriculus Variegatus. Water Res., 28: 1071~1076.
    Ankley, G. T., Liber, K., et al, 1996. A field investigation of the relationship between zinc and acid volatile sulfide concentration in fresh water sediments. J. Aquat. Ecosyst. Health, 5(4): 255~264.
    Ankley, G. t., Phipps, G. L., Leonard, E. N., et al, 1991. Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments. Environmental Toxicology and Chemistry, 10: 1299~1307.
    Arthur, M. A., Sageman, B. B., 1994. Marine black shales: depositional mechanisms and environments of ancient deposits [J]. Annu Rev Earthplanet Sci, 22: 499-551.
    Bangs, N.L.B., Sawyer, D.S., Golovchenko, X., 1993. Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple junction. Geology 21, 299–308.
    Berner, R.A., 1964. Iron sulfides from aqueous solution at low temperatures and atmospheric pressure. J. Geol. 72, 293–306.
    Berner, R. A., 1970. Sedimentary pyrite formation. American Journal of Science, 268: 1~23.
    Berner, R. A., 1980. Early diagenesis. Princeton university press,Princeton, New Jersey.
    Berner, R.A., 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. American Journal of Science 282, 451–473.
    Berner, R. A., 1984. Sedimentary pyrite formation: an update. Geochimical et Cosmochimica Acta, 48: 605~615.
    Berner, R. A., 1967. Thermodynamic stability of sedimentary iron sulfides. American Journal of Science, 265: 773~785.
    Bloomfield, C., Coulter, J. K., 1973. Genesis and management of acid sulphate soil. Advances in Agronomy, 25: 265~326.
    Boesen, C., Postma, D., 1988. Pyrite formation in anoxic environments of the Baltic. American Journal of Science, 288: 575~603.
    Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jorgensen, B.B., Witte, U., Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623– 626.
    Bohrmann, G., Greinert, J., Suess, E. et al. Authigenic Carbonates from Cascadia subduction zone and their relation to gas hydrate stability. Geology, 1998, 26: 647~650
    Boning, P., Brumsack, H. J., Bottcher, M. E., et al., 2004. Geochemistry of Peruvian near-surface sediments. Geochimica et Cosmochimica Acta, 68 (21): 4429-4451.
    Borowski, W.S., Hoehler T.M. and Alperin M.J. et al.. Significance of anaerobic methane oxidation in methane-rich sediments overlying the blake ridge gas hydrates. Proc. ODP, Sci. Results, 2000, 164: 87~99.
    Borowski, W.S., Paull, C.K., Ussler III, W., 1996. Marine porewater sulfate profile indicate in situ methane flux from underlying gas hydrates. Geology 24, 655–658.
    Borowski, W. S., Walter S., Paull, Charles K., Ussler III, William,1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Marine Geology, 159,131-154.
    BOttcher M. E., Smock A. M., and Cypionka H. (1998) Sulfur isotope fractionation during experimental precipitation of iron(II) and manganese(II) sulfide at room temperature. Chem. Geol. 146 (3–4), 127–134.
    Boulay S., Colin C., Trentesaux A., Fluquet F., Bertaux J., Blamart D., Buehring C., Wang P., 2003. Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP site 1144). In: Prell, W.L., Wang P., Blum P., Rea D.K., Clemens S.C. (eds.), Proc. ODP, Sci.Results, 184:1-21.[Online]. Available from World wide web: Http:\www-odp.tamu.edu /publications/ 184_SR /volume/ chapters/211.pdf
    Brassell, S.C., Lewis, C.A., de Leeuw, J.W., de Lange, F., Sinninghe-Damste, J.S., 1986. Isoprenoid thiophenes: novel products of sediment diagenesis. Nature 320, 160–162.
    Brooks J., et al. Association of gas hydrates and oil seepage in the gulf of Mexico. Organic Geochemistry, 1986, 10: 221~234
    Calvert, S. E., Pederson, T. F., 1993. Geochemistry of recent oxic and anoxic marine sediments: implication for the geological record [J]. Chemical Geology, 113: 67-88.
    Canfield, D.E.,1993. Organic matter oxidation in marine sediments.In:Wollast,R., et al. (Ed.), Interaction of C,N,P and S Biogeochemical Cycles.Springer,Berlin, pp.333 –363.
    Canfield D. E. (1989) Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53, 619–632.
    Cecile, M. P., Shakup M. A., and Krouse, H. R., 1983. The isotopic composition of western Canadian barites and the possible derivation of oceanic sulfate δ34S and δ18O age curves: Canadian Journal of Earth Science, V20,p. 1528-1535.
    Chen, K.Y., Morris, J.C., 1972. Kinetics of oxidation of aqueous sulfide by O . Am. J. Sci. 6, 529–537. 2
    Chough, S.K., Lee, H.J., Yoon, S.H., 2000. Marine Geology of Korean Seas. Elsevier, Amsterdam.
    Claypool, G., and Kaplan, I.R. (1974) The origin and distribution of methane in marine sediments. In: Kaplan, I. (ed.) Natural Gases in Marine Sediments. Plenum Press, New York, 99-139.
    CLaypool G, Kvenvolden K, Methane and other hydrocarbon gases in marine sediment. Annual Review of Earth and Planetary Sciences, 1983, 11: 299~327
    Cline, J.D., Richards, F.A., 1969. Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature, and pH. Environ. Sci. Technol. 3, 838–843.
    Crusius J., Calvert S., Pedersen T., and Sage D. (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett. 145, 65–78.
    Cummings, D. E., March, A. W., Bostick, B., et al, 2000. Evidence for microbial Fe(Ⅲ) reduction in anoxic, mining-impacted lack sediments(lake Coeur d'Alene, Idaho). Applied and Environmental Microbiology, 66(1): 154-162.
    Dean W. E., Gardner J. W., and Piper D. Z. (1997) Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin. Geochim. Cosmochim. Acta 61, 4507–4518.
    Devol A. H., Anderson J. J., Kuivila K., et al. A model for coupled sulfate reduction and methane oxidation in the sediments of saanich Inlet. Geochimica et Cosmochimica acta, 1984, 48: 993~1004.
    Dickens, G.R., 2001. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir. Geochimica et Cosmochimica Acta, 65(4): 529~543
    Dillon, W.P., Fehlhaber, K., Coleman, D.W., Lee, M.W., Hutchinson, D.R., 1995. Maps showing the distribution off the east coast of the United States. USGS Miscellaneous Field Studies Map MF-2268, United States Geological Survey.
    Dillon, W.P., Lee, M.W., Coleman, D.F., 1994. Identification of marine hydrates in situ and their distribution off the Atlantic coast of the United States. Annals New York Academy of Sciences 715, 364–380.
    Ditoro, D. M., Mahony, J. D., Hansen, D. J., et al, 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ. Sci. Technol., 26: 96~101.
    Ditoro, D. M., Mahony, J. D., Hansen, D. J., et al, 1990. Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environmental Toxicology and Chemistry, 9: 1487~1502.
    Doeglas, D. T., 1968. Grain-size indices, Classifications and environment. Sedimentology, 10: 83-100.
    Edenborn H. M., Mucci A., Silverberg N., and Sundby B. (1987) Sulfate reduction in deep coastal marine sediments. Mar. Chem. 21, 329–345.
    Egeberg, P.K., and Dickens, G.R. (1999) Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge). Chem. Geol. 153: 53-97
    EI Bilali, L., Rasmussen, P. E., Hall, G. E. M., et al, 2002. Role of sediment composition in trace metal distribution in lake sediments. Applied Geochemistry, 17: 1171-1181.
    Elvert, M., Greinert, J,Suess, E,et a1.Carbon isotopes of biomarkers derived from methane-oxidizing at hydrate ridge,Cascadia convergent margin.In:Paull C K,Dillon W P eds.Natural Gas Hydrates: Occurrence, Distribution, and Detection. Washington, DC:American Geophysical Union,2001. 115~129
    Fang, T., Zhang, X. H., Xu, X. Q., 2002. Seasonal and vertical distribution of acid volatile sulphide (AVS) in Lake DongHu sediments. Acta Hydrobiologica Sinica, 26(3): 239~245.
    Fang, G., Fang, W., Fang, Y., et al, 1998. A survey of studies on the South China Sea upper ocean circulation. [J]Acta Oceanographica Taiwanica, 37: 1~6.
    Faure, G., 1986. Principles of isotope geology: John Wiley & Sons, New York, 531pp.
    Faure, G., 1977. Principles of Isotope Geology. Wiley, New York. 464 pp.Fenchel, T., and Blackburn, T. H., 1979. Bacteria and Mineral Cycling. Academic Press, N. Y., 225pp.
    Fossing, H., J?rgensen, B.B., 1990. Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment
    Francois, R., 1987. A study in sulfur enrichment in the humic fraction of marine sediments during early diagenesis. Geochim. Cosmochim. Acta 51, 17–27.
    Fu, B. S., 1998. A study of pore fluids and barite deposits from hydrocarbon seeps: deepwater gulf of Mexico. Thesis of Degree of doctor of Philosophy, Graduate Faculty of the Louisiana State University.
    Gagnon, C., Mucci, A., Pelletier, E., 1995. Anomalous accumulation of acid-volatile sulphides AVS in a coastal marine sediment, Saguenay Fjord, Canada, Geochimica Acta, 59 (13): 2663~2675.
    Gao, S., 2002. Shallow marine sedimentation and physical environment evolution as a part of global change: an example from the Bohai, Yellow and East China Sea regions. Earth Sci. Frontiers 9, 330– 335.
    Gao, S., Collins, M., 1994. Analysis of Grain Size trends, for defining sediment transport pathways in marine environments. Journal of Coastal Research, 10(1): 70-78.
    Gobeil C., Macdonald R. W., and Sundby B. (1997) Diagenetic separation of cadmium and manganese in suboxic continental margin sediments. Geochim. Cosmochim. Acta 61, 4647–4654.
    Goldhaber, M. B., and Kaplan, I. R., 1974. The sulfur cycle: The Sea, V. 5, p. 569-655.
    Griethuysen, C. V., Meijboom, E. W., Koelmans, A. A., 2003. Spatial variation of metals and acid volatile sulfide in flood plain lake sediment. Environmental Toxicology and Chemistry, 3: 457~465.
    Greinert, J., Bohrmann, G., Suess, E..Gas hydrate-associated carbonate and methane-venting at hydrate ridge:C1assification, distribution, and origin of authigenic lithologies.In:Paull C K,Dillon W P eds. Natural Gas Hydrates: Occurrence, Distribution, and Detection. Washington, DC:American Geophysical Union,2001. 99~114
    Guo, T. M., Wu, B. H., Zhu, Y. H., Fan, S. S., et al., 2004. A review on the gas hydrate research in China. Journal of Petroleum Science & Engineering, 41: 11-20.
    Habicht, K. S., and Donald, D. E., 1996. Sulfur isotope fractionation in modern microbial mats and the evolution of the sulfur cycle. Nature, 382: 341-343.
    Habicht, K. S., and Donald, D. E., 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta, 61: 5351-5361.
    Hansen, D. J., Berry, W. J., Boothman, W. S., et al., 1996. Predicting the toxicity of metal-contaminated field sediments using interstitial concentration of metals and acid-volatile sulfide normalizations [J]. Environmental Toxicology and Chemistry, 15(12): 2080-2094.
    Harrison, A. G., and Thod, H. G., 1958. Mechanism of the bacterial reduction of sulfate from isotopic fractionation studies: Transaction of faraday. Society, 54: 84-92.
    Hatch, J. R., Leventhal, J. S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsyvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A.[J]. Chemical Geology, 99: 65-82.
    Herlihy, A. T., Mills, A. L., 1985. Sulfate reduction in freshwater sediments receiving acid mine drainge. Appl. Environ. Microbiol.,49: 179~186.
    Heydari, E., Hassanzadeh, J., 2003. Deev jahi model of the Permian-Triaddic boundary mass extinction: a case for gas hydrates as the main cause of biological crisis on Earth. Sedimentary Geology, 163: 147-163.
    Hirner, A.V., Kritsotakis, K., Tobschall, H.J., 1990. Metal-organic associations in sediments––I. Comparison of unpolluted recent and ancient sediments and sediments a.ected by anthropogenic pollution. Applied Geochemistry 5, 491–505.
    Hoehler T. M., Alperin M. J., Daniel B. a., Martens C. S.. Field and laboratory studies of methane oxidation in anoxic marine sediment: Evidenc for a methanogen-sulfate reducer consortium. Global Biogeochemical cycles, 1994, 8(4): 451~463
    Hoehler, T. M., Borowski, W. S. and Alperin, M. J. et al.. Pro. ODP, Sci. Results, 2000, 164: 79~85
    Holbrook, W.S., Hoskins, H., Wood, W.T., Stephen, R.A., Lizarralde, D., Leg 164 Science Party, 1996. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273, 1840–1843.
    Hovland H. W., Hecker B., Commeau R., et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science, 1984, 226: 965~967
    Howard, D. E., Evans, R. D., 1993. Acid-volatile sulfide (AVS) in a seasonally anoxic mesotrophic lake: seasonal and spatial change in sediment AVS. Environmental Toxicology and Chemistry, 12: 1051~1057.
    Hsieh Y P, Chung S W, Tsau Y J, et al, 2002. Analysis of sulfides in the presence of ferric minerals by diffusion methods. Chemical Geology 182: 195-201.
    Hsieh, Y.P. and Yang, C.H., 1989. Diffusion methods for the determination of reduced inorganic sulfur species in sediments. Limnol. Oceanogr., 34: 1126-l 130.
    Hsieh, Y.P., Shieh, Y.N., 1997. Analysis of reduced inorganic sulfur by diffusion methods: improved apparatus and evaluation for sulfur isotopic studies. Chem. Geol. 137, 255–261.
    Huerta-Diaz, M. A., and Morse, J. W., 1989. A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Marine Chemistry, 29: 119~144.
    hurtgen, M. T., Lyons, T. W., Ingall, E. D., et al, 1999. Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H2S in iron sulfide transformations: examples from Effingham Inlet, Orea Basin and the Black Sea. Amercan Journal of Science, 299: 556~588.
    Hyndman, R.D., Spence, G.D., 1992. A seismic study of methane hydrate marine bottom simulating reflectors. Journal of Geophysical Research 97 B5 , 6683–6698.
    Jeroen, W. M., Jack, J. M., Peter, M. J., et al, 2001. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Marine Chemistry, 74:261~278.
    Jian, Z., Wang, L., Kienast, M., et al, 1999. Benthic foraminiferal pa;eoceanogrphy of the South China Sea over the last 40000 years. [J]Marine Geology, 156: 159~186.
    Jorgensen, B. B., 1977. Bacterial sulfate reduction within reduced microinches of oxidized marine sediments: Marine Biology, V. 41, p. 7-17.
    Jorgensen B. B.,1977. The sulfur cycle of a coastal marine sediment. Limnol. Oceanogr. 22, 814–832.
    Jorgensen, B. B., 1981. the microbial sulfur cycle. In Microbial Geochemistry,(e. d. W. E. Krumbein), Academic Press, N. Y.
    Jorgensen, B.B., 1990. The sulfur cycle of freshwater sediments: role of thiosulfate. Limnol. Oceanogr. 35, 1329–1342.
    Jorgensen, B. B., 1982. Mineralization of organic matter in the sea bed-the role of sulfate reduction. Nature, 296: 643~645.
    Jorgensen, B. B., Bottcher, M. E., Loschen, H., 2004. Anaerobic methane oxidation and a deep F2S sink generate isotopically heavy sulfides in Black Sea sediments.
    Jorgensen N. O., 1992. Methane-derived carbonate cemention of marine sediments from the Kattegate, Denmark: geochemical and geological evidence. Marine Geology, 103: 1~13.
    Kaplan, I. R., 1962. Sulfur isotope fractionations during microbiological transformations in the laboratory and in marine sediments: Ph.D dissertation, University of Southern California, 213 pp.
    Kaplan, I. R., and Rittenberg, S. C., 1964. Microbiological fractionation of sulfur isotopes. Journal of General Microbiology, 34: 195-212.
    Karlin, R., Levi, S., 1983. Diagenesis of magnetic minerals in recent hemipelagic sediments [J]. Nature, 303: 327-330.
    Katzman, R., Holbrook, W.S., Paull, C.K., 1994. Combined vertical-incidence and wide-angle seismic study of a gas hydrate zone, Blake Ridge. Journal of Geophysical Research 99 B9 , 17975–17995.
    Kemp, A.L.W., and Thode, H.G., 1968. The mechanism of bacterial reduction of sulfate and of sulfite from isotope fractionation studies. Geochimica et Cosmochimica Acta, 32: 71-91.
    Kim, D., Park, B.K., Shin, I.C., 1999a. Paleoenvironmental changes of the Yellow Sea during the late Quaternary. Geo-Mar. Lett. 18, 189– 194.
    Kohnen, M.E.L., Sinninghe-Damste, J.S., ten Haven, H.L., de Leeuw, J.W., 1989. Early incorporation of polysulfides in sedimentary organic matter. Nature 341, 640–641.
    Kohnen, M.E.L., Sinninghe-Damste, J.S., Kock-Van Dalen, A.C., ′ de Leeuw, J.W., ten Haven, H.L., 1990. Origin and diagenetic transformations of C and C highly branched isoprenoid C25 and C30 sulphur compounds: further evidence for the formation of organically bound sulphur during early diagenesis. Geochim. Cosmochim. Acta 54, 3053–3063.
    Kohnen, M.E.L., Sinninghe-Damste, J.S., ten Haven, H.L., Kock-Van Dalen, A.C., Schouten, S., de Leeuw, J.W., 1991. Identification and geochemical significance of cyclic di-and trisulphides with linear and acyclic isoprenoid carbon skeletons in immature sediments. Geochim. Cosmochim. Acta 55, 3685–3695
    Kostka, J.E., Luther, G.W., 1995. Seasonal cycling of Fe in saltmarsh sediments. Biogeochemistry 29, 159–181.
    Krom, M. D., Mortimer, R. J. G., Poulton, S. W., et al, 2002. In –situ determination of dissolved iron production in recent marine sediments. Aquat Sci, 64: 282-291.
    Kuivila K. M., Murray J. W., Devol A. H.. Methane production, sulfate reduction and competition for substrates in the sediments of lake Washington. Geochimica et Cosmochimica acta, 1989, 53: 409~416
    Kulm L. D., Suess E., Moore J. C., et al. Oregon subduction zone: venting, fauna, and carbonates. Science, 1986, 231: 561~566
    Kvenvolden, K.A., 1995, A review of the geochemistry of methane in natural gas hydrate: Organic Geochemistry, v. 23, no. 11-12, p. 997-1008.
    Kvenvolden, K A. Lorenson, T D.The global occurrence of natural gas hydrates.In:Paull C K. Dillon W P. eds. Natural Gas Hydrates:Occurrence, Distribution, and Detection. Washington, DC:American Geophysical Union,2001. 3~18.
    Kvenvolden, K A.Methane hydrate a major reservoir of carbon in the shallow geosphere[J]. Chem. Geol, 1988,71(1):41~51
    Kvenvolden, K A. Methane hydrate and global climate[J]. Global Biogeochem, Cycles, 1988, 2(2): 221~229.
    Kysing Fjord, Denmark. Geochim. Cosmochim. Acta 54, 2731–2742.
    Lallemand S. E., Glaoon G., Lauriat-Rage A., et al. Seafloor manifestatuins of fluid seepage at the top of a 2000m deep ridge in the eastern Nankai accretionary wedge: Long lived venting and tectonic implications. Earth and Planetary Science Letters, 1992, 109: 333~346
    LaLonde, R., 1990. Polysulfide reactions in the formation of organosulfur and other organic compounds in the geosphere. In: Orr, W.L., White, C.M. Eds. , Geochemistry of Sulfur in Fossil Fuels. ACS Symp. Series, American Chemical Society: Washington, DC, 429, 68–82.
    LaLonde, R.T., Ferrara, L.M., Hayes, M.P., 1987. Low-temperature, polysulfide reactions of conjugated ene carboxyls: a reaction model for the geologic origin of S-heterocycles. Org. Geochem. 11, 563–571.
    Lasorsa, B., Casas, A., 1996. A comparision of sample handling and analytical methods for determination of acid volatile sulfides in sediment. Marine Chemistry, 52: 211~220.
    Lee, G., Bigham, J. M., Faure, G., 2002. Removal of trace metals by co-precipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Applied Geochenistry, 17: 569-581.
    Lee, H.J., Chough, S.K., 1989. Sediment distribution, dispersal and budget in the Yellow Sea. Mar. Geol. 87, 195– 205.
    Lee, H.J., Chu, Y.S., 2001. Origin of inner-shelf mud deposit in the southeastern Yellow Sea: Huksan Mud Belt. J. Sediment. Res. 71, 144– 154.
    Lee, M.W., Hutchinson, D.R., Dillon, W.P., Miller, J.J., Agena, W.F., Swift, B.A., 1993. Method of estimating the amount of in situ gas hydrates in deep marine sediments. Marine Petroleum Geology 10, 493–506.
    Leonard, E. N., Mattson, V. R., Benoit, D. A., et al, 1993. Seasonal variation of acid volatile sulfide concentration in sediment cores from three mortheastern Minnesoda lakes. Hydrobiologia, 271: 87~95.
    Lerman, A., 1979. Geochemical Process: Water and sediment Environments[M], New York: John Wiley & Sons Inc., 481.
    Lin, S., K.-M. Huang, et al. (2002). "Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment." Deep Sea Research Part I: Oceanographic Research Papers 49: 1837-1852.
    Lin, S., Huang, K. M., Chen, S. K., 2000. Organic carbon deposition and its control on iron sulfide formation of the southern east china sea continental shelf sediments. Continental Shelf Research, 20, 619-635
    Lin S, Huang K M, et al, 2002. Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment. Deep Sea Research Part I: Oceanographic Research Papers 49: 1837-1852.
     Lin, S., Morse, J.W., 1991. Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments. American Journal of Science 291, 55–89.
    Lorenson, T.D., Collett, T.S.. Proc. ODP, Sci. Results, 2000, 164: 59~66
    Luther, G.W. III, 1991. Pyrite synthesis via polysulfide compounds. Geochim. Cosmochim. Acta 55, 2839–2849.
    Luther, G.W. III, Church, T.M., Scudlark, J.R., Cosman, M., 1986. Inorganic and organic sulfur cycling in salt-marsh pore waters. Science 232, 746–749.
    Luther G. W., III, Kostka J. E., Church T. M., Sulzberger B., and Stumm W. (1992) Seasonal iron cycling in the salt-marsh sedimentary environment: The importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Mar. Chem. 40, 81–103.
    Machado, W., Carvalho, M. F., Santelli, R. E., et al, 2004. Reactive sulfides relationship with metals in sediments from an eutrophicated estuary in Southeast Brazil. Marine Pollution Bulletin, 49: 89-92.
    Mackey, A. P., Mackay, S., 1996. Spatial distribution of acid-volatile sulphide concentration and metal bioavailability in mangrove sediments from the Brisbane River, Australia. Environmental Pollution, 93(2): 205~209.
    MacKay, M.E., Jarrard, R.D., Westbrook, G.K., Hyndman, R.D., ODP Leg 146 Scientific Party, 1994. Origin of bottom-simulating reflectors: geophysical evidence from the Cascadia accretionary prism. Geology 22, 459–462.
    Madureira, M. J., Vale, C., et al, 1997. Effect of plants on sulfur geochemistry in the Tagus salt-marshes sediments. Marine Chemistry 58, 27-37.
    Magenheim, A.J., Gieskes, J.M., 1992. Hydrothermal discharge and alteration in near-surface sediments from the Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta 56, 2329–2338.
    Malcolm, W. C., Mcconchie, D., Lewis, D. W., et al, 1998. Redox stratification and heavy metal patitioning in Avicennia-dominated mangrove sediments: a geochemical model. Chemical Geology, 149: 147~171.
    Markl, R.G., Bryan, G.M., Ewing, J.I., 1970. Structure of the Blake-Bahama Outer Ridge. Journal of Geophysical Research 75, 4539–4555.
    Martens, C. S., and Berner, R. A., 1977. Interdtitial water chemistry of anoxic Long Island Sound sediments, Dissolved gases. Limnology Oceanography, 22: 10-25.
    Martin, J. M., Zhang, J., Shi, M. C., et al, 1993. Actual flux of the Huanghe(Yellow River) sediment to the western Pacific Ocean. Netherlands Journal of Sea Research, 31(3): 243~254.
    Matsumoto T. U., Waseda A., 2000. Gas content and composition of natural gas hydrate recovered from the Black Ridge, Northweat Atlantic. Proc. ODP, Sci. Results, 164: college station, TX (Ocean Drilling Program), 13~28
    Matsumoto, T.U. and Borowski, W.S.. Pro. ODP, Sci. Results, 2000, 164: 59~66
    Mayer, C. R., Rice, O. L., 1992. Early diagenesis of protein: a seasonal study. Liminol Oceanogr, 37(2): 280-295.
    McCave I.N., Magnighetti B., and Robinson S.G. 1995. Sortable silt and fine sediment size-composition slicing: parameters for palaeocurrent speed and palaeoceanography. Palaeoceanographys, 10: 593-610.
    McLaren, P. A., 1981. A interpretation of trends in grain size measurements. Journal of Sedimentary Petrology, 51: 611-624.
    Meriane, E.. Metal and aquatic cantanmination workshop[J]. Environ Sci Technol, 1994, 28(3): 144-146(A)
    Middelburg, J. J., 1991. Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia. Geochimica et Cosmochimica Acta, 55: 815~828.
    Middelburg, J. J., Calvert, S. E., 1991. Organic-rich transitional facies in silled basins: response to sea-level change. Geology, 19: 679~682.
    Miller, J.J., Lee, M.W., Von Huene, R., 1991. An analysis of a seismic reflection from the base of a gas hydrate zone, offshore Peru. AAPG Bulletin 75 5 , 910–924.
    Milliman, J.D., Qin, Y.S., Ren, M.E., Saito, Y., 1987. Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example. J. Geol. 95, 751–762.
    Milliman, J. D., Syvitski, J. P., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. [J] journal of Geology, 100: 525~544.
    Minshull, T.A., Singh, S.C., Westbrook, G.K., 1994. Seismic velocity structure at a gas hydrate reflector, offshore western Columbia, from full waveform inversion. Journal of Geophysical Research 99 B3 , 4715–4734.
    Moerz T., Wolf-Welling T.C.W. 2001. Data Report: Fine-fraction grain-size distribution data and their statistical treatment and relation to processes. Site 1095 (ODP Leg 178, Western Antarctic Peninsula). In Barker P.F., Ramsay A.T.S. (Eds), Proc. ODP, Sci. Results, 178, 1-27.
    Morford J. J. and Emerson S. R. (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63, 1735–1750.
    Morse, J.W., Arakaki, T., 1993. Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochimica et Cosmochimica Acta 57, 3635–3640.
    Morse, J.W., Cornwell, J.C., 1987. Analysis and distribution of iron sulphide minerals in recent anoxic sediments. Mar. Chem, 22, 55-69
    Morse, J.W., Luther, G.W., 1999. Chemical influences on trace metalsulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta 62, 3373–3378.
    Moers, M.E.C., de Leeuw, J.W., Cox, H.C., Schenck, P.A., 1987. Interaction of glucose and cellulose with hydrogen sulphide and polysulphides. Org. Geochem. 13, 1087–1091.
    Nameroff T. J., Balistrieri L. S., and Murray J. W. (2002) Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochim. Cosmochim. Acta 66, 1139–1158.
    Nealson, K. H., Saffarini, D., 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology and regulation. Annu. Rev. Microbial, 48: 311-343.
    Nedwell, D. D., Abram, J. W., 1978. Bacterial sulfate reduction in relation to sulfur geo-chemistry in two contrasting areas of salt marsh sediment. Estuary Coastal Marine Science, 6: 341~351.
    Neretin, L. N., BOTTCHER, M. E., J?RGENSEN, B. B., et al., 2004. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea. Geochimica et Cosmochimica Acta, 68(9): 2081-2093.
    Nevin, K. P., Lovley, D. P., 2002. Mechanisms for accessing insoluble Fe(Ⅲ) oxide during dissimilatory Fe(Ⅲ) reduction by Geothrix fermentans. Applied and Environmental Microbiology, 68(5): 2294-2299.
    Nisbet, E.G., 1989. The end of the ice age. Canadian Journal of Earth Science 27, 148–157.
    Nissenbaum, A., Kaplan, I.R., 1972. Chemical and isotopic evidence for the in situ origin of marine humic substances. Limnol. Oceanogr. 17, 570–582.
    Oehm, N. J., Luben, T. J., Ostrofsky, M. L., 1997. Spatial distribution of acid volatile sulfur in the sediments of Canadohta Lake PA. Hydrobiologia, 345:79~85.
    Park, S.C., Lee, H.H., Han, H.S., Lee, G.H., Kim, D.C., Yoo, D.G., 2000. Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea. Mar. Geol. 170, 271– 288.
    Passier H. F., B?ttcher M. E., and De Lange G. J. (1999) Sulphur enrichment in organic matter of eastern Mediterranean sapropels: A study of sulphur isotope partitioning. Aquat. Geochem. 5 (1), 99– 118.
    Paull, C.K. and Matsumoto, R.. Proc. ODP. Sci. Results. 2000, 164: 3-12.
    Paull C. R., Matsumoto R. 1995. Wallace Paul, et al. Proceedings of the Ocean Drilling Program, Initial Reports. 164: 1~623
    Paull, C.K., Matsumoto, R., Wallace, P., et al., 1996. Proceedings ODP, Initial Reports 164, Ocean Drilling Program, College Station, TX.
    Paull, C.K., Ussler, W. III, Dillon, W.P., 1991. Is the extent of glaciation limited by marine gas hydrates? Journal of Geophysical Research 18 3 , 432–434.
    Pecher, I.A., 1996. Seismic studies of bottom simulating reflectors at the convergent margins offshore Peru and Costa Rica. GEOMAR Report 47, GEOMAR Research Center for Marine Geosciences, Kiel, Germany, 160 pp.
    Pecher, I.A., 1997. Shear waves through methane hydrate-bearing sediments—results from a wide-angle experiment during ODP Leg 164. EOS Transactions AGU 78 46 , P340.
    Pedreros, R., Howa, H. L., Michel, D., 1996. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas. Marine Geology, 135: 35-49.
    Perry, K. A., 1995. Sulfate-reducing bacteria and immobilization of metals. Marine Georesources and Geotechnology, 13: 33-39.
    Pesch, C. E., Hansen, D. J., Boothman, W. S., et al, 1995. The role of acid-volatile sulfide and interstitial water metal concentrations in determining bioavailability of cadmium and nickel from contaminated sediments to the marine Polychaete Neanthes arenaceodentata. Environmental Toxicology and Chemistry, 14:129~141.
    Prins M.A., Postma G., Weltje G.J. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope. Marine Geology, 2000, 169, 351-371.
    Pyzik, A.J., Sommer, S.E., 1981. Sedimentary iron monosulfides: kinetics and mechanism of formation. Geochim. Cosmochim. Acta 45, 687–698.
    Raiswell, R., Buckley, F., Berner, R. A., et al, 1988. Degree of pyritization of iron as a palaeoenvironmental indicator of bottom-water oxygenation [J]. J Sediment Petrol, 58: 812-819.
    Ramm, A. E., and Bella, P. A., 1974. Sulfate production in anaerobic microcosms. Limnology Oceanography, 19: 425-441.
    Rea D.K., Hovan S.A., 1995. Grain-size distribution and depositional processes of the Mineal component of abyssal sediments:Lessons from the North Pacific. Paleoceanography, 12: 251-258.
    Rea, D. K., Janecek, T. R., 1981. Mass-accumulation rates of the non-authigenic inorganic crystalline (eolian) component of deep-sea sediments from the western mid-pacific mountains, deep sea drilling project site 436. Initial Reports of the Deep Sea Drilling Project, 62:653-659.
    Rey, J. R., Shafer, J., Kain, T., et al, 1992. Sulfide variation in the pore and surface water of artificial salt marsh ditches and a natural tidal creek. Estuary, 15: 257~269.
    Rickard, D.T., 1974. Kinetics and mechanism of sulfidation of goethite. Am. J. Sci. 274, 941–952.
    Rickard, D.T., 1975. Kinetics and mechanism of pyrite formation at low temperatures. Am. J. Sci. 275, 636–652.
    Roberts HH, Aharon P.. Hydrocarbon-derived carbonate baildups of the Northern Gulf-of-Mexico congtinental-slope-a review of submersible investigation. Geo-marine Letters, 1994, 14(2~3): 135~148
    Roden, E. E., Tuttle, J. H., 1992. Sulfide release from estuarine sediments underlying anoxic bottom water. Limnol Oceanogr, 37(4): 725-738.
    Rodrugues N. M., Paull C. K., Borowski W. S.. Zonation of Authigenic Carbonates within gas hydrate-bearing sedimentary section on the Black Ridge: Offshore Southeastern America. Paull C. K., Matsumoto R., Wallaee P. J., et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, Collage station, TX (Ocean Drilling Program), 2000, 164:301~312
    Rosenthal Y., Lam P., Boyle E. A., and Thomson J. (1995) Authigenic cadmium enrichment in suboxic sediments: Precipitation and postdepositional mobility. Earth Planet. Sci. Lett. 132, 99–111.
    Russel, R. D., 1939. Efects of transportation of sedimentary particles. In: Trask ed. Recent Marine Sediments. The society of Economic Paleontologists and Mineralogists, Tulsa(Oklahoma), 32-47.
    Sassen R., MacDonald I. R.. Evidence of structure H hydrate, Gulf of Mexico continental slope. Organic Geochemistry, 1992, 22: 1029~1032
    Schoonen, M.A.A., Barnes, H.L., 1991. Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 1008C. Geochim. Cosmochim. Acta 55, 1505–1514.
    Shipley, T.H., Houston, M.H., Buffler, R.T., Shaub, F.J., McMillen, K.J., Ladd, J.W., Worzel, J.L., 1979. Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. American Association Petroleum Geologists Bulletin 12, 2204–2213.
    Siegal F. R., Chcn R., Vaz J. E., et a1. The integrated radiation environment at well sites—an adjunct to Pet ro1eum exploration. Oi1 Gas J., 1997, (6):91~96.
    Singh, S.C., Minshull, T.A., Spence, G.D., 1993. Velocity structure of a gas hydrate reflector. Science 260, 204–207.
    Sinninghe-Damste, J.S., Rijpstra, W.I.C., Kock-Van Dalen, A.C., de Leeuw, J.W., Schenck, P.A., 1989. Quenching labile functionalized lipids by inorganic sulphur species: evidence for the formation of sedimentary organic sulphur compounds at the early stages of diagenesis. Geochim. Cosmochim. Acta. 53, 1343–1355.
    Stumm, W., Morgan, J. J., 1981. An introduction emphasizing chemical equilibria in matural waters. In: Aquatic Chemistry, 2nd. New York: Wiley.
    Suess, E., Torres, M. E., Bohrmann, G. et al. Gas hydrate destabilization: enhanced dewatering, benthic material turnover, and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett, 1999, 170: 1~15
    Suess, E., Torres, M. E., Bohrmann, G. et al. Sea floor methane hydrates at Hydrate Ridge. Cascadia Margin. In: Paull, C. K., Dillon, W. P. eds. Natural Gas Hydrate: Occurrence, Distribution, and Detction. Washington. DC: American Geophysical Union, 2001,87~98
    Sun D., Bloemendal J., Rea D.K., et al. 2002. Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components. Sediment Geology, 152: 263-277.
    Sweeney, R.E., Kaplan, I.R., 1973. Pyrite framboid formation: laboratory synthesis and marine sediments. Econ. Geol. 68, 618–634.
    Taillefert M., Bono A. B., and Luther G. W., III. (2000) Reactivity of freshly formed Fe(III) in synthetic solutions and (pore)waters: Voltammetric evidence of an aging process. Environ. Sci. Technol 34, 2169–2177.
    ten Haven, H.L., Rullkotter, J., Sinninghe-Damste, J.S., de Leeuw, J.W., 1990. Distribution of organic sulfur compounds in Mesozoic and Cenozoic sediments from the Atlantic and Pacific Oceans and the Gulf of California. In: Orr, W.L., White, C.M., Eds. , Geochemistry of Sulfur in Fossil Fuels. ACS Symp. Series, American Chemical Society, Washington, DC, Vol. 429, pp. 613–632.
    Thod-Anderson, S., Jorgensen, B. B., 1989. Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and S0 in coastal marine sediments. Limnol. Oceanogr., 34: 793~806.
    Usero, J., Gamero, M., Morillo, J., et al, 1998. Comparative study of three sequential extraction procedures for metals in marine sediments. Environmental International, 24(4): 487~496.
    Vairavamurthy, A., Mopper, K., 1989. Mechanistic studies of organosulfur(thiol) formation in coastal marine sediments. In: Saltzman, C.M., Cooper, E.S., W.J., (Eds.), Biogenic Sulfur in the Environment. ACS Symp. Series No. 393, American Chemical Society, Washington, DC, pp. 231–242.
    Visher, G. S., 1969. Grain size distribution and depositional processes. Journal of sedimentary petrology, 39: 1074-1106.
    Vojaak, P. W. L., 1985. Ebidence for microbiological manganese oxidation in the River Tamar Estuary, South West England. Estuary, Coastal and Shelf Science, 20: 661-671.
    Wang, L. J., Sarnthein, M., Erkenkeuser, H., et al, 1999. East Asian monsoon climate during the late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology, 156:245-284.
    Wangersky, P. J., Gordon, J. D. C., 1965. Particulate carbonate, organic carbon, and Mn++ in the open ocea[J]. Limnol. Oceanogr., 10: 544-550.
    Westbrook, G.K., Carson, B., Musgrave, R.J., et al., 1994. Proceedings ODP, Initial Reports 146 Part 1 , Ocean Drilling Program, College Station, TX.
    Westrich, J. T., 1983. The consequences and controls of the bacterial sulfate reduction in marine sediments. PhD dissertation, Yale University, 530pp.
    Westrich J. T. and Berner R. A. (1984) The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol. Oceanogr. 29, 236–249.
    Wiesner, M. G., Zheng, L. F., Wong, H. K., et al., 1996. Fluxes of particulate matter in the South China Sea, in: Particle Flux in the Ocean. SCOPE Report 57, 293-312.
    Wijsman, J.W.M., Middelburg,J.J.,Heip, C.H.R., 2000. Reactive iron in Black Sea Sediments: implications for iron cycling. Marine Geology, 172:167-180.
    Wijsman J. W. M., Middelburg J. J., Herman P. M. J., B?ttcher M. E., and Heip C. H. R. (2001) Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Mar. Chem. 74 (4), 261–278.
    Willgin, R. T., 1996. Geochimica et Cosmochimica Acta, 60(20): 3897-3912.
    Yan, J. X., Zhang, H. Q., 1996. Paleo-oxygenation facies: A new research field in sedimentology [J]. Geological science and Technology Information, 15(3): 7-13.
    Yanaki N. E., Ashery D., Kronfeld J.. Gamma-ray analysis of the sediments overlying the Helez and Kochav oil fields, Israel. Journal of Geochemical Exploration 1999, 66: 249~254.
    Yu, K. C., Tsal, L. J., Chen, S. H., et al, 2001. Chemical binding of heavy metals in anoxic river sediments. Wat. Res., 35(17);4086~4094.
    Zachara, J. M., Fredrickson, J. K., Smith, S. C., et al, 2001. Solubilization of Fe(Ⅲ) oxide-bound trace metals by a dissimilatory Fe(Ⅲ) reducing bacterium. Geochimica et Acta, 65(1): 75-93.
    Zhao, Y.Y., Park, Y.A., Qin, Y.S., Choi, J.Y., Gao, S., Li, F.Y., Cheng, P., Jiang, R.H., 2001. Material source for the Eastern Yellow Sea Mud: evidence of mineralogy and geochemistry from China–Korea joint investigations. The Yellow Sea 7, 22– 26.
    Zhao, Y.Y., Qin, Z.Y., Li, F.Y., Chen, Y.W., 1990. On the source and genesis of the mud in the central area of the south Yellow Sea. Chin. J. Oceanol. Limnol. 8, 66–73.
    Zheng Y., Anderson R. F., van Geen A., and Kuwabara J. (2000) Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin. Geochim. Cosmochim. Acta 64, 4165–4178.
    Zheng Y., Anderson R. F., van Geen A., and Fleisher M. Q. (2002) Remobilization of authigenic uranium in marine sediments by bioturbation. Geochim. Cosmochim. Acta 66, 1722–1759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700