用户名: 密码: 验证码:
海岸带淤泥质潮滩和Ⅱ类水体悬浮泥沙遥感信息提取与定量反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海岸带地处海陆之交,它凭借其自身丰富的自然资源和优越的地理位置成为国际竞争和开发的重要区域,淤泥质潮滩和Ⅱ类水体悬浮泥沙是其重要的研究对象。
     淤泥质潮滩作为海陆相互作用的敏感地带,滩面泥泞、潮沟密布、变化频繁,常规的地形测量难度极大。由于淤泥质潮滩具有一些能被可见光和近红外传感器探测到的特征,所以遥感技术为其地形信息的提取和定量反演提供了广阔的前景。
     本文在分析淤泥质潮滩的动力沉积、动力地貌特点和光谱信息特征的基础上,以长江口淤泥质潮滩为研究对象,进行了植被、潮沟、潮滩和水体的边界线等信息的提取。而且,笔者在国际上首次系统利用多时相卫星遥感图像水边线高程反演技术,以伶仃洋大铲湾淤泥质潮滩、温州地区温州湾和乐清湾不同部位淤泥质潮滩、长江口地区不同部位淤泥质潮滩为研究对象,确定了其潮滩岸线的变化,从而对其不同部位潮滩坡度及淤积和侵蚀速度进行了计算,得到的数据弥补了研究区潮滩常规地形测量资料的不足。研究结果表明该方法对我国淤泥质潮滩冲淤变化遥感定量反演具有重要的应用价值。
     我国主要沿岸及近海水域的绝大部分水体都属于Ⅱ类水体,悬浮泥沙是其最重要的水色参数之一,沿岸及近海水域水体含沙量时空分布是分析河口海岸冲淤变化、估算河流入海物质通量、研究海洋沉积速率的重要参数,河流入海泥沙量的剧烈变化往往影响并引起海岸线及滩涂的明显变化。
     本文在分析悬浮泥沙光谱信息特征的基础上,以长江口和伶仃洋悬浮泥沙为研究对象,进行了沿海水流流态、最大浑浊带、悬沙锋等信息的提取。为加深对悬浮泥沙的规律性认识和进行定量研究,笔者以长江口横沙岛新民港潮滩表层沉积物和浙江象山港湾顶潮滩表层沉积物为悬沙样本,使用ASD双通道地物波谱仪、后向散射测量仪HS6、LS-100Q激光粒度仪等仪器进行了含沙水体固有光学量和表观光学量同步观测水槽试验。对得到的不同浓度含沙水体的反射光谱特征曲线进行了处理,并且对其光谱特性进行了分析。在参考国内外比较公认的Ⅱ类水体悬浮泥沙反演模式的基础上,选用了泥沙遥感参数,并利用泥沙遥感参数建立了悬浮泥沙遥感定量分析统计相关模式。笔者以长江口为研究区将该模式成功地应用在神舟三号CMODIS
    
     中文摘要
    影像的悬浮泥沙遥感定量反演和Landsat 7 ETM影像的悬浮泥沙遥感定量反演中。
    它表明该统计相关模式对我国n类水体的悬浮泥沙遥感定量反演具有重要的应用价
    值。
Coast zone, located in the connection belt of sea and land, has been becoming an important area for the international competition and exploitation owing to itself abundant natural resources and predominant geographic location. Silt tidal flat and suspended sediment of case II waters are two important research issues.
    As a sensitive belt of sea and land interaction, silt tidal flat is characterized as muddy surfaces, densely covered and frequently varied inlets. Therefore, the routine topography survey method has been greatly restrained. In contrast, remote sensing technology provides many prospects for such study, giving an expansive foreground of topography information extraction and quantitative inversion of silt tidal flat, because a number of features of silt tidal flat can be detected by the visible light and near infrared sensors.
    By means of study of the dynamic sediment and geomorphology characteristics, as well as its information spectra characteristics concerning the silt tidal flat, this dissertation extracted a lot of information in relation to the vegetable, inlet, boundary of tidal flat and water, taking silt tidal flat of Changjiang estuary as researching target. In addition, the Dachan bay of Lingding estuary, some locations at Wenzhou bay and Yueqing bay near Wenzhou together with some locations at Changjiang estuary were taken as further research areas. Their shoreline variations were determined. The gradient and velocity of deposition or erosion were calculated by applying waterside line elevation inversion technology based on multi temporal satellite remote sensing images. These resultant data filled in the data shortage by routine topography survey. It has been found that analysis method used in this dissertation can be applied in the remote sensing quantitative inversion of deposition and erosion in silt tidal flat stu
    dy.
    The majority waters along the coast zone and the near sea in China are case II waters. The suspended sediment in these areas is one of the vital water quality parameters. The time and space distribution of suspended sediment is an important parameter in analyzing the variation of deposition and erosion in coast zone, estimating the matter flux from river into sea, and studying the sediment velocity and ocean environment. The obvious movements of coastal line and tidal flat often depends on the intensive variations of sand
    
    
    content coming from river.
    On the basis analyzing the spectra information characteristics of suspended sediment, this dissertation extracted the information concerning current water states along the sea, maximum turbidity, and the front of suspended sediment, taking suspended sediment of Changjiang estuary and Lingding estuary as researching areas. In order to develop the regularity cognition and quantitative study of suspended sediment, a test aimed to simultaneously measure the inherent optical properties and the apparent optical properties has been carried out by utilizing such facilities as the ASD dual channel spectrometer, hydroscat-6 spectral backscattering sensor, and LS-100Q laser scattering particle size analyzer. The specimens came from the surface sediment of tidal flat in Xinmin harbor, Hengsha Island, Changjiang estuary and the sediment of tidal flat top in Xiangshan harbor, Zhejiang province. This dissertation has disposed the reflected spectrum curves corresponding to different suspended sediment waters. Their spectrum
     characteristics were analyzed. Referred to those accredited suspended sediment inversion models of case II waters domestically and internationally, the author of this dissertation selected remote sensing parameters and established the quantitative analysis statistical mode of suspended sediment. This mode has been successfully used in the suspended sediment inversion of CMODIS images of the space shuttle Shenzhou III and ETM images of Landsat 7. This mode contributed to the remote sensing inversion of quantitative analysis of suspended sediment of case II waters in China.
引文
1、陈吉余.长江口拦门沙及其水下三角洲的动力沉积、演变和深水航道治理.长江口深水航道治理与港口建设专辑.华东师范大学学报,1995:1-22
    2、陈吉余等.中国海岸带地貌.北京:海洋出版社,1995:1,35-37,63-65
    3、陈吉余.浦东国际机场东移与九段沙生态工程研究.陈吉余从事河口海岸研究五十五年论文选.上海:华东师范大学出版社,2000:402-412
    4、陈述彭,赵英时.遥感地学分析.北京:测绘出版社,1990:11,211-213
    5、陈述彭、童庆禧、郭华东.遥感信息机理研究.北京:科学出版社,1998:214-215
    6、冯钟葵.Landsat7 ETM+数据的增益设置及增益改变.中国遥感卫星地面站用户简讯,2001(3):8-9
    7、傅克忖,荒川久幸,曾宪模.悬沙水体不同波段反射比的分布特征及悬沙量计算实验研究.海洋学报,1999,21(3):134-140
    8、高峰,李小文,夏宗国等.基于知识的分阶段不确定性多角度遥感反演.中国科学(D辑),1998,28(4):346-350
    9、巩彩兰.长江口分汉机理和南港底沙运动定量研究.上海:华东师范大学博士论文,2001:33-34
    10、郭德方.遥感图像的计算机处理和模式识别.北京:电子工业出版社,1987:197-212
    11、国家质量技术监督局.中华人民共和国国家标准(GB12327-1998)海道测量规范.1998:102-103
    12、《海洋大辞典》编辑委员会.海洋大辞典.沈阳:辽宁人民出版社,1998:214
    13、韩震,杨锋杰.TMT波段的影像特征及岩石热液蚀变信息的提取.遥感信息,1995(4):30-32
    14、韩震.聚类分析在遥感信息和地球物理信息复合中的应用.山东矿业学院学报,1997,16(1):5-11
    15、韩震,杨锋杰等.矿区地表塌陷遥感综合分析.世纪之交煤矿地质学论文集.西安:西安地图出版社,1999:205-207
    16、韩震,杨锋杰等.遥感技术在邹城市地壳稳定性评价中的应用.煤田地质与勘探,
    
    2000,28(4):44-46
    17、韩震,陈西庆,恽才兴.海洋高光谱遥感研究进展.海洋科学,2003,27(1):22-25
    18、韩震,恽才兴.伶仃洋大铲湾潮滩冲淤遥感反演研究.海洋学报,2003,25(5):58-64
    19、韩震,恽才兴,蒋雪中.悬浮泥沙反射光谱特性实验研究.水利学报,2003,327(12):118-122
    20、韩震,恽才兴,蒋雪中,杨锋杰.温州地区淤泥质潮滩冲淤遥感研究.地理与地理信息科学,2003,19(6):31-34
    21、胡方西,胡辉,谷国传.长江口锋面研究.上海:华东师范大学出版社,2002:26,61
    22、黄海军,李成治.莱州湾潮滩地物光谱特征研究.海洋科学,1993(3):36-38
    23、李从先.三角洲沉积速率及其地质意义.海洋科学,1981(3):30-33
    24、李恒鹏,杨桂山.基于GIS的淤泥质潮滩侵蚀堆积空间分析.地理学报,2001,56(3):278-286
    25、李京.水域悬浮固体含量的遥感定量研究.环境科学学报,1986,6(2):166-173
    26、李京.利用NOAA卫星的AVHRR数据监测杭州湾海域的悬浮泥沙含量.海洋学报,1987,9(1):132-135
    27、李九发等.上海滩涂后备土地资源及其可持续开发途径.长江流域资源与环境,2003,12(1):17-22
    28、李四海,恽才兴.河口表层悬浮泥沙气象卫星遥感定量模式研究.遥感学报,2000,5(2):154-160
    29、李四海.近海海洋水色遥感机理及其应用.上海:华东师范大学博士论文,2001:12-14,49-61,107-116
    30、李四海,唐军武,恽才兴.河口悬浮泥沙浓度SeaWiFS遥感定量模式研究.海洋学报,2002,24(2):51-58
    31、李炎,李京.基于海面—遥感器光谱反射率斜率传递现象的悬浮泥沙遥感算法.科学通报,1999,44(17):1892-1897
    32、梁文,黎广钊.应用遥感技术分析廉州湾悬沙的动态特征.地理学与国土研究,2002,18(2):49-51
    
    
    33、刘建贵,吴长山等.PHI成像光谱图像反射率转换.遥感学报,1999.3(4):290-294
    34、刘慧平,秦其明等.遥感实习教程.北京:高等教育出版社,2001:31-58
    35、刘玉洁,杨忠东等.MODIS遥感信息处理原理与算法.北京:科学出版杜,2001:1,12
    36、陆惠文,杨裕利.烟台市海岸带遥感研究.武测科技,1995(4):38-41
    37、罗章仁,郑天祥.珠江三角洲港口群.南京:河海大学出版社,2002:20-22
    38、马蔼乃.遥感信息模型.北京:北京出版社,1997:72-78
    39、梅安新等.遥感导论.北京:高等教育出版社,2001:6-8
    40、宁书年,吕松棠,杨小勤等.遥感图像处理与应用.北京:地震出版社,1995:25
    41、潘德炉、李淑菁.卫星海洋水色遥感信息特征量的研究.遥感学报,1998,2(1):26-31
    42、浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000:18-21
    43、邱志成.遥感图像数据复合方法的研究.测绘学报,1990,19(4):290-297
    44、任明达,柳林,王安龙.粉砂淤泥质潮滩的多波段与多时相卫片解译.海洋学报,1990,12(6):741-748
    45、阮秋琦.数字图像处理学.北京:电子工业出版社,2001:201-210
    46、施纪青、严蔚云.遥感图像在杭州湾滩涂调查中的应用.遥感技术在海洋环境与资源调查中的开发研究成果汇编.国家海洋局科技司,1987:47-77
    47、沈焕庭,李九发,朱慧芳等.长江河口悬沙输移特性.泥沙研究,1986(1):1-12
    48、沈焕庭,潘安定.长江河口最大浑浊带.北京:海洋出版社,2001:1,28-51
    49、时钟,陈吉余,虞志英.中国淤泥质潮滩沉积研究的进展.地球科学进展,1996,11(6):555-562
    50、唐军武.海洋光学特性模拟与遥感模型.北京:中国科学院遥感应用研究所博士论文,1999:17,107-110
    51、汪小钦,王钦敏,邬群勇等.遥感在悬浮物质浓度提取中的应用—以福建闽江口为例.遥感学报,2003,7(1):54-57
    52、王宝灿,黄仰松.海岸动力地貌.上海:华东师范大学出版社,1989,2-3,217-242
    53、王贵明、董裕国.珠江韩江三角洲海岸变迁遥感解译对比研究.海洋科学,1997(4):50-53
    54、王永红,沈焕庭.河口海岸环境沉积速率研究方法.海洋地质与第四纪地质,2002,22(2):115-120
    
    
    55、王运洪,李成治.渤海湾海河口地物光谱测试与应用.海洋调查,1986(2):52-60
    56、温令平.伶仃洋悬浮泥沙遥感定量分析.水运工程,2001,332(9):9-13
    57、吴家乃.遥感图像在海岸带测图中的应用.河海大学学报,1991,19(2):99-103
    58、吴荣、朱永豪、张崇静.地物光谱测试方法的研究.遥感基础试验与应用.北京:中国科学技术出版社,1991:35-44
    59、吴曙亮、蔡则健.利用遥感技术对江苏沿海滩涂资源及发展趋势进行研究.海洋通报,2003,22(4):60-68
    60、夏小明,谢钦春,李炎,李伯根.港湾淤泥质潮滩的周期性变化.海洋学报,1997,19(4):99-108
    61、肖玉仲,刘国贤,杜瑞芝等.江苏灌江口现代沉积速率的研究.海洋学报,1997,19(5):91-96
    62、谢红接,徐梅译.高光谱图像的分类和维数减少.国外铀金地质,1996,13(3):260-266
    63、徐福敏,严以新,茅丽华.长江口九段沙下段冲淤演变水动力机制分析.水科学进展,2002,13(2):166-171
    64、徐海根.长江口北槽演变趋势研究述要.长江口深水航道治理与港口建设专辑.华东师范大学学报,1995:42-46
    65、徐元,王宝灿.淤泥质潮滩潮锋的形成机制及其作用.海洋与湖沼,1998,29(2):148-155
    66、杨锋杰,韩震等.地热资源的热红外遥感.矿山测量,1999(3):25-27
    67、杨世伦、贺松林、谢文辉.长江口九段沙的形成演变及其与南北槽发育的关系.海洋工程,1998,16(4):55-65
    68、杨胜明、金波.珠江口水下三角洲地貌及沉积特征.海岸河口区动力、地貌沉积过程论文集.北京:科学出版社,1985:35-38
    69、叶汇.伶仃洋三角港西侧滩槽发育与演变的模式.海岸河口区动力、地貌沉积过程论文集.北京:科学出版社,1985:101-110
    70、尤玉明、赵太初.杭州湾悬浮泥沙含量的遥感及其对建港影响的分析.遥感技术在海洋环境与资源调查中的开发研究成果汇编.国家海洋局科技司,1987:111-132
    71、禹秉熙、金锡峰、冯家璋.地面物体光谱方向反射特性的测量.遥感基础试验与
    
    应用.北京:中国科学技术出版社,1991:109-114
    72、袁文明、沙文达、俞富斌等.崇明滩涂生物多样性现状及其对策.上海湿地利用和保护.上海:上海科学技术出版社、2003:87-95
    73、恽才兴、益建芳、陈希海.遥感图像在河口演变及沿海潮滩调查研究中的应用.海洋调查,1986(2):37-47
    74、恽才兴、胡嘉敏、冯辉、张信.河口悬浮泥沙遥感定量研究及其应用实例.遥感技术在海洋环境与资源调查中的开发研究成果汇编.国家海洋局科技司,1987:99-110
    75、恽才兴、任友谅、益建芳等.卫星遥感在丹东新港选址中的应用.中国海岸带发育过程和演变规律.上海:上海科学技术出版社,1989:384-392
    76、恽才兴、时伟荣、何青.长江口通海航道泥沙场动态分析.长江口深水航道治理与港口建设专辑.华东师范大学学报,1995:50-79
    77、恽才兴、蒋兴伟.海岸带可持续发展与综合管理.北京:海洋出版社,2002:31-33、94-98
    78、赵冬至,刘玉机等.中国污染水体光谱特征.北京:海洋出版社,2001:356-358
    79、张晴波.结合长江口深水航道工程开发滩涂和保护湿地.上海湿地利用和保护.上海:上海科学技术出版社,2003,128-138
    80、张鹰、丁贤荣、王文.水深遥感和潮滩地形冲淤变化分析.港口工程,1998(2):26-30
    81、周怡生.滩涂造地与湿地保护.上海湿地利用和保护.上海:上海科学技术出版社,2003,139-142
    82、朱立俊,尤玉明.辽东湾绥中海岸演变及悬沙分布特征的遥感分析.海洋工程,2000,18(1):66-69
    83、朱良璞等.遥感地质学.北京:地质出版社,1999:15-18,101-110
    84、朱志刚等译.Kenneth R.Castleman著.数字图像处理.北京:电子工业出版社,2002:58-61
    85、周成虎,骆剑承,杨晓梅等.遥感影像地学理解与分析.北京:科学出版社,2001:41-67,78
    86、Akio Sohma, Tatsuaki Sato, Kisaburo Nakata. New numerical model study on a tidal flat system - seasonal, daily and tidal variations. Spill Science and Technology
    
    Bulletin, 2000, 6(2): 173-185
    87、Alberotanza L. ,Brando V. E. ,Ravgnan G. et al. Hyperspectral aerial images: a valuable tool for submerged vegetation recognition in the Orbetello Lagoons, Italy. Int. J. remote sensing, 1999, 20(3):523~533
    88、A. P. Cracknell. Remote sensing techniques in estuaries and coastal zones — an update. International journal of remote sensing. 1999, 19(3): 485-496
    89、Bowers D. G. ,Gaffney S., White M. et al. Turbidity in the southern Irish Sea. Continental Shelf Research. 1998, 18(5):487-500
    90、Caleman, T. L. et al. Spectral band selection for quantifying selected properties in highly weathered soils. Soil Sci, 1991, 151(5):335-361
    91、Carder K.L. ,Steward R.G.. .A remote-sensing reflectance model for red-tide dinoflagellate of West Florida. Limnology and Oceanography, 1985, 30:286-298
    92、 Chavez P. S. Jr., Berlin G. L., Sowers L. B.. Statistical methods for selecting Landsat MSS ratios, Journal of Applies Photographic Engineering, 1982, 8(1):23-30
    93、Chavez P. S. Jr., Sides S. C., Anderson J. A.. Comparison of three different methods to merge multi-resolution and multi-spectral data: TIM and SPOT panchromatic, Photogrammetric Engineering and Remote Sensing, 1991, 57(3):295-303
    94、Chuanmin Hu, Kendall L. Carder, Frank E. Muller-Karger. Atmospheric Correction of SeaWiFS Imagery over Turbid Coastal Waters. Remote sensing of Environment, 2000, 74(2): 195-206
    95、Crippen R.E.. A simple spatial filtering technique for the cosmetic removal of scan-line noise from Landsat TM P-tape imagery, Photogrammetric Engineering and Remote Sensing, 1989, 55(3):327-331
    96、D. C. Mason, I. Davenport, R. A. Flather, B. Mccarmey, G. R. Robinson. Construction of an inter-tidal digital elevation model by the water-line methods. Geophysical Research Letters. 1995, 22:3187-3190
    97、Donoghue D. N. M. ,Thomas D. C. R., ZONG Y.. Mapping and Monitoring the intertidal zone of the east coast of England using remote-sensing techniques and a coastal monitoring GIS. Marine Technology Society Journal, 1994, 28(2): 19-29
    98、Doxaran David, Froidefond Jean-Marie, Lavender Samantha. Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations. Remote sensing of Environment, 2002, 81 (1): 149-161
    
    
    99、Froidefond Jean-Marie, Gardel Laure, Guiral Daniel. Spectral remote sensing reflectances of coastal waters in French Guiana under the Amazon influence. Remote sensing of Environment, 2002, 80(2):225-232
    100、Gerritsen Herman, Vos Robert J., van der Kaaij Theo. Suspended sediment modeling in a shelf sea (North Sea). Coastal Engineering, 2000, 41(1):317-352
    101、Gordon H. R. et al. Computed Relationships between the Inherent and Apparent Optical Properties of a Flat Homogeneous Ocean, Applied Optics, 1975, 14(2): 417-427
    102、Gordon H. R. ,Morel A.. Remote assessment of ocean color for interpretation of satellite visible imagery. A review, lecture notes on coastal and estuarine studies, R. T. Barber, N. K. Mooers, M. J. Bowman and B. Zeitzschel(eds.), Springer-Verlag, New York, 1983,114
    103、Han Zhen, Yang Fengjie et al. Monitoring and analysis of atmospheric environment by remote sensing in mining area. 1998, SPIE Vol.3504:310-314
    104、Han Zhen, Yang Fengjie et al. Remote sensing analysis of surface water in the mining area. 1999, SPIE Vol.3740:212-215
    105、Han Zhen, Yang Fengjie et al. Application of geo-information technology in mining area subsidence analysis. 2000 5th international Symposium on Antennas, Propagation and EM Theory Proceedings. IEEE press, 2000:658-663
    106、Han Zhen, Yang Fengjie, Song Yucui. Dynamic Analysis of Coastal Zone Area Using Remote Sensing Technology. Proceedings for the first international conference of studying land use effects in coastal zones with remote sensing and GIS. Kemer municipality, Turkey, 2003:165-173
    107、Han Zhen, Yun Caixing, Jiang Xuezhong. Elevation, deposition and erosion remote sensing quantitative research of tidal flat. Proceedings of the international conference on estuaries and coasts, Zhejiang University press, 2003:153-157
    108、Han Zhen, Yun Caixing et al. Technique of marine hyperspectral remote sensing review. 2003, SPIE Vol.4897:237-245
    109、H.R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark. A semi-analytic radiance model of ocean color, J. Geophys. Res. 1988, 93: 10909-10924
    110、I. Stanimirova, S. Tsakovski, V. Simenonov. Multivariate statistical analysis of
    
    coastal sediment data. Analytical & Bioanalytical Chemistry. 1999, 365(6):489-493
    111、Joo-Hyung Ryu, Joong-Sun Won, Kyung Duck Min. Waterline extraction from Landsat TM data in a tidal flat: a case study in Gomso Bay, Korea. Remote Sensing of Environment, 2002, 83(3):442-456
    112、J. Lira, A. Morales, F. Zamora. Study of sediment distribution in the area of the Panuco River plume by means of remote sensing. Oceanographic Literature Review, 1997, 44(7):769
    113、Kevin W., Hesham M.. Monitoring changing position of coastlines using Thematic Mapper imagery, an example from the Nile Delta. Geomorphology. 1999, 29:93-105
    114、Li Yan, Huang Wei, Fang Ming. An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data. Continental Shelf Research. 1998, 18(5):487-500
    115、Luoheng Han, D. C. Rundquist. The response of both surface reflectance and the underwater light field to various levels of suspend sediments: preliminary results. Journal of photogrammetry & remote sensing. 1994, 60(12): 1463-1471
    116、Mertes et al. Estimating Suspended Sediment Concentration in Surface Waters of the Amazon River Wetlands from Landsat Images, Remote Sensing of Environment, 1993, 43:281-301
    117、Milan C. S., Swenson M. E., Turner R. E.. Assessment of the ~(137)Cs method for estimating sediment accumulation rates: Loisiana salt marshes. J.of Coastal Research, 1995, 11:296-307
    118、Morel A., Prieur L.. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22:709-722
    119、No Vo et al. Results of a Laboratory Experiment Relating Spectral Reflectance to Total Suspended Solids, Remote Sensing of Environ. 1991, 36:67-72
    120、Pat S., Chavez Jr.. Imaged -based atmospheric corrections-revisited and improved. Journal of photogrammetry & remote sensing. 1996, 62(9): 1025-1036
    121、Richard L. Miller, James F. Cruise. Effects of Suspended Sediments on Coral Growth: Evidence from Remote Sensing and Hydrologic Modeling. Remote sensing of Environment, 1995, 53(3):177-187
    122、Roggerman M. C., Mills J. P., Rogers S. K.. Muiti-sensor Information Fusion for Target Detection and Classification. 1988, SPIE Vol.931:8-13
    
    
    123、Shettigara V. K.. A generalized component substitution technique for spatial enhancement of the use of multi-spectral images using a higher-resolution data set, Photogrammetric Engineering and remote sensing, 1992, 58(,5):561-567
    124、Shubha Sathyendranath. Remote sensing of ocean colour in coastal, and other optically-complex, water. IOCCG Report Number 3, 2000:23-30
    125、S. Ouillon, P. Forget, J. M. Froidefond, J. J. Naudin. Estimating suspended matter concentrations from SPOT data and from field measurements in the Rhone River plume. Oceangraphic Literature Review, 1998, 45(4):712
    126、Tassn S.. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment and yellow substance in coastal waters. Applied Optics, 1994, 33(12):2369-2378
    127、Thomas M., Ralph W.. Remote sensing and image interpretation. John Wiley and Sons, Inc. 2000:363-364
    128、Van Deventer A. P. et al. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogrammetric Engineering and remote sensing. 1997, 63(11):87-93
    129、Vos Robert J., Ten Brummelhuis, Paul G. J.. Integrated data-modelling approach for suspended sediment transport on a regional scale. Coastal Engineering, 2000, 41(1):177-200
    130、Yesou H., Besnus Y., Rolet J.. Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery — a contribution to the study of geological structures. ISPRS Journal of Photogrammetry and remote sensing, 1993, 48(5):23-36
    131、Yun Caixing, Wan Jiaruo. A study of diffusion of upper-layer suspended sediment in discharges from the Chang Jiang estuary into the sea, based on satellite imagery. Proceedings of the sixth biennial international estuarine research conference, Gleneden Beach, Oregan, Estuarine comparisons, Academic press, 1981:693-704
    132、Zhongping Lee, Carder K. L., Steward R. G., Peacock T. G.. An empirical algorithm for light absorption by ocean water based on color. Journal of Geophysical Research, 1998, 103(12):27967-27978
    133、ZhongPing Lee,K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch. Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties
    
    by optimization, Applied Optics, 1999, 38:3831-3843
    134、ZhongPing Lee, Kendall L. Carder, Robert A. Arnone. Deribing inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Applied Optics. 2002, 41 (27):5755-5772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700