用户名: 密码: 验证码:
光在大气和海水信道的传输性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星载激光对潜通信(Spaceborne Laser Submarine Communication)由于其数据传输率相对现有通信方式较高,同时能够确保潜艇通信时的隐蔽性要求,因此,对其进行研究具有重要的军事应用意义和研究价值。SLSC研究内容极为广泛包括:大气和海水信道研究、星载激光器研制、潜艇接收天线研制、接收信号处理等等相当多的关键问题。本文主要分析光信号在地球大气和海水信道的传输问题,并对星载激光器的功率、发散角、轨道高度、脉冲重复频率等参数以及PPM(Pulse PositionModulation)帧结构设计提出参考建议。
     详细分析了地球大气分层结构、成分组成对大气光学散射、衰减特性的影响,讨论了海水的物理成分以及其固有和表观光学性质。详细阐述了模拟光子在大气和海水信道传输的Monte Carlo方法,对其在文章中应用的假定条件进行了说明。对光子传输过程中的相关内容确定进行了讨论,内容包括散射后位置确定、运动方向确定、光子自由路径长度、终止判决以及散射相位函数对比与确定。
     提出综合分析地球大气和海水信道对星对星载激光脉冲信号空间扩展效应的观点,分析计算了卫星运行在不同轨道高度、发射机发散角变化、海域条件不同时,不同水下深度的信号光斑分布状况。计算结果为星载激光器设计提供了设计依据。
     完成了光在地球大气和海水信道传输过程中由于散射作用产生的信号多径时间扩展模拟计算。计算并讨论了不同轨道高度、不同发散角大小、不同海域、不同水下深度光信号的时间扩展分布。根据计算结果为星载激光器发射频率及PPM帧格式提出了参考。
     参照激光通信能量方程,理论估算了激光对潜能量传输衰减。同时,利用MonteCarlo方法模拟对比计算了不同激光器轨道高度、不同发射机发散角大小、不同海水条件及不同水下深度条件下,大气和海水信道对光传输的衰减大小。
     根据地球大气和海水信道对星载激光脉冲信号的空间扩展分布和时间扩展分布的计算结果,考虑国内外激光器研制现状与星载装备条件限制,借鉴国外已成功进行了卫星间和星—地激光通信测试的激光通信卫星设计参数,提出了星载激光器一些工作参数选择参考,内容包括激光器输出功率、脉冲重复频率、发散角、卫星轨道高度、工作波长。考虑水下接收信号的时间扩展分布和PPM帧格式要求,提出了PPM帧格式并估算了相应的数据传输率。
     论文最后对大气和海水信道对光传输性能影响下一步的研究工作进行了展望。
Spaceborne Laser Submarine Communication, has being an interestedcommunication technology, due to its data transfer rate higher than current communicationmethod, and be helpful for hiding submarine trace during communicating. The research ofSLSC is the important for military application. It includes, the research of atmosphere andseawater, spaceborne lidar manufacture, receiving antenna manufacture, and signalprocessing technology, etc.
     This dissertation analyses the laser pulse transmission through atmosphere andseawater, and gives some advice for designing spaceborne laser, such as the output power,the beam divergence angle, orbit altitude, pulse repeat rate, the configuration of PPM. Itsmain contributions are as follows.
     The optical scatterance and attenuation properties of physical constituents inatmosphere/sea optical channel are studied and summarized in the paper.
     The application of Monte Carlo method in simulating the transport of photons inatmosphere/sea optical channel, and its presumptions, are discussed in detail. Thesediscussed contents involve photon's position after collision happened, moving direction,free distance for photon traveling through scatter medium, stopping judgment, comparisonand choice of scattering phase function.
     The calculations of spatial spreading effects when light traveling in atmosphere andsea scattering channel, are finished in the paper. The power distributions of laser signal onconditions of different orbit altitude, vary divergence angle of transmitter, sea areachanged, and different under-water target depths are studied in detail. The powerdistributions can be reference for confirming some working parameters of space laser.
     With the laser communication energy fuction, the propagation attenuation of the lasersunmarine communication is estimated in theory. At the same time, the Monte Carlomethod is introduced for calculating the propagation attenuation following with the lightpulse traveling in atmosphere and seawater channel. These calculation are finished withsome different conditions, including of different orbit altitude, vary divergence angle oftransmitter, sea area changed, and different under-water target depths. The both estimationresults are contrasted.
     The paper finishes the calculations of multipath temporal spreading effects followingwith photons traveling in the atmosphere and the seawater. The multipath temporal spreading distributions of laser signal on conditions of different orbit altitude, varydivergence angle of transmitter, sea area changed, and different under-water target depthsare discussed. These calculations can give some advices for obtaining the pulse repeat rateof laser and the PPM frame format.
     Based on these above-mentioned results about temporal spreading and spatialspreading, the limit of current national laser, abroad laser communication satellite whichsucceeded in satellite- satellite communication or satellite - earth platform communication,the dissertation proposes some laser transmitter parameters about output energy, pulserepeat rate, the beam divergence angle, orbit altitude, laser wavelength, and theconfiguration of PPM. At the same time, the data transmitting rate is calculated withcorresponding parameters of laser transmitter and PPM frame.
     In the end, the paper gives some assumptions about researching the transmitionperformance with the light traveling through atmosphere and seawater channel.
引文
[1] Larry B.Stotts. Design considerations of a submarine laser communications system.National Telesystems Conference. 1992,Vol. 14:13-26
    [2] Jenifer Levin. Light in the sea. Plume, 1994
    [3] G.D.Gilbert. sea light attenuation measurement at 2000m depth. NOTS Technical Publication, 1965
    [4] G.W.Kattawar. G.N.Plass. Influence of particle size distribution on reflected and transmitted light from clouds. Appl.Opt. 1968,7(5):869-878
    [5] G.N.Plass, G.W.Kattawar. Radiant intensity of light scattered from clouds. Appl.Opt.1968,7(4):699-704
    [6] G.D.Hickman, J.E.Hogg. Application of an airbornen Pulsed laser for near shore bathymetric measurements. Remote Sensing Environ. 1969,1:47-60
    [7] S.Karp. Optical communications between underwater and above surface (satellite) terminals. IEEE Trans.Commun. 1976,COM-24(1):66-81
    [8] T.F.Wiener, S.Karp. The role of blue-green laser systems in strategic submarine communication. IEEE Trans. Commun., 1980,COM-28(9): 1602-1607
    [9] A staff Report. The Submarine Laser Communication Program: Technical Breakthroughs Yield Engineering Challenges. Signal, 1985,39(11):85-90
    [10] D.Amush. Underwater light-beam propagation in the small angle scattering approximation. J. OSA. 1972, 62(9):1109-1111
    [11] H.T.Yura. Propagation of finite cross-section laser beam in sea water. Appl. Opt.1973, 12(1):108-115
    [12] Vladimir I. Haltrin. One parameter two term Henyey Greenstein phase function for light scattering in seawater. Appl. Opt. 2002,41(6): 1022-1028
    [13] Howard R.Gordon, Otis B.Brown, Michael M.Jacobs. computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean.Appl. Opt. 1975,14(2):417-427
    [14] N.J.McCormick. ocean optics phase function inverse equations. Appl. Opt. 2002,41(24): 4958-4961
    [15] 梁波,朱海,陈卫标.大气到海洋激光通信信道仿真.光学学报.2007,27(7):1166-1172
    [16] R.C.Smith, K.S.Baker. Optical properties of the clearest natural water. Appl.Opt.1981,20(2): 177-184
    [17] J.Kirk. Estimation of the absorption and the scattering coefficients of natural waters by use of underwater irradiance measurements. Appl. Opt. 1994, 33(15):3276-3278
    [18] Robert M.Lerner, John D.Summers. Monte Carlo Description of time and Space Resolved Multiple Forward Scatter in Natural Water. Appl.Opt,1982,21(5):1230-1237
    [19] N.J.McCormick, N.K. Hojersiev. Ocean optics attenuation coefficients local versus spatially averaged. Appl.Opt. 1994,33(30):7067-7069
    [20] E.A.Bucher. Computer simulation of light pulse propagation for communication through thick clouds.Appl.Opt. 1973,12(10):2391-2400
    [21] E.A.Bucher, R.M.Lerner. Experiments on light pluse communication and proagation through atmospheric clouds.Appl.Opt. 1973,12(10):2401-2414
    [22] P. Bruscaglionl, G.Zaccanti, M.Olivieri. Laboratory simulation of the scattering of a laser beam in a turbid atmosphere. J. Phys. D: Appl. Phys. 1988, Vol. 21:45-48
    [23] 狄凌峰,王沛.近地大气532nm激光散射的实验与计算.量子电子学报.2005,22(6):960-964
    [24] Peter Volger, Zhaoyan Liu, Nobuo Sugimoto. multiple scattering simulations for the japanese space lidar project ELISE. IEEE Transactions on geoscience and remote sensing.2002,40(3):550-559
    [25] 渠丽新.硕士学位论文.电子科技大学.2006
    [26] 甄洁,刘维亭.蓝绿激光下行通信云层信道特性研究.华东船舶工业学院学报.2004,18(6):47-50
    [27] 黄印博,王英俭.激光大气传输数值模拟中对计算参量的选取.大气与环境光学学报.2007,2(1):23-27
    [28] 王丽黎.硕士论文.西安理工大学.2006
    [29] 邓代竹,荣健.大气对近地面无线激光通信链路的影响.红外与激光工程.2004,33(3):243-247
    [30] 刘波涛.大气对激光传输的影响.光散射学报,2007,19(1):43-48
    [31] 李晓亮,门健,夏军利.大气抖动自由空间光通信信道研究.空军工程大学学报(自然科学版),2006,7(5):51-52
    [32] Debbie Kedar, Shlomi Amon. Evaluation of coherence interference in optical wireless communication through multiscattering channels. Appl. Opt.2006,45(14):3263-3269
    [33] Debbie Kedar, Shlomi Arnon. optical wireless communication through fog in the presence of pointing errors. Appl. Opt. 2003,42(24):4946-4954
    [34] Denis Bushuev, Debbie Kedar, Shlomi Arnon. Analyzing the performance of a nanosatellite cluster-detector array receiver for laser communication. J. Lightwave Tech.2003,21 (2):447-455
    [35] R.L.Phillips, L.C.Andrews. Analysis of a satellite communication channel optical scintillations and fade statistics. SPIE 1996 Vol. 2828:189-197
    [36] L.C. Andrews. Free-space laser propagation atmospheric effects. IEEE.LEOS.2005:3-4
    [37] G.C.Mooradian, M.Geller. Temporal and angular spreading of blue-green pulses in ciouds. Appl.Opt. 1982,21 (9):1572-1577
    [38] U.O.Farrukh. Multiple scattering for laser beams propagating in alayered atmosphere. SPIE, 1986,Vol.663:57-64
    [39] T.B.Mckee, M.DeMaria, J.A.Kuenningetal. Comparison of Monte Carlo calculations with observations of light scattering in finite clouds. J.Atmos.Sci.1983,40(4): 1016-1023
    [40] S.Arnon, D. Sadot, N.S. Kopeika. simple mathematical models for temporal spatial angular and attenuation characteristics of light propagating through the atmosphere for space optical communication. J. Modern Opt. 1994,41 (10): 1955-1972
    [41] 栗伟珉,敖发良.对地-空光通信中大气折射影响的研究.无线光通信.2007,6:44-46
    [42] Gary D.Wilkins. The diffraction limited aperture of the atmosphere and its effects on free space laser communications.IEEE.COM. 1999 : 1158-1163
    [43] M.GUELMAN, A.KOGAN, et al. Acquisition and pointing control for inter-satellite laser communications. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS.2004,40(4): 1239-1248
    [44] Sangwoo Lee, Mohsen Kavehrad. Airborne Laser Communications with Impulse Response Shortening and Viterbi Decoding. Military Communication Conference.2006:1-7
    [45] Neal W.Spellmeyer, David O.Caplan, Mark L.Stevens. Design for a 5-Watt PPM transmitter for the Mars laser communications demonstration. IEEE. LEOS Summer Topical Meetings.2005:51-52
    [46] Denis Bushuev, Shlomi Arnon. Enhanced detector array receiver for optical wireless communication network.. Electrical and Electronics Engineers in Israel.2002:178-180
    [47] Wilkins, G.D. Eye-safe free-space laser communications. Aerospace and Electronics Conference, 1996,Vol.2:710-715
    [48] Zoran Sodnik, Berbhard Furch, Hanspeter Lutz. free space satellite laser communication.IEEE.LEOS.2002:1117-1118
    [49] H.Manor, S.Arnon. Performance of an optical wireless communication system as a function of wavelength.IEEE.COM.2001 :287-289
    [50] Morio Toyoshima, Kenichi Takizawa, et al. Results of Ground-to-Space Optical Communications Experiments using a Low Earth Orbit Satellite. IEEE. 2006: 80-81
    [51] Zhaoyan Liu, Peter Voelger, Nobuo Sugimoto. Simulation study for the NASDA Miission Demonstration Satellite Lidar (ELISE). IEEE CLEO 1999:280-281
    [52] Yasuaki Kawamura, Tadashi Imai. Development of spaceborne LIDAR: ELISE (Experimental Lidar in Space Equipment). IEEE CLEO 1999: 270-271
    [53] T.M.Shay, M.Enoch, Lt.Col.R.Ewart. Theoretical model for a cloudy-channel laser communications experiment. IEEE 2002:213-217
    [54] Yutaka Hayano, Yashinori Arimoto, Werner Klaus. Ground-to-satellite laser communication program at CRL using adaptive optics. SPIE. 1997, Vol.3126:208-215
    [55] Yusuf E Yenice, Barry G. Evans. Adaptive beam size control for ground to satellite laser communications. SPIE. 1998,Vol.3266:221-230
    [56] Richard F.Lutomirski. The Marine boundary Layer Optical Communication Link. Pacific Sierra Research Technical Report,PSR Report, 1978
    [57] Sherman Karp, John R.Clark. Photon counting: a problem in classical noise theory. IEEE Trans. Info. Theory 1970,16(6):672-679
    [58] Mingsong Chen, Shengyuan Zhou. The Implementation of PPM in Underwater Laser Communication System.IEEE 2006:1901-1903
    [59] Jeffery J. Puschell, Robert J.Giannaris. The autonomous data optical relay experiment: first two way laser communication between an aircraft and submarine.IEEE 1992,Vol. 14:27-30
    [60] Peter Volger, Zhaoyan Liu, Nobuo Sugimoto. Effects of multiple scattering on the retrieval of optical parameters from ELISE - simulation study. SPIE, 1999, Vol.3865:172-177
    [61] Tadashi Imai, Yasuaki Kawamura, Noritaka Tanioka, Kazuhiro Asai, Toshikazu Itabe, Osamu Uchino, Takao Kobayashi, Yasuhiro Sasano, Toshinori Aoyagi.NASDA ELISE (MDS LIDAR) program. SPIE 1997,Vol. 3218:177-184
    [62] 陈文革.博士学位论文.华中理工大学.1995
    [63] 杜竹峰,黄铁侠,卢益民.激光对潜通信的信号能量传递计算.华中理工大学学报.1997,25(8):66-68
    [64] 杜竹峰,黄铁侠,卢益民.激光对潜通信的通信能力计算.华中理工大学学报.1997,25(8):63-65
    [65] 周晓迈,熊兆飞,黄铁侠.改善脉冲时间扩展激光PPM信道上通信性能的新方法.电子学报.1994,22(10):91-94
    [66] 邹传云.光PPM的传输效率.桂林电子工业学院学报.2002,20(4):53-55
    [67] 杜竹峰,卢益民,杨宗凯,黄铁侠.海洋激光雷达接收信号的Monte Carlo计算.中国激光.1991.26(1):1424-1430
    [68] 司立宏,敖发良.激光在海水界面上的传输特性分析.桂林电子科技大学学报.2006,26(6):430-433
    [69] Earl J. McCartney.Optics of the atmosphere.John Wiley & Sons Inc. 1995
    [70] M.A.Box et al, Sum rules for Mie scattering. J.Opt.Soc.Am. A,1987,4(5):795-799
    [71] B.E.祖耶夫,M.B.卡巴诺夫.光信号在地球大气中的传输.科学出版社,1987
    [72] G.Zaccani. Monte Carlo study of light propagation in optically thick media: point source case. Appl. Opt. 1991,30(15):2031-2041
    [73] G.Zaccanti, P.Bruscaglioni, M.Dami. Simple inexpensive method of measuring the temporal spreading of a light pulse propagating in a turbid medium. Appl. Opt.1990, 29(27):3938-3944
    [74] L.B.Stotts. The radiance produced by laser radiation transversing a particulate multiple-scattering medium. J.Opt.Soc.Am. 1977,67(6):815-819
    [75] L.B.Stotts. Closed Form Expression for Optical Pulse Broadening in Multiple-scattering Media. Appl.Opt. 1978,17(4):504-505
    [76] W.G.Tam, A.Zardecki. Multiple scattering of a laser beam by radiational and advective fogs. Optica Acta, 1979,26(5):659-670
    [77] A.Punjabi, D.D.Venable. Effects of multiple scattering on time-and depth-resolved signals in airborne lidar systems. Int.J.Rem.Sens. 1986,7(5):615-626
    [78] W.S.Pegau, D.Gray, J.R.V.Zaneveld. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl.Opt. 1997,36(24):6035-6046
    [79] K.S.Baker, R.C.Smith. Quasi-inherent characteristics of the diffuse attenuation coefficient for irradiance. SPIE,1979,Vol.208:60-63
    [80] H.R.Gordon, G.C.Boynton. Radiance-irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: homogeneous waters. Appl.Opt.l997,36(12):2636-2641
    [81] F.E.Hoge, R.N.Swift, E.B.Frederick. Water depth measurement using an airborne pulsed neon laser system. Appl.Opt. 1980,19(6):871-881
    [82] K.O.Steinvall, K.K.Kopparl, V.C.M.Karlsson. Experimental evaluation of an airborne depth-sounding lidar. Opt.Eng. 1993,32(6):1307-1321
    [83] L.R.Poole, W.E.Esaias. Water Raman normalization of airborne laser fluorosensor measurements: a computer model study. Appl.Opt.l982,21(20):3756-3761
    [84] Richard F.Lutomirski, D.E.Snesd. Green's Function of the Effects of the Air/Sea Interface on Optical propagation. AGARD Coference Proceedings NO.300,1980
    [85] D.R.Lyzenga. A Shallow-water bathymetry using combined lidar and passive multispectral scanner data. Lnt.J.Rem.Sens.l985,6(l):115-125
    [86] B.Billard, R.H.Abbot, M.F.Penny. Modeling depth bias in an airborne laser hydrographic system. Appl.Opt.l986,25(13):2089-2098
    [87] V.Gehlhaar. Computer simulations and theory of oceanographic fluorescence lidar signals: effect of sea surface structure. Appl.Opt. 1982,21(20):3743-3755
    [88] D. M. Winker, L. R. Poole. Monte Carlo calculations of cloud returns for ground-based and space-based lidars. Appl.Phy.B, 1995,60:341-344.
    [89] C.C.Yang, K.C.Yeh. Scattering from a multiple-layered random medium. J.Opt. Soc. Am.A,1985,2(12):2112-2119
    [90] D.Toublance. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computation. Appl.Opt. 1996, 35(18): 3270-3274
    [91] Citation W. M. Cornette, J. G. Shanks. Physically reasonable analytic expression for the single-scattering phase function. Appl. Opt., 1992,31 (16):3152-3160
    [92] S.T.Flock, M.S.Patterson, B.C.Wilson et al. Monte Carlo modeling of light propagation in highly scattering tissues-Ⅰ: scatter predictions and comparison with diffusion theory. IEEETrans.Biomed.Eng,1989,36(12):l1162-1168
    [93] GPrati, R.M.Gagliardi. Decoding with stretched pulse in laser PPM communications. IEEE Trans. Commun. 1983 31(9):1037-1045
    [94] Wiiiam C.Brown. Atmospheric Turbulence Effects on the Performance of Multi-Gigabit Downlink PPM Laser Communications. Free Space Laser Communication Technologies ,SPIE,Vol. 128,1990
    [95] V. F. Weisskopf. The Science and Engineering of Nuclear Power. Clark Goodman, Ed. Addison-Wesley, Cambridge, 1947
    [96] M.Srinivasan, V.Vilnrotter. Symbol Error Probabilities for PPM signaling With an Avalanche photodiode Receiver and Gaussian Thermal Noise.The Telecommunications and Mission Operations progress Report, 1998:42-134
    [97] GPrati. Joint pulse spreading estimation and decoding in stretched pulse PPM potical channels. IEEE Trans. Commun. 1985 33(8):760-765
    [98] James R. Lesh. Capacity limit of the noiseless, energy efficient optical PPM channel. IEEE trans. Comm. 1983,31(4):546-548
    [99] L.E.Estes, R.A.Garcia, C.D.Lizotte. Underwater vehicies equipped with laser beacons and tracked from aircraft. Appl.Opt.l996,35(24):4843-4849
    [100] G.L.Stephens. Radiative transfer through arbitrarily shaped optical media Part I: A General method of solution. J.Atmos.Sci.l988,45(12):1818-1836
    [101] D.B.Northam, N.A.Guerra, M.E.Mack et al. High repetition rate frequency-double Nd: YAG laser for airborne bathymetry. Appl.Opt.,1981,20(6):968-971
    [102] Gennadii GMatvienko. modern concept of a spacebome lidar. SPIE. 1999, Vol.3983:250-258
    [103] Alexander A. Tikhomirov. results of ocean surface remote sensing with spacebome lidar BALKAN from the space station MIR. SPIE. 1999, Vol.3707: 533-540
    [104] M.Patrick McCormick,Chris A.Histetler. LITE the first spacebome lidar. IEEE. COM. 1998:163-166
    [105] Yasuhiro Sasano, Kazuhiro Asai, Nobuo Sugimoto, et al. NASDA mission demonstration satellite lidar project and its sciences. SPIE,98,vol.3504:2-7
    [106] James R.Lesh. technology, data and system analysis for space-to-ground optical communications. IEEE 1995:415-419
    [107] Keith Wilson, Michel Enoch. Optical communications for deep space missions. IEEE. COM.2000:134-139
    [108] Hamid Hemmati. Optical space communications at JPL.IEEE.2003:81-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700