用户名: 密码: 验证码:
叶绿素荧光遥感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文详细介绍了叶绿素荧光的原理、测量方法和遥感算法,以及在“基线荧光高度算法”和“荧光量子产量”两个领域的研究成果。
     本文使用水体辐射传输数值计算软件Hydrolight 4.2,模拟计算了在不同浓度的黄色物质和悬浮泥沙存在的水体中,MODIS波段的荧光基线高度FLH的变化,研究了黄色物质和悬浮泥沙对FLH的影响。结果显示,FLH随黄色物质变化的相对误差在10%左右。而悬浮泥沙对FLH的影响非常显著,由于悬浮泥沙的散射峰直接覆盖了叶绿素荧光波段,整体抬高了红光和近红外光谱的遥感反射率,且在悬浮泥沙浓度到达20~30mg/L时,荧光信号将完全被淹没,通过基线荧光高度算法已无法获取荧光信息,算法将出现失效。在5mg/L的悬浮泥沙浓度时,FLH受到的影响远远超过了30%。
     基于在实验海区(大连湾)现场测量的水面之上光谱数据和实验室测量的同步叶绿素浓度和吸收系数等数据,本文使用回归分析方法获得了基线荧光高度算法FLH与叶绿素浓度的经验关系,结果显示,荧光基线高度FLH与总叶绿素a浓度存在强烈的正相关关系。通过四种模型(线性、二项式、指数模型以及Gower回归模型)回归的结果都非常好,其中线性回归结果为FLH=0.36729+ 0.01788*[Chla],相关系数R2达到0.89。比较了不同传感器(MODIS、MERIS和GLI)计算的FLH与叶绿素浓度回归关系的差异,发现MODIS波段建立的荧光高度FLH与叶绿素a浓度的相关性更高一些,MERIS和GLI相关性相对较低的原因主要来源于靠近荧光峰的右侧基线波段的设置。
     通过在实验海区(渤海)现场测量的水面之下光谱数据和实验室测量的同步叶绿素浓度和吸收系数等数据,发现该海区的活体叶绿素荧光量子产量最大值在0.06左右,大部分数值分布在0.001~0.02的范围内,这一结果同国外计算的结果基本一致。此外,在很多邻近站位间,还发现荧光量子产量同光合有效辐射IPAR之间存在明显的负相关关系。本文对平均叶绿素比吸收系数、678nm叶绿素比吸收系数以及光合有效辐射的漫衰减系数等几个重要的生物光学参量进行了回归分析,发现在实验海区叶绿素比吸收系数的回归关系与其它海区的结果相差较大,说明浮游植物的固有光学量存在明显的海区差异。然而,光合有效辐射的漫衰减系数同Kd(490)的相关关系同其它海区的结果相差不大。
     基于浮游植物生理学和生物光学原理,本文利用MODIS卫星数据建立了一种估算量子产量的算法——φ算法;通过2006年3月23日渤海和北黄海的MODIS数据计算了荧光量子产量,并与叶绿素荧光效率CFE产品进行了比较。新算法避免了CFE算法存在的几个主要的误差源:包括未考虑浮游植物的“包裹效应”、使用412nm的离水辐亮度反演的浮游植物吸收系数以及积分深度过浅。比较渤海和北黄海MODIS数据的结果表明,φest比CFE存在更小的误差,有效值区域更大,可以提供更多荧光量子产量的信息。CFE在大部分海域出现负值,还出现了某些高估点;在有效数据范围内,两者存在明显的线性相关关系。φ算法估算的量子产量最高值在0.05左右,这与文献给出的在其它海区测量的值域范围基本一致。除辽东湾东北部和部分近岸水域外,大部分离岸水域在0.001~0.02的范围内。通过对φ算法的误差来源分析,认为发展一种新的反演678nm比吸收系数和平均吸收系数的波段比值算法是可行的,也是改进φ算法精度的有效方法。
     随着卫星传感器的发展、荧光遥感理论的成熟、现场观测数据和卫星遥感数据的积累与分析,叶绿素荧光遥感将在海洋光学、海洋生态学、浮游植物生理学、水色遥感以及赤潮监测等领域中继续发挥重要的作用。
This study makes some investigations on chlorophyll fluorescence remote sensing. Firstly, the principle, measurement and remote sensing algorithms of chlorophyll fluorescence remote sensing are introduced in detail. Then the results of reseaches concerning fluorescence line height algorithm and fluorescence quantum yield have been presented.
     Utilizing Hydrolight 4.2, the famous radiative transfer numerical calculating software, this study first analyses the influences of yellow substance and suspended matter on the fluorescence line height (FLH) in natural waters. The calculations show that the relative errors of FLH resulted from yellow substance reach 10% around, generally. However, the effect of suspended matter on FLH error is more remarkable. The scattering signal of suspended matter covers the chlorophyll fluorescence region, and raises the whole red and infrared spectra of remote sensing reflectance, even may entirely submerge the fluorescence signal to invalidate fluorescence algorithm when the concentration of suspended matter reaches 20~30 mg/L. Even in waters with 5 mg/L suspended matter, the influence on FLH markedly exceeds 30%.
     Secondly, an experiential relationship between FLH and total chlorophyll concentration is obtained, based on regression analyses using the in-situ measured data including water-leaving radiance spectra, chlorophyll concentration and absorption coefficient. The result shows a strong positive correlation between FLH and chlorophyll concentration in four regression models, such as linear, binomial, exponential and Gower’s models. Especially, in the linear regression equation of FLH=0.36729+0.01788*[Chla], and the correlation coefficient, R2, reaches 0.89. The comparions among different bands on three sensors , including MODIS, MERIS and GLI, demonstrate that the correlation for MODIS bands appears higher, resulting from the right baseline band close to fluorescence peak on MERIS and GLI.
     Sun-induced chlorophyll-a fluorescence signals have been measured in Bohai Sea using an underwater hyperspectral spectroradiometer. This study combines these signals with other apparent and inherent optical properties to derive the in vivo fluorescence quantum yield (FQY), and came to the conclusion that the maximum was around 0.06, the average value reached 0.017, with most values ranging from 0.001 to 0.02, which are consistent with the results obtained in other sea areas. Besides, an obvious negative correlation between FQY and instantaneous photosynthetically available radiance (IPAR) was found among some adjacent stations. Some empirical relationships based on in-situ measurements are established and validated in this study, and compared with the former results. It is shown that the correlation between inherent optical properties and chlorophyll-a concentration is highly different from other sea areas; however, the relationship between diffuse attenuation coefficients is comparatively stable.
     On the basis of analyses of phytoplankton physiology and bio-optics, this study proposes that the CFE (chlorophyll fluorescence efficiency) algorithm is not a precision approach to estimate FQY by using moderate resolution imaging spectrometer (MODIS) data, and then presents a new MODIS algorithm for more accurate estimation of FQY. The FQY computation was done with the MODIS TERRA data obtained in Bohai and North Yellow Sea on February 23, 2006, and the comparison between the two methods was made. The results show that CFE appeared negative in many areas and distinct overestimate in some points, the new productφest was likely more effective, the maximum was about 0.05, and most values ranged from 0.001 to 0.02, which were consistent with the results obtained in situ. Through a simple error analysis ofφest, the paper holds that, for improving the accuracy, a band-ratio method for directly retrieving optical properties needs to be explored to replace these empirical relationships used in the algorithm.
     With the development of satellite sensors, the maturity of fluorescence remote-sensing algorithm, the accumulation and analysis of field and satellite data, chlorophyll fluorescence remote sensing will play an important role in optical oceanography, marine bionomics, phytoplankton physiology, ocean color remote sensing and HABs (harmful algal blooms) monitoring.
引文
[1] Govindjee. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Australian Journal of Plant Physiology, 1995, 22: 131-160.
    [2] Stokes, G. G. On the composition and resolution of streams of polarized light from different sources. Transactions of the Cambridge Philosophical Society, 1852, 9: 399-416.
    [3] Yentsch, C. S., D. W. Menzel. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Research, 1963, 10: 221-231.
    [4] Lorenzen, C. J. A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Research, 1966, 13: 223-227.
    [5] Arar, E. J., G. B. Collins. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. Method 445.0.U.S. Environmental Protection Agency, 1997.
    [6] Dandonneau, Y., J. Neveux. Diel variations of the in vivo fluorescence in the eastern equatorial Pacific: an unvarying pattern. Deep-Sea Research II, 1997, 44: 1869-1880.
    [7] Samuelsson, G., G. ?quist. A method for studying photosynthetic capacities of unicellular algae based on in vivo chlorophyll fluorescence. Physiologia Plantarum, 1977, 40: 315-319.
    [8] Samuelsson, G., G. ?quist, P. Halldal. The variable chlorophyll a fluorescence as a measure of photosynthetic capacity in algae. Mitteilungen Internationale Vereinigung fur Limnologie, 1978, 21: 207-215.
    [9] Cullen, J. J., E. H. Renger. Continuous measurement of the DCMU-induced fluorescence response of natural phytoplankton populations. Marine Biology, 1979, 53: 13-20.
    [10] Roy, S., L. Legendre. DCMU-enhanced fluorescence as an index of photosynthetic activity of phytoplankton. Marine Biology, 1979, 55: 93-101.
    [11] Roy, S., L. Legendre. Field studies of DCMU-enhanced fluorescence as an index of in situ phytoplankton photosynthetic activity. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37.
    [12] Vincent, W. F. Photosynthetic capacity measured by DCMU-induced chlorophyll fluorescence in an oligotrophic lake. Freshwater Biology, 1981, 11: 61-78.
    [13] Schreiber, U., U. Schliwa, W. Bilger. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 1986, 10: 51-62.
    [14] Falkowski, P. G., Z. Kolber. Estimation of phytoplankton photosynthesis by active fluorescence. ICES Marine Science Symposium, 1993, 197: 92-103.
    [15] Falkowski, P. G., Z. Kolber. Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans. Australian Journal of Plant Physiology, 1995, 22: 341-355
    [16] Kolber, Z., P. G. Falkowski. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnology and Oceanography, 1993, 38: 1646-1665.
    [17] Kolber, Z. S., O. Prásil, P. G. Falkowski. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochimica et Biophysica Acta, 1998, 1367: 88-106.
    [18] Tyler, J. E., R. C. Smith. Measurements of Spectral Irradiance under Water. New-York: Gordon and Breach science publishers, 1970.
    [19] Gordon, H. R. Spectral variations in the volume scattering function at large angles in natural waters. Journal of the Optical Society of America, 1974, 64: 773-775.
    [20] Morel, A., L. Prieur. Analysis of variations in ocean color. Limnology and Oceanography, 1977, 22: 709-722.
    [21] Neville, R. A., J. F. R. Gower. Passive remote sensing of phytoplankton via chlorophyll fluorescence. Journal of Geophysical Research, 1977, 82: 3487-3493.
    [22] Gordon, H. R. Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence at 685nm. Applied Optics, 1979, 18: 1161-1166.
    [23] Gower, J. F. R. Observation of in situ fluorescence of chlorophyll-a in Saanich inlet. Boundary-Layer Meteorology, 1980, 18: 235-245.
    [24] Gower, J. F. R., G. A. Borstad. Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer. International Journal of Remote Sensing, 1990, 11: 313-320.
    [25]潘德炉, J. G. R. Gower,林寿任.荧光法遥感海面叶绿素浓度的波段选择研究.海洋与湖沼, 1989a, 20: 564-570.
    [26] Fischer, J., U. Kronfeld. Sun-stimulated chlorophyll fluorescence, 1: Influence of oceanic properties. International Journal of Remote Sensing, 1990, 11: 2125-2147.
    [27] Fischer, J., P. Schlüssel. Sun-stimulated chlorophyll fluorescence, 2: Impact of atmospheric properties. International Journal of Remote Sensing, 1990, 11: 2149-2162.
    [28] Vos, W. L., M. Donze, H. Bueteveld. On the reflectance spectrum of algae in water: The nature of the peak at 700nm and its shift with varying concentration. Communications on Sanitary Engineering and Water Management, Delft, The Netherlands, Technical Report, 1986: 86-92.
    [29] Kishino, M., S. Sugihara, N. Okami. Theoretical analysis of the in-situ fluorescence of chlorophyll-a on the underwater spectral irradiance. Bulletin de la SociétéFranco-Japonaise d’Océangraphie, 1986, 24: 130-138.
    [30] Mittenzwey, K. H., S. Breitwieser, J. Penig, A. A. Gitelson, G. Dubovitzkii, G. Garabusov, S. Ullrich, V. Vobach, A. Müller. Fluorescence and reflectance for the in-situ determination of some quality parameters of surface waters. Acta hydrochim. Hydiobiol., 1991, 19: 3-15.
    [31] Mittenzwey, K. H., A. A. Gitelson, K. Y. Kondratiev. Determination of chlorophyll a of inland waters on the basis of spectral reflectance. Limnology and Oceanography, 1992, 37: 147-149.
    [32] Gitelson, A. A., G. P. Keydan. Remote sensing of inland waters quality Measurements in the visible spectrum. Acta hydrophys., Berlin, 1990, 34: 5-27.
    [33] Gitelson, A. A., K. YA. Kondrat’et. On the mechanism of formation of maximum in thereflectance spectra near 700nm and its application for remote monitoring of water quality. Transactions Doklady of the USSR Academy of Sciences: Earth Science Sections, 1991, 306: 1-4.
    [34] Gitelson, A. A. The peak near 700nm on reflectance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. International Journal of Remote Sensing, 1992, 13: 3367-3373.
    [35] Gitelson, A. A. Algorithms for remote sensing of phytoplankton pigments in inland waters. Advanced in Space Research, 1993, 13: 197-201.
    [36] Gitelson, A. A., Y. Z. Yacobi, A. Karnieli, N. Kress. Reflectance spectra of polluted marine waters in Haifa Bay, Southeastern Mediterranean: Features and application for remote estimation of chlorophyll concentration. Israel Journal of Earth Science, 1996, 45: 127-136.
    [37] Gitelson, A. A., Y. Z. Yacobi, D. C. Rundquist, R. Stark, L. Han, D. Etzion. NWQMC CONFERENCE 2000: Monitoring for the Millennium, 2000.
    [38]赵冬至,张丰收,杜飞,郭皓,赵玲.表征赤潮水体太阳激发的叶绿素荧光高度的波段优化——归一化荧光高度法.海洋学报, 2005a, 6: 146-153.
    [39]赵冬至,张丰收,杜飞,赵玲,郭皓.不同藻类水体太阳激发的叶绿素荧光(SICF)峰特性研究.遥感学报, 2005b, 9: 265-270.
    [40] Babin, M., A. Morel, B. Gentili. Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variation in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence, Int. J. Remote Sensing, 1996, 17: 2417-2448.
    [41] Fell, F., J. Fischer, M. Schaale, T. Schr?der. Retrieval of chlorophyll concentration from MERIS measurements in the spectral range of the sun-induced chlorophyll fluorescence. Ocean Remote Sensing and Applications, 2003, 4892: 116-123.
    [42] Huot, Y., C. A. Brown, J. J. Cullen. New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison eith present data products. Limnology and Oceanography: Methods, 2005, 3: 108-130.
    [43] Gower, J. G. R., S. King, G. Borstad, L. Brown. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. International Journal of Remote Sensing, 2005, 26: 2005-2012.
    [44] Gower, J. G. R., S. King. Validation of chlorophyll fluorescence derived from MERIS on the west coast of Canada. International Journal of Remote Sensing, 2007, 28: 625-635.
    [45] Gower, J. F. R., L. Brown, G. A. Borstad. Observations of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor. Canadian Journal of Remote Sensing, 2004, 30: 17-25.
    [46]赵冬至,张丰收,杜飞,郭皓,赵玲.基于高光谱反射率的藻类水体基线荧光峰高度与叶绿素a浓度关系研究.高技术通讯, 2004a, 5: 68-72.
    [47]赵冬至,杜飞,赵玲,郭皓,张丰收.基于表面反射率的赤潮卫星荧光线高度算法比较.高技术通讯, 2004b, 14: 93-97.
    [48] Hu, C. M., F. E. Muller-Karger, C. Taylor, K. L. Carder, C. Kelble, E. Johns, C. A. Heil. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sensing of Environment, 2005, 97: 311-321.
    [49] Maxwell, K., G. N. Johnson. Chlorophyll fluorescence-a practical guide. Jounral of Experimental Botany, 2000, 51: 659-668.
    [50]邢小罡,赵冬至,刘玉光,杨建洪,沈红,赵玲,王林.叶绿素a荧光遥感研究进展.遥感学报, 2007, 11: 137-144.
    [51] Xing X.G., D.Z. Zhao, Y.G. Liu, J.H. Yang, P. Xiu, L. Wang. An Overview of Remote Sensing of Chlorophyll Fluorescence. Ocean Science Journal, 2007, Vol.42, No.1: 49-59.
    [52] Butler, W. L. Energy distribution in the photochemical apparatus of photosynthesis. Annual Reviews of Plant Physiology, 1978, 29: 345-378.
    [53] Schatz, G. H., H. Brock, A. R. Holzwarth. Kinetic and energetic model for the primary processes in photosystem II. Biophysical Journal, 1988, 54: 397-405.
    [54] Kiefer, D. A., R. A. Reynolds. Advances in understanding phytoplankton fluorescence and photosynthesis, In P. G. Falkowski [ed.], Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, 1992. 155-174.
    [55] Dau, H. Molecular mechanisms and quantitative models of variable photosystem II fluorescence. Photochemistry and Photobiology, 1994, 60: 1-23.
    [56] Lavergne, J., H.-W. Trissl. Theory of fluorescence induction in photosystem II: Derivation of analytical expressions in a model including exciton-radial-pair equilibrium and restricted energy transfer between photosynthetic units. Biophysical Journal, 1995, 68: 2474-2492.
    [57] Whitmarsh, J., Govindjee. The photosynthetic process. In G. S. Singhal, R. Renger, S. K. Sopory, K.-D. Irrgang and Govindjee [eds.], Concepts in photobiology: photosynthesis and photomorphogenesis. Concepts in photobiology. Narosa-Publishing, 1999. 11-51.
    [58] Trissl, H.-W., J. Lavergne. Fluorescence Induction from photosystem II: Analytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including exciton-radical pair equilibrium and restricted energy transfer between photosynthetic units. Australian Journal of Plant Physiology, 1995, 22: 183-193.
    [59] Bernardt, K., H.-W. Trissl. Theories for kinetics and yields of fluorescence and photochemistry: how, if at all, can different models of antenna organization be distinguished experimentally? Biochimica et Biophysica Acta, 1999, 1409: 125-142.
    [60] Long, S. P., S. Humphries, P. G. Falkowski. Photoinhibition of photosynthesis in nature. Annual Reviews of Plant Physiology and Plant Molecular Biology, 1994, 45: 633-662.
    [61] Koblízek, M., M. Ciscato, J. Komenda, J. Kopecky, P. Siffel, J. Masojídek. Photoadaptation in the green alga Spongiochloris sp. A three-fluorometer study. Photosynthetica, 1999, 37: 307-323.
    [62] Schatz, G. H., H. Brock, A. R. Holzwarth. Kinetic and energetic model for the primary processes in photosystem II. Biophysical Journal, 1988, 54: 397-405.
    [63] Emerson, R., W. Arnold. The photochemical reaction in photosynthesis. The Journal ofGeneral Physiology, 1932, 16: 191-205.
    [64] Dubinsky, Z., P. G. Falkowski, K. Wyman. Light Harvesting and utilization by Phytoplankton. Plant and Cell Physiology, 1986, 27: 1335-1349.
    [65] Ostrowska, M., R. Majchrowski, D. N. Matorin, B. Wozniak. Variability of the specific fluorescence of chlorophyll in the ocean. Part 1. Theory of classical in situ chlorophyll fluorometry. Oceanologia, 2000a, 42: 203-219.
    [66] Ostrowska, M., D. N. Matorin, D. Ficek. Variability of the specific fluorescence of chlorophyll in the ocean. Part 2. Fluorometric method of chlorophyll a determination. Oceanologia, 2000b, 42: 221-229.
    [67] Trees, C. C., R. R. Bidigare, D. M. Karl, L. Van Heukelem, J. Dore. Fluorometric chlorophyll a: Sampling, laboratory methods, and data analysis protocols. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 5, 2003, Vol. 5: 15-26.
    [68] Kim, H. H. New algae mapping technique by the use of an airborne laser fluorosensor. Applied Optics, 1973, 12: 1454-1459.
    [69] Hoge, F. E., R. N. Swift. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll-a and other naturally occurring pigments.Applied Optics, 1981, 20: 3197-3205.
    [70] Nieke, B., W. F. Vinvent, J.-C. Therriault, L. Legendre, J.-F. Berthon, A. Condal. Use of a Ship-Borne laser fluorosensor for remote sensing of chlorophyll a in a coastal environment. Remote Sensing of Environment, 1997, 60: 140-152.
    [71]陈卫标,吴东,张亭禄,刘智深.海洋表层叶绿素浓度的激光雷达测量方法和海上实验.海洋与湖沼. 1998, 29: 255-260.
    [72]魏志强,张凯临,吴东.机载海洋激光荧光雷达测量海表层叶绿素a浓度的算法研究.中国海洋大学学报, 2007, 37: 157-162.
    [73] Hoge, F. E., P. E. Lyon, R. N. Swift, J. K. Yungel, M. R. Abbott, R. M. Letelier, W. E. Esaias. Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne lidar results. Applied Optics, 2003, 42: 2767-2771
    [74] Parkhill, J.-P., G. Maillet, J. J. Cullen. Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. Journal of Phycology, 2001, 37: 517-529.
    [75] Behrenfeld, M. J., O. Prasil, Z. S. Kolber, M. Babin, P. G. Falkowski. Compensatory changes in Photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynthesis Research, 1998, 58: 259-268.
    [76] Kautsky H, A. Hirsch. Neue Versuche zur Kohlensaureassimilation. Naturwissenschaften, 1931, 19:964-989.
    [77] Leverenz, J. W. Factors determining the nature of the light dosage response curve of leaves. In N. R. Baker and J. R. Bowyer [eds.], Photoinhibition of photosynthesis from molecular mechanisms to the field. BIOS Scientific Publishers, 1994. 239-254.
    [78] Trissl, H.-W. Theory of fluorescence induction, 1999. http://www.biologie.uni-osnabrueck.de/biophysik/trissl/Teaching/fi.pdf
    [79] Exton, R. J., W. M. Houghton, W. Esaias, et al. Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation. Applied Optics, 1983, 22: 54-64.
    [80] Poole, L. R., W. E. Esaias. Water Raman normalization of airborne laser fluorosensor measurements: a computer model study. Applied Optics, 1982, 21: 3756-3761.
    [81] Bristow, M., D. Nielsen, D. Bundy. Use of water Raman emission to correct airborne laser fluorescence data effects of water optical attenuation. Applied Optics, 1981, 20: 2889-2906.
    [82] Marshall, B., R. C. Smith. Raman scattering and in-water optical properties. Applied Optics, 1990, 29: 71-84.
    [83] Gower, J. F. R., R. Doerffer, G. A. Borstad. Interpretation of the 685nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS. International Journal of Remote Sensing, 1999, 20: 1771-1786.
    [84]潘德炉,林寿仁, J. F. R.高尔, G. A.盖里.利用荧光高度遥感海洋中叶绿素a的浓度.海洋学报, 1989b, 11: 780-787.
    [85] Topliss, B. J., T. Platt. Passive fluorescence and photosynthesis in the ocean: Implications for remote sensing. Deep-Sea Research, 1986, 33: 849-864.
    [86] Kiefer, D. A., W. S. Chamberlin, C. R. Booth. Natural fluorescence of chlorophyll a: relationship to photosynthesis and chlorophyll concentration in the western South Pacific gyre. Limnology and Oceanography, 1989, 34: 868-881.
    [87] Chamberlin, W. S., C. R. Booth, D. A. kiefer, J. H. Morrow, R. C. Murphy. Evidence for a simple relationship between natural fluorescence, photosynthesis and chlorophyll in the sea. Deep-Sea Research, 1990, 37: 951-973.
    [88] Chamberlin, S., J. Marra. Estimation of photosynthetic rate from measurements of natural fluorescence: analysis of the effects of light and temperature. Deep-Sea Research, 1992, 39: 1695-1706.
    [89] Garcia-Mendoza, E., H. Maske. The relationship of solar-stimulated natural fluorescence and primary productivity in Mexican Pacific waters. Limnology and Oceanography, 1996, 41: 1697-1710.
    [90] Maritorena, S., A. Morel, B. Gentili. Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat. Applied Optics, 2000, 39: 6725-6737.
    [91] Mueller, J. L., C. Davis, R. Arnone, R. Frouin, K.Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, S. McLean. Above-water radiance and remote sensing reflectance measurement and analysis protocols. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, 2003, Revision 4, Vol. III: 21-31.
    [92]唐军武,田国良,汪小勇,王晓梅,宋庆君.水体光谱测量与分析I:水面以上测量法.遥感学报, 2004, 8,: 37-44.
    [93] Gordon, H. R., O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark. A semianalytic radiance model of ocean color. Journal of Geophysical Research, 1988, 93: 10909-10924.
    [94] Mobley, C. D. Estimation of the Remote-sensing reflectance from above-surfacemeasurements. Applied Optics, 1999, 38: 7442-7455.
    [95] Toole, D. A., M.J. Neumann, T. K. Westberry, D. A. Siegel. Comparison of in situ ocean color methodologies in Case II environment. Poster presented at Ocean Optics XIV, Kona HI, Oct. 1998: 1-8.
    [96]费尊乐, C.C. Trees,李武.近岸水域CZCS资料分析.黄渤海海洋, 1995, 13: 61-71.
    [97] Austin, R. W. The remote sensing of spectral radiance from below the ocean surface. In N. G. Jerlov and E. S. Nielsen [eds.], Optical Aspects of Oceanography, Academic, London, 1974. 317-344.
    [98] Clark, D. K. Phytoplankton Pigment Algorithm for the Nimbus-7 CZCS, In J. G. R. Gower [eds.], Oceanography form Space, Plenum Press, New York, 1981. 200-245.
    [99] Gordon, H. R., D. K. Clark. Clear Water Radiances for Atmospheric Correction of Coastal Zone Color Scanner Imagery. Applied Optics, 1981, 20:4175-4180.
    [100]陈清莲,唐军武,王项南,任洪启.东海实验区水体光谱特性现场测量与数据分析.海洋技术, 1999, 18: 25-37.
    [101] Lee, Z., K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis. Model for the Interpretation of Hyperspectral Remote-sensing Reflectance. Applied Optics, 1994, 33: 5721-5732.
    [102] Smith, R. C., K. S. Baker. Analysis of ocean optical data, Ocean Optics VII, SPIE, 1984. 478: 119-126.
    [103] Smith, R. C., K. S. Baker. Analysis of ocean optical data, Ocean Optics VIII, SPIE, 1986. 637: 95-107.
    [104] Darecki, M., D. Stramski. An evaluation of MODIS and SeaWIFS bio-optical algorithms in the Baltic Sea. Remote Sensing of Environment, 2004. 89: 326-350.
    [105] Neckel, H., D. Labs. The solar radiation between 3300 and 12500 A. Solar Physics, 1984. 90: 205-258.
    [106] Letelier, R. M., M. R. Abbott. An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sensing of Environment, 1996, 58: 215-223
    [107] Abbott, M. R., R. M. Letelier. MODIS ATBD No.22 Chlorophyll Fluorescence, 1999
    [108] Gower, J. F. R., G. A. Borstad. On the potential of MODIS and MERIS for imaging chlorophyll fluorescence from space. International Journal of Remote Sensing, 2004, 25: 1459-1464
    [109] Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems. 2rd Edition. New York: Cambridge University Press, 1994. 509.
    [110] Austin, R. W. Gulf of Mexico, ocean-colour surface-truth measurements, Boundary-layer Meteorology, 1980, 18: 269-285.
    [111] Günter, K., D. Ernst, H. Maske. Biophysical processes of chlorophyll a fluorescence. The Use of Chlorophyll Fluorescence Measurements from space for separating constituents of seawater (ESA Contract No. RFQ 3-5059/84/NL/MD, Volume II). 1986.
    [112] Barnes, M. D., W. B. Whitten, J. M. Ramsey. Enhanced Fluorescence Yields Through Cavity-QED Effects in Microdroplets. Journal of the Optical Society of America B, 1994, 11: 1297.
    [113] Pope, R. M., E. S. Fry. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. Applied Optics, 1997, 36: 8710-8723.
    [114] Gould, R. W., R. A. Arnone, P. M. Martinolich. Spectral Dependence of the Scattering Coefficient in Case 1 and Case 2 Waters. Applied Optics, 1999, 38: 2377-2397.
    [115] Haltrin, V. I. An algorithm to restore spectral signatures of all inherent optical properties of seawater using a value of one property at one wavelength, Proceedings of the Fourth International Airborne Remote Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing, Ottawa, Ontario, Canada, ERIM International, Inc, Ann Arbor, MI, USA, 1999. 21-24.
    [116] Mueller, J. L. In-water radiometric profile measurements and data analysis protocols. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, 2003, Revision 4, Vol. III: 7-20.
    [117] Bartlett, J. S., M. R. Abbott, R. M. Letelier. Phytoplankton Fluorescence from MODIS. 2000. http://picasso.oce.orst.edu/ORSOO/pubs/MSTM0600.pdf
    [118] Gilmore, A. M., Govindjee. How higher plants respond to excess light: Energy dissipation in photosystem II. In G. S. Singhal, R. Renger, S. K. Sopory, K.-D. Irrgang and Govindjee [eds.], Concepts in photobiology: photosynthesis and photomorphogenesis. Narosa-Publishing, 1999. 513-548.
    [119] Morrison, J. R. In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: a simple algorithm, observations, and a model. Limnology and Oceanography, 2003, 48: 618-631.
    [120] Kiefer, D. A. Chlorophyll a fluorescence in marine centric diatoms: responses of chloroplasts to light and nutrient stress. Marine Biology, 1973, 23: 39-46.
    [121] Ibelings, B. W., B. M. A. Kroon, L. R. Mur. Acclimation of photosystem II in a cyanobacterium and a eukaryotic green alga to high and fluctuating photosynthetic photon flux densities, simulating light regimes induced by mixing in lakes. New Phytologist, 1994, 128: 407-424.
    [122] Heaney, S. I. Some observations on the use of the in vivo fluorescence technique to determine chlorophyll a in natural populations and cultures of freshwater phytoplankton. Freshwater Biology, 1978, 8: 115-126.
    [123] Campbell, D., H. Vaughan, A. K. Clarke, P. Gustafsson, G. ?quist. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews, 1998, 62: 667-683.
    [124] ?gren, E. The significance of photoinhibition for photosynthetic productivity. In W. J. Davies [ed.]. Photoinhibition of Photosynthesis from molecular mechanisms to the field. Oxford: BIOS Scientific Publisher, 1994. 433-447.
    [125] Cleveland, J. S., M. J. Perry. Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros gracilis. Marine Biology, 1987, 94: 489-497.
    [126] Gordon, H. R., K. J. Voss. Angular distribution of fluorescence from phytoplankton. Limnology and Oceanography, 1993, 38: 1582-1586.
    [127] Mobley, C. D. 1994. Light and Water: Radiance transfer in natural waters. Academic Press , San Diego, Calif. 592pp.
    [128] Collins, D. J., D. A. Kiefer, J. B. SooHoo, I. S. McDermid. The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission. Deep-Sea Research, 1985, 32: 983-1003.
    [129] Morel, A., A. Bricaud. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Research, 1981, 28:1375-1393.
    [130] Morel, A., A. Bricaud. Inherent properties of algal cells including picoplankton: Theoretical and experimental results. In T. Platt and W. K. W. Li [eds.], Photosynthetic Picoplankton. Canadian Bulletin of Fisheries and Aquatic Sciences. 1986. 521-559.
    [131] Bidigare, R. R., M. E. Ondrusek, J. H. Morrow et al. In vivo absorption properties of algal pigments. Ocean Optics X Proceedings of the SPIE, 1990, 1302: 290–302.
    [132] Carder, K. L., F. R. Chen, Z. Lee, et al. Algorithm theoretical basis document ATBD 19: case 2 chlorophyll a. NASA, 2003.
    [133] Bricaud, A., M. Babin, A. Morel, et al. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. J. Geophys. Res., 1995, 100: 13321-13332.
    [134] Carder, K. L., F. R. Chen, S. K. Hawes. Algorithm theoretical basis document ATBD 20: Instantaneous Photosynthetically available radiation and absorbed radiation by phytoplankton. NASA, 2003.
    [135] Gordon, H. R. Terra normalized water-leaving radiance data quality summary. NASA, 2002.
    [136] Gordon, H. R., W. R. McCluney. Estimation of the depth of Sunlight penetration in the sea for remote sensing. Applied Optics, 1975, 14: 417.
    [137] Morel, A., S. Maritorena. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res., 2001, 106: 7163-7180.
    [138] Mueller, J. L. SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm. SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. NASA, 2000.
    [139] Duysens, L. M. N. The flattening effect of the absorption spectra of suspensions as compared to that of solutions. Biochemica Biophysica Acta, 1956, 19: 1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700