用户名: 密码: 验证码:
麒麟瓜内部品质在线无损检测技术的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界水果生产和消费大国,西瓜的产量居世界之冠,但是出口量却非常少,分析其主要原因是由于中国水果商品化水平比较低,水果检测技术和检测水平比较落后。水果商品化水平对水果的内部品质要求较高,对西瓜生产过程中内部品质的检测是西瓜出口供应的一个必需环节。国内外对西瓜内部品质在线无损检测的研究报道还较少,现有的在线无损检测技术和检测方法还不是很成熟,只有国外少数国家拥有西瓜等大型厚皮类水果的无损检测生产设备,而国内水果无损检测装备制造企业设计生产的检测设备分选能力相对较弱,目前,国内还没有西瓜内部品质在线无损检测设备。因此,国内大型水果生产企业每年要花费大量的资金购买和维护国外的水果无损检测设备。
     本课题研究的最终目标是研制开发西瓜内部品质在线无损检测系统,以增强中国水果品质检测装备制造业的技术实力和技术水平,提高国内水果生产加工企业的效益和水果的品质质量。
     本研究选择厚皮类瓜果麒麟瓜为研究对象,对麒麟瓜的可溶性固形物(Soluble solids content, SSC)和总酸(Total acidity, TA)旨标进行了理化分析和测定,对麒麟瓜内部品质在线无损检测过程中的关键技术问题进行了研究,初步设计完成了麒麟瓜内部品质在线无损检测试验台。该检测系统是结合光学、机械学、电学、生物物料学和化学计量学于一体的光机电控在线无损检测系统,其主要涉及光谱分析、信息融合、自动控制等相关学科知识。本课题针对麒麟瓜内部品质在线无损检测系统的关键技术主要进行了如下几个方面的研究:
     (1)针对麒麟瓜体积大以及皮厚的特点,设计了麒麟瓜内部品质在线无损检测系统的总体结构,包括输送装置、光谱采集、控制单元以及光谱分析模型算法等。研制开发了基于近红外光谱(Near infrared spectroscopy, NIRS)技术麒麟瓜内部品质在线无损检测系统,初步解决了麒麟瓜体积大、皮厚难以检测内部品质的难点问题,以满足其内部品质快速在线无损检测要求;
     (2)该检测系统初步解决了麒麟瓜内部品质快速在线无损检测模型的关键问题。本研究主要对可溶性固形物和总酸两个指标进行了建模研究。并通过不同光谱预处理方法优化预测模型,应用遗传算法(Genetic algorithm, GA)、蒙特卡罗-无信息变量消除(Monte-Carlo uninformative variable elimination, MC-UVE)、蒙特卡罗-无信息变量消除结合遗传算法(MC-UVE-GA)等变量优选方法提取特征变量,剔除无关信息变量,减少了变量数目,初步建立了适用于该检测系统的偏最小二乘回归(Partial least squares regression, PLSR)预测模型;
     (3)研究了麒麟瓜瓜脐、瓜梗、赤道和接地端四种检测部位和0.1m/s、0.3m/s、0.5m/s和0.8m/s四种输送速度对检测精度的影响。采用美国海洋光学公司QE65000光谱仪,光谱采集采用漫透射方式,入射角度为120°(检测透镜和光源相对水果的角度),12盏150W的卤钨灯,光源功率可调。研究结果显示,预处理结合变量优选方法进行模型简化处理之后,在本研究采用的四种传输速度中,以0.8m/s输送速度在瓜脐处检测对可溶性固形物的结果较其余三种好,采用14个波长,它们分别为800.8、801.5、802.3、806.7、806.0、800.0、807.5、788.8、829.1、775.3、788.1、820.9、781.3和787.3nm,所建PLSR预测模型的校正集相关系数(Correlation coefficient of calibration, rcal)为0.847,校正均方根误差(Root mean square error of calibration, RMSEC)为0.550%,预测集相关系数(Correlation coefficient of prediction, rpre)为0.836,预测均方根误差(Root mean square error of prediction, RMSEP)为0.500%;以0.5m/s输送速度在赤道部位检测对总酸有较优的预测结果,采用8个波长,它们分别为792.5、757.3、791.8、793.3、774.6、758.1、775.3和756.6nm,所建PLSR预测模型的rcal为0.785,RMSEC为0.01076%,rpre为0.763,RMSEP为0.01106%;通过对四种检测条件下的模型研究证明,不同检测速度和检测部位都会对检测模型精度造成影响。同时,该检测系统检测精度还有待进一步提高,距离实际生产应用还有一定差距;
     (4)研究了麒麟瓜成熟度的定性判别分析:采用美国海洋光学公司QE65000微型光纤光谱仪采集的漫透射光谱建立定性判别模型;创新性地提出了光谱波峰比值法(Ratio of peak1to peak2, RPP),并与其他常见的化学计量学判别方法进行了比较,包括线性比较判别分析(Linear discriminant analysis, LDA)、簇类的独立软模式分类法(Soft independent modeling of class analogy, SIMCA)和最小二乘-支持向量机(Least squares support vector machines, LS-SVM)分类法。光谱波峰比值法利用720-740nm和803-805nm处光谱峰值进行麒麟瓜成熟度鉴别,成功地将麒麟瓜成熟度归纳为四类:不成熟,半成熟,成熟和过成熟。具体划分方法为,当RPP在0.4和0.69之间时为过成熟麒麟瓜;当RPP在0.7和0.96之间为成熟麒麟瓜;当样本的RPP位于0.97到1.23之间为半成熟麒麟瓜;而当样本的RPP低于1.24时被归为不成熟的一类。研究结果表明该方法的预测集准确率为82.1%;
     (5)设计并初步实现了麒麟瓜内部品质在线无损检测系统,该在线无损检测系统实验中运行的速度范围为0.1-0.8m/s,可以用于厚皮类瓜果麒麟瓜内部品质的在线无损检测。通过四种不同输送速度和四种检测部位条件下的试验研究证实,该系统初步具有在线无损检测麒麟瓜内部品质的功能,但是检测的精度不是很高,检测系统的稳定性和可靠性还需进一步提高。
China has large yield and consumption of fruit, with the highest yield of watermelon in the world. However the export is very low due to the relatively low level of fruit's commercialization. The detection technology of fruit in our country is relatively far behind from many other countries. For watermelon, it is necessary to grade according to the internal quality before exportation. At present, the reports about non-destructive on-line detection of watermelon at home and abroad are limited. The existing non-destructive on-line detective technology needs to be improved. There are only a few of foreign countries own the grading equipment for the large and thick-skinned fruit such as watermelon. It is still lack of comprehensive scientific research. Besides, the domestic manufacturers can't meet the needs of fruit production companies with relatively week abilities in grading equipment production. Thus, the domestic fruit production companies spend a lot of money every year on buying foreign detection equipment. To date, there is no commercial watermelon internal quality detection equipment in China.
     The final goal of this research is to develop the on-line watermelon internal quality detection system. We hope to enhance the competition of the Chinese equipment manufacture industry for the fruit quality detection, and improve the benefit of domestic fruit production and processing enterprises.
     In this study, we chose the Qilin watermelon that is a variety with thick skin as the object. We determined the soluble solids content (SSC) and total acid (TA), which are indicators of maturity; the traditional chemical analysis methods were adopted. We discussed the key technical issues during the on-line detection of internal quality of watermelon. We designed and finished a watermelon internal quality on-line testing system. The detection system combined the optical, mechanical, electrical, biological and chemical materials metrology technology, it is a system integrated the light-controlled electromechanical operator. It mainly involves spectral analysis, information fusion, automatic control and more related discipline. This work focuses on the key technologies of on-line internal quality detection system of watermelon. The study contains following aspects:
     (1) According to the characteristics of watermelon, we designed the overall frame of on-line detection system for the internal quality of watermelon, including system integration, control unit and spectral model algorithms optimization. To meet the needs of fast, on-line nondestructive detection requirements; We designed the on-line detection system based on near-infrared spectroscopy (NIRS) technology, solved the problem that it is hard to determine the internal quality because of the big size and thick skin of watermelon.
     (2) It is important to create an accurate rapid predictive detection model for SSC and TA of watermelon. This is the key issue in achieving the non-destructive on-line detection for internal quality of watermelons. In this study, different pretreatment methods were used to optimize the predictive model. We also applied the genetic algorithm (GA), Monte Carlo-uninformation variable elimination (MC-UVE) and Monte Carlo-uninformation variable elimination and genetic algorithm (MC-UVE-GA) to extract feature wavelength. We reduced the variables and established partial least squares regression (PLSR) predictive models to adapt our system;
     (3) In order to study the detection portion and convey speed on detection accuracy, four different positions (stem, cylax, equator and grounded position) and four speed (0.1m/s,0.3m/s,0.5m/s and0.8m/s) were investigated. In this study, we used QE65000Ocean Optics spectrometer, diffuse transmission mode and the incident angle was set as120°(the angle between watermelon and light source), twelve150W halogen light source power are variable. The results showed that after the model optimization by spectral pretreatment and feature wavelength selection, among the four speeds applied in this study, the better predictive results of SSC obtained at0.8m/s and detected at stem position. Under this condition,14wavelengths were picked out; they were800.8,801.5,802.3,806.7,806.0,800.0,807.5,788.8,829.1,775.3,788.1,820.9,781.3and787.3nm, respectively. The correlation coefficient of calibration (rcal) was0.847, root mean square error of calibration (RMSEC) was0.550°Brix, correlation coefficient of prediction (rpre) was0.836, root mean square error of prediction (RMSEP)0.500°Brix. In TA predictive model, modeling with the spectra acquired at0.5m/s detection speed and at the equator position was the best,8wavelengths (792.5,757.3,791.8,793.3,774.6,758.1,775.3and756.6nm) were picked out, rcal was0.785, RMSEC to0.01076%, rpre was0.763, RMSEP was0.01106%. The results proved that different convey speeds and different positions would make an effect the detection accuracy. The detective precision still needs to be improvd to achieve the final purpose.
     (4) To carry on the qualitative watermelon maturity discriminant analysis:we used the Ocean Optics QE65000miniature fiber optic spectrometers to acquire transmittance spectra and establish qualitative discriminant model. We firstly proposed using the ratio of spectral peaki to peak2(RPP) to classify the maturity. We compared this effect of this method with other common chemometric discriminant method, including linear discriminant analysis (LDA), soft independent modeling of class analogy (SIMCA) and least squares support vector machines (LS-SVM). This method used the ratio of spectral peak at720-740nm and spectral peak at803-805nm to identify the watermelon maturity. We successfully classified them into four groups:immature, mid-mature, mature and over-mature. The specific division method is that when RPP is in0.4to0.69, the watermelon has over-mature; if the RPP is0.7to0.96, watermelon is mature; when the RPP is located between0.97and1.23, the watermelon is mid-ripen; when the RPP greater than1.24, the samples would be classified to immature. The classification accurate was82.1%by this method.
     (5) We designed and built an on-line detection system of watermelon, the speed range was0.1-0.8m/s. This system can be used for on-line detection of Qilin watermelon. We verified the function of this system through experiment, but the detection accuracy is not high enough. The stability and reliability of the system are still need to further improvement.
引文
[1]张丙秀,于锡宏.西瓜抗病及品质育种研究进展.北方园艺.2004(3):8-9.
    [2]张思远,王福建.我国西瓜育种发展历程与展望.北京农业.2007(14):6-8.
    [3]Tlili, I., Hdider, C., Lenucci, M.S., Ilahy, R., Jebari, H., Dalessandro, G. Bioactive compounds and antioxidant activities during fruit ripening of watermelon cultivars. Journal of Food Composition and Analysis.2011,24(7): 923-928.
    [4]http://faostat.fao.org/site/291/default.aspx.
    [5]介邓飞,谢丽娟,饶秀勤,应义斌.近红外光谱变量筛选提高麒麟瓜糖度预测模型精度.农业工程学报.2013,29(12):264-270.
    [6]闻杰.判断西瓜成熟的几种方法.农业科技与信息.2003(8):15.
    [7]王世强,王砚明.西瓜成熟如何判断.吉林农业.2006(8):18.
    [8]孙素成.西瓜成熟度测定及适时收获的方法.安徽农学通报.2004,10(6):51
    [9]Cantwell, M. Case study:quality assurance for Melons. Perishables Handling Newsletter,1996(85):10-12.
    [10]Graham, M. Watermelons:growing and harvesting. Department of Agriculuture Farmnote.2005,75,94.
    [11]Liang, C.P. Quality evaluation of honeydew Melon:effects of ethylene treatment [Master's thesis]. Master of Science, University of Georgia,2001.
    [12]http://www.ams.usda.gov/AMSv1.0/standards.
    [13]http://www.oecd.org/tad/code/oecdfruitandvegetablesstandardsbrochures.htm.
    [14]Semmelmeyer, E. OECD guidance on objective testing to determine the ripeness of fruit. Fruit and Ornamental Plant Research.2006,14(2):101-112.
    [15]应义斌,韩东海,王俊,王剑平.农产品无损检测技术.北京:化学工业出版社.2005.
    [16]吕飞玲,应义斌.声学检测技术在农产品品质无损检测中的应用.农机化研究.2003,1:145-146,151.
    [17]Cooke, J.R. An interpretation of the resonant behavior of intact fruits and vegetables. Transactions of the Amercian Society of Agricultural Engineering.1972,15:1075-1080.
    [18]Clark, R.L. An investigation of the acoustical properties of watermelon as related to maturity. American Society of Agricultural Engineering.1975,75:6004.
    [19]Robinson, B.E. An evaluation of acoustical decay time as a measure of watermelon matures [Master's thesis]. Athens, University of Georgia,1976.
    [20]Chuma, Y., Shiga, T., Hikida, Y. Vibrational and impact response properties of agricultural products for non-destructive evaluation of internal quality (Part 1). The Japan America Society of Minnesota.1977,39(3):335-341.
    [21]Yamarnoto, H., Iwamoto, M., Haginuma, S. Acoustic impulse response method for measuring natural frequency of intact fruits and preliminary application to internal quality evaluations of apples and watermelons. Joural of Texture Studies.1980,11(2):117-136.
    [22]Yamarnoto, H., Iwamoto, M., Haginuma, S. N on-destructive acoustic impulse response method for measuring internal quality of apples and watermelons. Journal of the Japanese Society for Horticultural Science.1981,50(2):247-261.
    [23]Sasao, A. Impact response properties of watermelons in growth process-change of impact response. Journal of the Japanese Society for Agricultural Machinery.1985,47:335-358.
    [24]Kwamura, T., Niahimura, L., Studies on the physical of watermelon (Part 1). The Japan America Society of Minnesota. 1988,50(2).
    [25]Farabee, L.M., Stone, M.L. Determination of watermelon maturity with sonic impulse testing. In:St. Joseph, M. (Ed.). Trans of the AS AE,1991,91:3013.
    [26]陈介余,宫里满,石黑悦雨.利用声波响应特性检测农产品内部质量的研究(第1报).[日]农业机械学会志.1993,55:65-72.
    [27]Sugiyama, J., Otobe, K., Hayashi, S., Usui, S. Firmness measurement of muskmelons by acoustic impulse transmission. Transactions of the AS AE.1994,37(4):1235-1241.
    [28]Sugiyama, J., Katsurai, T., Hong, J., Koyama, H., Mikuria, K. Portable melon firmness tester using acoustic impulse transmission. In:Proceedings from the sensors for nondestructive testing international conference, Orlando, Florida, February,1997,18-21, pp 3-12.
    [29]Sugiyama, J., Katsurai, T., Hong, J., Koyama, H., Mikuriya, K. Melon ripeness monitoring by a portable firmness tester. Transactions of the AS AE.1998,41(1):121-127.
    [30]Stone, M.L. Watermelon maturity determination in the field using acoustic impulse impedance techniques. In:St. Joseph, M. (Ed.). Trans of the ASAE.1996,39:2325-2330.
    [31]Chyun, A. Acoustic evaluation of watermelon internal quality-maturity, cavity exist existence and orientation. Journal of Agricultural and mechanical.1996,5(4):57-69.
    [32]Armstrong, P.R., Stone, M.L., Brusewitz, Q.H. Nondestructive acoustic and compression measurement of watermelon for internal damage detection. Applied Engineering in Agriculture.1997,13(5):641-645.
    [33]Diezma-Iglesias, B., Ruiz-Altisent, M., Barreiro, P., Detection of internal quality in seedless watermelon by acoustic impulse response. Biosystems Engineering.2004,88:221-230.
    [34]Lee, S.S., Lee, J.H., Park, I.K., Song, S.J., Choi, M.Y., Internal quality estimation of watermelon by multiple acoustic signals sensing. Key Engineering Materials.2006,321-323:1209-1212.
    [35]Nourain, J., Ying, Y.B., Wang, J.P., Rao, X.Q. Firmness evaluation of melon using its vibration characteristic and finite element analysis. International Journal of Postharvest Technology and Innovation.2006,1:212-225.
    [36]Kuroki, S., Tohro, M., Sakurai, N. Monitoring of the elasticity index of melon fruit in a greenhouse. Journal of Japan Society Horticulture Science.2006,75(5):415-420.
    [37]Sadrnia, H., Rajabipour, H., Jafari, A., Javadi, A., Mostofid, Y., Kafashana, J., Dintwaa, E., Baerdemaekera, J.D. Internal bruising prediction in watermelon compression using nonlinear models. Journal of Food Engineering.2008,86: 272-280.
    [38]Taniwaki, M., Takahashi, M., Sakurai, N. Determination of optimum ripeness for edibility of postharvest Melons using nondestructive vibration. Food Research International.2008,42(2009):137-141.
    [39]Taniwaki, M., Tohro, M., Sakurai, N. Measurement of ripening speed and determination of the optimum ripeness of melons by a nondestructive acoustic vibration method. Postharvest Biology and Technology.2010,56:101-103.
    [40]Shah Baki, S.R.M., Annuar, M.Z.M., Yassin, I.M., Hassan, H.A., Zabidi, A. Non-destructive classification of watermelon ripeness using mel-frequency cepstrum coefficients and multilayer perceptrqns. In:Neural Networks (IJCNN), The 2010 International Joint Conference on, Barcelona, Spain, July,2010, ppl-6.
    [41]Kouno, Y., Mizuno, T., Maeda, H., Akinaga, T., Kohda, Y. Internal quality analysis of watermelons by an acoustic technique and its application in Japan.1992,382-384.
    [42]胡生喜.利用振动响应频谱测定西瓜成熟度的可行性探讨.八一农学院学报.1991,14(2):73-75.
    [43]何东健,李增武,王洪群.西瓜打击音波特性的研究.西北农业大学学报.1994,22(3):105-107.
    [44]艾群.利用音波检测西瓜内部品质--成熟度、空洞之存在与方位.农业机械学刊.1996,5(4):57-71.
    [45]葛芚,徐凌,夏恒.利用振动理论对西瓜成熟度进行无损检测的研究.农业工程学报.1998,14(2):231-234.
    [46]王书茂,焦群英,籍俊杰.西瓜成熟度无损检验的冲击振动方法.农业工程学报.1999,15(3):241-245.
    [47]饶秀勤,应义斌,吕飞玲,金波.水果声学特性测试系统的研制.农业机械学报2004,35(2):69-71,87.
    [48]吕飞玲.基于声学特性的西瓜品质无损检测方法研究[硕士论文].杭州:浙江大学.2003.
    [49]危艳君,饶秀勤,漆兵,林鹏鸟,李江波.基于西瓜声学特性测定其成熟度.《农产品加工·学刊》.2012,268(1):8-10.
    [50]危艳君,饶秀勤,漆兵.基于声学特性的西瓜糖度检测系统.农业工程学报.2012,28(3):283-287.
    [51]危艳君,饶秀勤,漆兵,李江波.基于声学特性检测西瓜内部空心的研究.包装与食品机械.2011,29(5):1-4.
    [52]张生伟,王昌龙,袁挺,於锋,高计超.便携式西瓜振动信号数据采集装置研制.计算机测量与控制.2009,17(11):2314-2316.
    [53]肖珂,高冠东,滕桂法,张玉新,贾宇琛.西瓜成熟度音频无损检测技术.农机化研究.2009,8:150-155.
    [54]高冠东,滕桂法,肖珂,张晓茹.基于BMV特征的西瓜成熟度无损检测方法.农业工程学报.2010,26(8):326-330.
    [55]张玉新,赵洋,陶佳.基于音频特性的西瓜成熟度无损检测技术研究.河北农业大学学报.2011,34(2):114-118.
    [56]刘志壮,陈蓉,张文昭,刘爱林,陈爱武.西瓜品质无损检测技术研究进展.湖南工业大学学报.2010,24(3):73-76.
    [57]沈蓉尔.基于MEMS加速度传感器的西瓜成熟度无损检测系统设计[硕士论文].哈尔滨:东北林业大学.2010.
    [58]李琳,陈力恒,沈消寒,王国发,臧家伟.基于声振法的西瓜无损检测器.工业控制计算机.2011,24(6):113-114.
    [59]张福军,衣淑娟,刘坤.西瓜成熟度无损检测系统的设计.农机化研究.2011,33(11):24-27.
    [60]Saito, K.., Miki, T., Hayashi, S., Kajikawa, H., Shimada, M., Kawate, Y., Nishizawa, T., Ikegaya, D., Kimura, N., Takabatake, K., Sugiura, N., Suzuki, M. Application of magnetic resonance imaging to nondestructive void detection in watermelon. Cryogenics.1996,36(12):1027-1031.
    [61]应义斌,饶秀勤,马俊福.柑橘成熟度机器视觉无损检测方法研究.农业工程学报.2004,20(2):144-147.
    [62]Kondon, N., Ting K..C. Robotics for bioproduction system. ASAE Paper.1998.
    [63]廖宇兰.基于介电常数的芒果无损检测技术研究[硕士论文].海南:海南大学,2008.
    [64]Nelson, S.O., Trabelsi, S., Kays, S.J. Dielectric spectroscopy of honeydew melonsfrom 10 MHz to 1.8 GHz for quality sensing. Transactions of the AS ABE.2006,49(6):1977-1981.
    [65]Abbaszadeh, R., Rajabipour, A., Delshad, M., Mahjub, M., Ahmadi, H., Lague, C. Application of vibration response for the nondestructive ripeness evaluation of watermelons. Australian Journal of Crop Science.2011,5(7):920-925.
    [68]http://www.most.gov.cn/gnwkidt/201112/t2011123091686.htm.
    [69]Koro, K.. Electrical density sorting and estimation of soluble solid content of watermelon. Journal of Agricultural Engineering Research.1997,67(3):161-170.
    [70]Choi, K.H., Lee, K.J., Choi, D.S., Kim, G., Son, J.R. Development of simple density measurement system for watermelons. Journal of Biosystems Engineering.2004,29(2):167-174.
    [71]宋文龙,姜永涛.基于水果介电特性的无损伤成熟度检测仪的设计.农业工程学报.2008,24(增刊2):142-148.
    [72]郭文川I, Nelson, S.O., Trabelsi, S., Kays, S.J.蜜瓜和西瓜果汁的射频介电特性及其与糖度的关系.农业工程学报.2008,24(5):289-292.
    [73]滕斌,王俊.国内外瓜果品质的无损检测技术.现代化农业.2001,258:2-5.
    [74]贺艳楠,魏永胜,郑颖.水果成熟度无损检测技术研究进展.北方园艺.2010,(3):208-212.
    [75]Alfatni, M.S.M., Shariff, A.R.M., Abdullah, M.Z., Marhaban, M.H.B., Saaed, O.M.B. The application of internal grading system technologies for agricultural products-review. Journal of Food Engineering.2013,116(3):703-725.
    [76]Kawano, S. New application of nondestructive methods for quality evaluation of fruits and vegetables in Japan. Journal of the Japanese Society for Horticultural Science.2008,67(6):1176-1179.
    [77]Magwaza, L., Opara, U., Nieuwoudt, H., Cronje, P.R., Saeys, W., Nicolai, B. NIR speetroscopy applications for internal and external quality analysis of Citrus fruit-a review. Food and Bioprocess Technology.2012,5(2):425-444.
    [78]孙通,徐惠荣,应义斌.近红外光谱分析技术在农产品/食品品质在线无损检测中的应用研究进展.光谱学与光谱分析.2009,29(1):122-126.
    [79]1 wamoto. US Patent Specification 5324945.1994.
    [80]Ito, S., Ootake, Y., Yoshimura, Y., Kito, I. Nondestructive determination of sugar content in watermelon by near infrared speetroscopy. Research Bulletin of the Aichi-ken Agricultural Research Center.1999,31:153-158.
    [81]Ito, H., Fukino-Ito, N., Hone, H., Morimoto, S. Non-destructive detection of physiological disorders in melons using near infrared speetroscopy. Acta Horticulture.2003,645:229-234.
    [82]Guthrie, J., Wedding, B. Robustness of NIR calibrations for soluble solids in intact melon and pineapple. Journal of Near Infrared Speetroscopy.1998,6:259-265.
    [83]Guthrie, J.A., Liebenberg, C.J., Walsh, K.B. NIR model development and robustness in prediction of melon fruit total soluble solids. Australian Journal of Agricultural Research.2006,57,1-8.
    [84]Walsh, K.B., Guthrie, J.A., Burney J.W. Application of commercially available, low-cost, miniaturised NIR spectrometers to the assessment of the sugar content of intact fruit. Australian Journal of Plant Physiology.2000,27, 1175-1186.
    [85]Greensill, C.V., Walsh, K.B. A remote acceptance probe and illumination configuration for spectral assessment of internal attributes of intact fruit. Measurement Science and Technology.2000,11(12):1674-1684.
    [86]Greensill, C.V., Wolfs, P.J., Spiegelman, C.H., Walsh, K.B. Calibration transfer between PDA-based NIR Spectrometers in the NIR assessment of melon soluble solids content. Applied Spectroscopy.2001,55(5):647-653.
    [87]Maruo, T, Ito T., Terashima A., Maeda, K.., Shimamura, S. Nondestructive evaluation of ripeness and soluble solids content in melon and watermelon fruits using laser. Acta Horticulture.2002, ISHS 588,373-375.
    [88]Long, R.L., Walsh, K.B. Limitations to the measurement of intact melon total soluble solids using near infrared spectroscopy. Australian Journal of Agricultural Research.2006,57:403-410.
    [89]Cho, R., Hong, B., Kim, E. On-line sorting system for quality assessment of golden melon using near infrared sensor. In:The First Asian NIR Symposium and the 24th Japanese NIR Forum,2008, O30, pp.162-163.
    [90]Flores, K., Sanchez, M., Perez-Marin, D., L6pez, M., Guerrero, J., Garrido-Varo, A. Prediction of total soluble solid content in intact and cut melons and watermelons using near infrared spectroscopy. Journal of Near Infrared Spectroscopy.2008,16 (2):91-98.
    [91]Dull, G.G., Birth, G.S., Smittle, D.A., Leffler, R.G. Near infrared analysis of soluble solids in intact cantaloupe. Journal of Food Science.1989,54(2):393-395.
    [92]Dull, G.G., Birth, G.S., Leffler, R.G. Exiting energy distribution in honeydew melon irradiated with near infrared beam. Journal of Food Quality.1989,12(5):377-381.
    [93]Dull, G.G., Leffler, R.G., Birth, G.S., Smittle, D.A. instrument for nondestructive measurement of soluble solids in honeydew melons. Transactions of the ASABE.1992,35(2):735-737.
    [94]Ito, H., Mofimoto, S., Yamauchi, R. Potential of near infrared spectroscopy for non-destructive estimation of soluble solids in growing melons. Acta Horticulture.2001,566:483-486.
    [95]Ito, H., Morimoto, S., Yamauchi, R., Ippoushi, K., Azuma, K., Higashio, H. Potential of near infrared spectroscopy for nondestructive estimation of soluble solids in watermelons. Acta Horticulture.2002, ISHS 588.
    [96]Tsuta, M., Sugiyama, J., Sagara, Y. Near infrared imaging spectroscopy based on sugar absorption band for melons. Journal of Agricultural and Food Chemistry.2002,50(1):48-52.
    [97]Abebe, A.T. Total sugar and maturity evaluation of intact watermelon using near infrared spectroscopy. Journal of Near Infrared Spectroscopy.2006,14(1):67-70.
    [98]Choudhary, R., Bowser, T.J., Weckler, P., Manessb, N.O., McGlynn, W. Rapid estimation of lycopene concentration in watermelon and tomato puree by fiber optic visible reflectance spectroscopy. Postharvest Biology and Technology. 2009,52(1):103-109.
    [99]Tao, X.M., Bao, Y.D. Measurement of sugar content of watermelon using near-infrared reflectance spectroscopy in comparison with dielectric property. In:Fourth International Conference on Photonics and Imaging Biology and Medicine,2006, vol.6047, pp.1-7.
    [100]田海清,应义斌,陆辉山,徐惠荣,谢丽娟,傅霞萍,于海燕.可见/近红外光谱漫透射技术检测西瓜坚实度的研究.光谱学与光谱分析.2007,27(6):1113-1117.
    [101]田海清,应义斌,徐惠荣,陆辉山,傅霞萍.西瓜可溶性固形物含量近红外透射检测技术.农业机械学报.2007,38(5):111-113.
    [102]田海清.西瓜品质可见/近红外光谱无损检测技术研究[博士论文].杭州:浙江大学.2006.
    [103]张帆,王倩,马智宏,许勇,何洪巨.西瓜可溶性糖和纤维素含量的近红外光谱测定.食品科学.2007,28(1):258-261.
    [104]袁琳,徐怀德,李钰金.近红外漫反射光谱检测网纹瓜可溶性固形物含量的研究.中国食品学报.2010,10(4):272-277.
    [105]蒋圣楠,韩东海,孙明.基于可见/近红外光谱分析技术的小型西瓜生长期的判别研究.中国农业工程学会2011年学术年会论文集,重庆,2011.
    [106]赵洪卫,宋曙辉,常冬,韩东海.小型西瓜果实生长过程中无损检测基础信息的研究.食品安全质量检测学报.2011,02(6):273-279.
    [107]陈颖锐,戚淑叶,周恩洋,韩东海.基于小型西瓜的两种便携式近红外分析仪对比研究.食品安全质量检测学报.2012,3(5):453-456.
    [108]李永玉,赵洪卫,常冬,韩东海.小型西瓜果实成熟度的无损定性判别.光谱学与光谱分析.2012,32(6):1526-1530.
    [109]王硕,袁洪福,宋春风,谢锦春,李效玉,冯乐平.小西瓜糖度表征与漫反射近红外检测方法的研究.光谱学与光谱分析.2012,32(8):2122-2125.
    [110]田海清,王春光,张海军,郁志宏,李建康.蜜瓜品质光谱检测中异常建模样品的综合评判.光谱学与光谱分析.2012,32(11):2987-2991.
    [111]Kawano, S. Present condition of nondestructive quality evaluation of fruits and vegetables in Japan. Japan AgriculturaResearch Quarterly.1994,28,212-216.
    [112]http://www.shibuya-sss.co.jp/
    [113]http://www.makiss.co.jp
    [114]Noh, S.H., Chio, K.H. Nondestructive quality evaluation technologies for fruits and vegetables. APC for Agricultural Engineering and Machinery.2005,99-114.
    [115]http://www.sacmi.com/Default.aspx?ln=en-US
    [116]陆婉珍,袁洪福,徐广通.现代近红外光谱分析技术.北京:中国石化出版社.2007(第二版).
    [117]严衍禄,赵龙莲,韩东海,杨曙明.近红外光谱分析基础与应用.北京:中国轻工业出版社.2005.
    [118]苏佳.近红外的光学特性及在食品中的检测原理和应用.山西食品工业.2005,4:39-40,42.
    [119]Stark, E., Lutcher, K. Near-Infrared Analysis:A Technology for qualitative and quantitative analysis. Applied Spectroscopy Review.1986,22(4):335-339.
    [120]陆婉珍.现代近红外分析技术.北京:中国石化出版社.2006.
    [121]段民孝,邢锦丰,郭景伦,王元东,赵久然.近红外光谱分析技术及其在农业中的应用.北京农业科学.2002,1:11-14.
    [122]陆婉珍,袁洪福,徐广通,等.现代近红外光谱分析技术.北京:中国石油化工出版社.2000.
    [123]冯新沪,史永刚.近红外光谱及其在石油产品分析中的应用.北京:中国石油化工出版社.2002.
    [124]孙文伟.近红外光谱分析仪器的应用与发展.仪器评价.2002,(5):25-28.
    [125]刘燕德,孙旭东,陈兴苗.近红外漫反射光谱检测梨内部指标可溶性固形物的研究.光谱学与光谱分析.2008,28(4):797-800.
    [126]徐广通,袁烘福,陆婉珍.现代近红外光谱技术及应用进展.光谱学与光谱分析.2000,20(2):134-142.
    [127]褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展.2004,16(4):528-542.
    [128]Savitzky, A., Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry.1964,36(8):1627-1639.
    [129]Helland, I.S., Naes, T., Isaksson, T. Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data. Chemometrics and Intelligent Laboratory Systems.1995,29(2):233-241.
    [130]Isaksson, T., Naes, T. The effect of Multiplicative Scatter Correction (MSC) and linearity improvement in NIR spectroscopy. Applied Spectroscopy.1988,42(7):1273-1284.
    [131]尼珍,胡昌勤,冯芳.近红外光谱分析中光谱预处理方法的作用及其发展.药物分析杂志.2008,28(5):824-829.
    [132]梁逸曾,俞汝勤.分析化学手册化学计量学.北京:化工出版社.2001.
    [133]Xie, L.J., Ying, Y.B., Ying, T.J. Rapid determination of ethylene content in tomatoes using visible and short-wave near-infrared spectroscopy and wavelength selection. Chemometrics and Intelligent Laboratory Systems.2009,97(2): 141-145.
    [134]Cai, W.S., Li, Y.K., Shao, X.G. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems.2008,90(2); 188-194.
    [135]Blanco, M., Coello, J., Iturriaga, H., Maspoch, S., Pages, J. NIR calibration in non-linear systems:different PLS approaches and artificial neural networks. Chemometrics and Intelligent Laboratory Systems.2000,50(1):75-82.
    [136]Chen, H., Pan, T., Chen, J., Lu, Q. Waveband selection for NIR spectroscopy analysis of soil organic matter based on SG smoothing and MWPLS methods. Chemometrics and Intelligent Laboratory Systems.2011,107(1):139-146.
    [137]Swierenga, H., Wulfert, F., de Noord, O.E., de Weijer, A.P., Smilde, A.K., Buydens, L.M.C. Development of robust calibration models in near infra-red spectrometric applications. Analytica Chimica Acta.2000,411(1-2):121-135.
    [138]Leardi, R. Application of genetic algorithm-PLS for feature selection in spectral data sets. Journal of Chemometrics. 2000,14(5-6):643-655.
    [139]Araujo, M.C.U., Saldanha, T.C.B., Galvao, R.K.H., Yoneyama, T., Chame, H.C., Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems.2001,57(2):65-73.
    [140]Leardi, R., Lupianez Gonzalez, A. Genetic algorithms applied to feature selection in PLS regression:how and when to use them. Chemometrics and Intelligent Laboratory Systems.1998,41(2):195-207.
    [141]Niazi, A., Leardi, R. Genetic algorithms in chemometrics. Journal of Chemometrics.2012,26(6):345-351.
    [142]郝勇,孙旭东,潘圆媛,高荣杰,刘燕德.蒙特卡罗无信息变量消除方法用于近红外光谱预测果品硬度和表面色泽的研究.光谱学与光谱分析.2011,31(5):1225-1229.
    [143]Xu, H., Liu, Z.C., Cai, W.S., Shao, X.G. A wavelength selection method based on randomization test for near-infrared spectral analysis. Chemometrics and Intelligent Laboratory Systems.2009,97(2):189-193.
    [144]郝勇,孙旭东,杨强.变量筛选方法结合局部线性嵌入理论用于近红外光谱定量模型优化.光谱学与光谱分析.2012,32(12):3208-3212.
    [145]Xu, Q.S., Liang, Y.Z., Du, Y.P. Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration. Journal of Chemometrics.2004,18(2):112-120.
    [146]Feldick, A., Modest, M.F. An improved wavelength selection scheme for Monte Carlo solvers applied to hypersonic plasmas. Journal of Quantitative Spectroscopy and Radiative Transfer.2011,112(8):1394-1401.
    [147]Soares, S.F.C., Gomes, A.A., Araujo, M.C.U., Filho, A.R.G., Galvao, R.K.H. The successive projections algorithm. TrAC Trends in Analytical Chemistry.2013,42:84-98.
    [148]孙旭东,郝勇,蔡丽君,刘燕德.基于抽取和连续投影算法的可见近红外光谱变量筛选.光谱学与光谱分析. 2011,31(9):2399-2402.
    [149]陈斌,孟祥龙,王豪.连续投影算法在近红外光谱校正模型优化中的应用.分析测试学报.2007,26(1):66-69.
    [150]Haaland, D.M., Thomas, E.V. Partial least-squares methods for spectral analyses.1. Relation to other quantitative calibration methods and the extraction of qualitative information. Analytical Chemistry.1988,60(11):1193-1202.
    [151]李民赞,韩东海,王秀.光谱分析技术及其应用.北京:科学出版社.2006.
    [152]傅霞萍.水果内部品质可见/近红外光谱无损检测方法的实验研究[博士论文].杭州:浙江大学.2008.
    [153]Vapnik. The nature of statistical learning theory. New York:Springer-Verlag.1995.
    [154]邓乃扬,田英杰.数据挖掘的新方法-支持向量机.北京:科学出版社.2004.
    [155]李国正,王猛,曾华军.支持向量机导论.北京:电子工业出版社.2004.
    [156]边祺,张学工.模式识别.北京:清华大学出版社.2004.
    [157]周涛,张艳宁.基于改进粒子群算法的支持向量机.计算机工程与应用.2007,43(15):44-46.
    [158]Zheng C.H., Jiao L. Automatic parameters selection for SVM based on GA. In:Proceedings of the the 5th World Congress on Intelligent Control and Automation. Piscataway. NJ:IEEE Press,2004:1869-1872.
    [159]Chen, Y., Xie, M.Y., Yah, Y., Zhu, S.B., Niu, S.P., Li, C., Wang, Y.X., Gong, X.E. Discrimination of Gtmoderma lucidum according to geographical origin with rlgar infrared diffuse reflectance spectroscopy and pattern recognitiontechniques. Analytica Chimica Acta.2008,618(2):121-130.
    [160]Wu, W., Mallet, Y., Walczak, B., Penninckx, W., Massart, D. L., Heuerding, S., Emi, F. Comparison of regularized discriminant analysis linear discriminant analysis and quadratic discriminant analysis applied to NIR data.1996, Analytica Chimica Acta.329(3):257-265.
    [161]王徽蓉,李卫军,刘扬阳,陈新亮,来疆亮.基于遗传算法与线性鉴别的近红外光谱玉米品种鉴别研究.光谱学与光谱分析.2011,31(3):669-672.
    [162]许禄,邵学广.化学计量学.北京:科学出版社.2004.第二版.
    [163]Cozzolino, D., Kwiatkowski, M., Waters, E., Gishen, M. A feasibility study on the use of visible and short wavelengths in the near-infrared region for the non-destructive measurement of wine composition. Analytical and Bioanalytical Chemistry.2007,387(6):2289-2295.
    [164]赵小兰.光斑光强渐变测量通信光纤数值孔径.红外与激光工程.2006,35(增刊2):132-134.
    [165]Elmstorm, G.W., Davies, P.L., Munroe, K.A. Sugars in maturing fruit of watermelon cultivars. HorScience.1980,15: 227-228.
    [166]张帆,宫国义,王倩,何洪巨,许勇.西瓜品质构成分析.果树学报.2006,23(2):266-269.
    [167]Greensill, C.V. Non-invasive assessment of fruit quality by near-infrared spectroscopy for fruit grading in an in-line setting [Degree of Doctor of Philosophy]. Central Queensland University.2000.
    [168]Maynard, D.N., Hopkins, D.L. Watermelon fruit disorders. HoriTechnology.1999,9(2) 155-161.
    [169]Noh, H.K., Lu, R.F. In Hyperspectral reflectance and fluorescence for assessing apple quality. In:ASAE Annual International Meeting 053069, Tampa, Florida, USA,2005.
    [170]Jie, D. F., Xie, L. J., Fu, X. P., Rao, X. Q., Ying, Y. B. Variable selection for partial least squares analysis of soluble solids content in watermelon using near-infrared diffuse transmission technique. Joural of. Food Engineering.2013, 118(4):387-392.
    [171]Abebe, A.T. Total sugar and maturity evaluation of intact watermelon using near infrared spectroscopy. Journal of Near Infrared spectroscopy.2006,14(1):67-70.
    [172]Aoki, H., Kouno, Y., Matumoto, K., Mizuno, T., Maeda, H. Nondestructive determination of sugar content in melon and watermelon using near infrared (NIR) transmittance. In:Vijiaysegaran, S., Pauziah, M., Mohamed, M.S., Ahmad, S. (Eds.), International Conference on Tropical Fruits. Malaysia Agricultural Research and Development Institute.1996, Kuala Lumpur, Malaysia, pp.207-218.
    [173]Maruo, T., Ito, T., Terashima, A., Maeda, K., Shimamura, S.2. Nondestructive evaluation of ripeness and soluble solids content in melon and watermelon fruits using laser. In:Nishimura, S., Ezura, H., Matsuda, T., Tazuke, A. (Eds.), Ⅱ International Symposium on Cucurbits. International Society for Horticultural Science Acta Horticulturae.2002, Tsukuba, Japan, pp.373-376.
    [174]Birth, G.S. A nondestructive technique for detecting internal discolorations in potatoes. American Journal of Potato Research.1960,87(2):53-60.
    [175]Fukuda, H., Kubota, T. Nondestructive measurement of chlorophyll, watercore, and internal browning disorders in apple fruits by light transmission. Bulletin offthe Fruit Tree Research Station.1979,6(225):27-34.
    [176]Upchurch, B.L., Throop, J.A., Aneshansley, D.J. Detecting internal breakdown in apples using interactance measurements. Postharvest Biology and Technology.1997,10(1):15-19.
    [177]Tian, H.Q., Ying, Y.B., Lu, H.S., Xu, H.R., Xie, L.J. Study on classification of ethylene treated and Non-ethylene treated watermelons by visble-near infrared spectroscopy. Spectroscopy and Spectral Analysis.2009,29(4):940-944.
    [178]Wanitchang, J., Terdwongworakul, A., Wanitchang, P., Noypitak, S. Maturity sorting index of dragon fruit:hylocereus polyrhizus. Journal of Food Engineering.2010,100(3):409-416.
    [179]Seo, Y.W., Noh, S.H., Lee, K.J. In Nondestructive detection of the internal defects of Fuji apple using VIS/NIR transmittance spectroscopy. In:ASABE Annual International Meeting 066121, Oregon Convention Center Portland, Oregon,2006.
    [180]Ferrer, A., Rem6n, S., Negueruela, A.I., Oria, R. Changes during the ripening of the very late season Spanish peach cultivar Calanda:feasibility of using CIELAB coordinates as maturity indices. Scientia Horticulturae.2005,105(4): 435-446.
    [181]Golic, M., Walsh, K.., Lawson, P. Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature. Applied Spectroscopy.2003,57(2):139-145.
    [182]http://www.esat.kuleuven.ac.be/sista/lssvmlab/
    [183]Baldwin, E.A., Paull, R.E. Biochemistry of fruit ripening. In:Seymour, G.B., Taylor, J.E., Tucker, G.A. (Eds.), Chapman & Hall, London,1993, pp.107-149,291-323.
    [184]Birth, G.S., Dull, G.G., Magee, J.B., Chan, H.T., Cavaletto, C.G. An optical method for estimating papaya maturity [Carica papaya, transmittance spectroscopy. Journal American Society for Horticultural Science.1984,109(1):62-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700