用户名: 密码: 验证码:
咸淡水过渡带水敏感性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在大沽河下游自然地理、地质、水文地质条件调查的基础上,结合样品(砂样、水样和粘土矿物)的采集、处理以及物理组成与化学性质分析,通过室内批量和柱状试验,研究了咸淡水过渡带的水敏感性及其应用。
     首先,研究了盐度突变和渐变过程中含水介质的渗透性变化和不同粘土矿物(高岭土、蒙脱石)对含水介质渗透性的影响,并结合粘土矿物在盐度突变过程中物理形态和化学性质的变化情况,应用胶体化学和界面化学理论对咸淡水过渡带水敏感性的机理进行了探讨。然后,深入分析了咸淡水过渡带水敏感性的影响因素,包括临界流速、临界盐浓度、临界盐浓度递减率、临界离子强度和pH值等。此外,针对水敏感性发生过程中大量微粒释放、迁移的现象,首次对水敏感性影响下重金属污染物和有机污染物去除的可行性进行了研究。最后,结合大沽河下游地下咸水体修复的工程实例,充分考虑咸淡水界面含水层的水敏感性,应用地下水模拟软件(Visual-MODFLOW Pro 3.1)对咸水恢复方案进行了数值分析。
     淡水与海水驱替试验表明:盐度突变会导致含水介质发生明显的水敏感性,表现为渗透性快速、剧烈地降低,渗透系数下降达80.9%,而盐度渐变过程中(海水、50%海水和50%地下淡水、10%海水和90%地下淡水、5%海水和95%地下淡水、地下淡水依次驱替),渗透性的降低缓慢且不明显,渗透系数下降仅为36%。粘土矿物对水敏感性的影响试验表明:盐度突变过程中,当高岭土含量从1.5%增加到12%时,砂柱的渗透系数由0.81m/d下降到0.39m/d,而蒙脱石含量为3%~4%时,砂柱渗透系数便下降到10-8~0cm/s;电镜扫描结果显示,高岭土矿物大都互相离散,并松散堆积在一起,在砂柱中多附着在孔隙壁上,或作为粒间的填充物;而蒙脱石则在晶体膨胀和絮凝作用下形成了体积很大的胶团,这些大胶团随水流的迁移能力弱,大都阻塞在孔隙中,使得含水介质渗透系数呈现对数级下降。
     含水介质微粒释放试验表明:淡水和海水流速分别超过90m/d和55m/d时,水流剪切应力也会导致微粒释放,但释放量非常有限;NaCl溶液引起微粒释放的临界盐浓度为0.06±0.005mol/L,临界盐浓度递减率为0.012 mol/L;Ca2+的存在对微粒释放过程具有很强的抑制作用,溶液中Ca2+摩尔百分数为5%和10%时,引起微粒释放的临界离子强度分别为0.02mol/L与0.007mol/L,远低于NaCl溶液的临界盐浓度;pH值对微粒释放影响明显,酸性条件下微粒释放时间短,释放累积量少,碱性条件下,微粒释放时间长,微粒释放累积量大。
     微粒释放去除污染物试验表明:含水介质中的重金属污染物(二价汞离子)和有机污染物(苯酚),在水流淋洗和释放微粒携带作用下,分别有89.77%和85.71%和污染物迁移出砂柱,其中,因微粒释放而去除的污染物分别占59.5%和30.0 %。
     地下咸水恢复抽水方案的数值分析表明:考虑含水层水敏感性情况下,抽水方案对地下咸水体的去除效率大大提高,治理时间缩短了1/3,残留低浓度咸水面积减少了81.3%,总抽水量减少20.9%。
Basing on the investigations of the natural geography, geology and hydrogeology conditions downstream the Dagu River, combining with the collecting, processing, chemical composition and physical properties analyzing of the samples( sand sample, water sample and clay mineral), the water sensitivity of the seawater-freshwater transition zone and its applications are studied by laboratory batch and column experiments in this paper.
     At first, the variation of the permeability for the aquifer’s media during abrupt and gradual salinity decrease processes is studied. At the same time, with the changes of clay minerals’physical forms and chemical properties during abrupt salinity decrease, the mechanism that different clay minerals (kaolin and smectite) have different influences on the permeability of porous media in salinity decrease process is explored and explained according to colloid and surface chemistry theories. Then, the impacting factors on the water sensitivity, such as critical fluid velocity ,critical salt concentration, critical ratio of salinity decrease, critical ionic strength and pH etc. are analyzed deeply. In addition, for first time, a feasibility study on heavy metal and organic pollutants’removal by the process of particle release and transfer is researched. Finally, combining with the engineer example of saline water resumption downstream the Dagu River, under the consideration of water sensitivity, the resumption scheme (pumping scheme) is simulated by the groundwater simulation soft-Visual-MODFLOW 3.1.
     The replacing experiments of freshwater and seawater indicate that abrupt salinity decrease will result in obvious water sensitivity in the aquifer media with the permeability’s rapidly and drastically decline and hydraulic conductivity decreased by 80.9%.But, in the gradual salinity(seawater ,50% seawater and 50% groundwater, 10% seawater and 90% groundwater, 5% seawater and 95% groundwater, and groundwater replacing in turn) decrease experiments, the permeability declines slowly and the hydraulic conductivity only decreases by 36%.
     Clay minerals’influence experiments on water sensitivity indicate that, during abrupt salinity process,the hydraulic conductivity of the sand column decreases from 0.81 m/d to 0.39 m/d when the weight content of kaolin increases from 1.5% to 12%, and the hydraulic conductivity decreases from 10-8cm/s to 0cm/s when the weight content of smectite increases from 3% to 4%. Photos scanning by electron microscopy show that most of the kaolin minerals are in a decentralized state and stack loosely together which attach to the pore wall or as the filling in the sand pores, but for the smectite minerals, crystal swelling and flocculation effects result in the form of a large amount of the micelle, which mostly block in the pores and bring about the hydraulic conductivity decrease by logarithmic grade.
     Particle release experiments show that the fluid shear stress can lead to the occurring of release phenomenon when the fluid velocity of seawater and freshwater is over 90m/d and 55m/d respectively, and there are only few particles released. For the NaCl solution, its critical salt concentration which can cause particle release is 0.06±0.005mol/L, and the critical ratio of salinity decrease is 0.012 mol/L. Ca2+ has a strong restraining effect on particle release process, for mixed solution of NaCl and CaCl2, the critical ionic strengths which lead to particle release decline to 0.02mol/L and 0.007mol/L when Ca2+ molar percentages are 5% and 10% respectively, which is far below the critical concentration of NaCl solution. Tests also indicate that the pH has significant impact on particle release and the release time and particle quantity is far less at acidic condition than alkaline one.
     Pollutant removal by the particle release experiments show that there are 89.77% of heavy metal pollutant (divalent mercury ion)and 85.71% of organic pollutant (phenol) move out of the sand columns under the effects of water leaching and particulate releasing, where there are 59.5% and 30.0 % pollutants remove due to particle release respectively.
     Numerical simulation results of the resuming schemes (pumping schemes) for underground saline water indicate that, under consideration of water sensitivity of the aquifer, the efficiency of the pumping resume scheme will be improved greatly, and the resuming time shorts by 1/3, the area of residual low concentration seawater body decreases by 81.3% and the total pumping quantity reduces by 20.9%.
引文
[1]吕贤弼.滨海含水层的海咸水入侵研究.北京:清华大学出版社,1989,77
    [2]王秉忱.海咸水入侵与地下水资源管理问题的国内外研究现状.北京:电子科技大学出版社,1995
    [3]刘青勇,董广清,耿树德.淡水帷幕防治海咸水入侵的数值模拟研究[J]地下水,1996, 18(3):556~562.
    [4]袁益让,梁栋,芮洪兴.海咸水入侵及防治工程的后效预测[J].应用数学和力学,2001, 22(11):1163~1171.
    [5]林国庆郑西来李海明.地下水库人工补给的模型研究.中国海洋大学学报自然版, 2005, 35(5):745-750.
    [6] Custodio, E. and G. A. Bruggeman, Groundwater problems in coastal areas, Study and Rep. In Hydro. Vol. 35. Paris:UNSCO. 1987, 650.
    [7]王秉忱等.中国城市地质.北京:中国地质出版社,2005,71-95.
    [8]陈鸿汉等.沿海地区地下水环境系统动力学方法研究.北京:地质出版社,2002, 20-41.
    [9]潘懋,李铁锋等.灾害地质学.北京:北京大学出版社,2002,249-253.
    [10]李国敏,陈崇希.海咸水入侵研究现状与展望.地学前缘, 1996,3(1):161-168.
    [11]杨丽原,张祖陆,刘恩峰.滨海平原咸水入侵灾害动态监测及综合减灾对策研究.中国人口资源与环境, 2001,11(4):106-109.
    [12]马凤山,蔡祖煌,宋维华.海咸水入侵机理及其防治措施.中国地质灾害与防治学报,1997
    [13]韩志勇,郑西来,林国庆.大沽河下游地下咸水修复方案的数值分析.工程勘察,2004,24(6):25-27.
    [14]王秉忱,邱汉学.内蒙古腰坝地区地下水咸化机理及防治对策. 31届国际地质大会论文集.北京:地质出版社,2001.
    [15]尹泽生,林文盘,扬晓军.海水入侵研究的现状与问题.地理研究,1991,10(3):78-85
    [16]康毅力,罗平亚.粘土矿物对砂岩储存损害的影响-回顾与展望.钻井液与完井液, 2000, 17(5):36-39.
    [17] Huyakorn P S,Anderson P F,Mercer J W, et al.Saltwater intrusion in aquifers:development and testing of a three dimensional finite element model.Water Resources Research,1987, 23(2):293~312.
    [18]李国敏,陈崇希.涠洲岛海咸水入侵模拟[J].水文地质工程地质,1995(5):1~6.
    [19] J.贝尔著(Bear, J., 1972),李竞生,陈崇希译.多孔介质流体动力学.北京:中国建筑工业出版社,1987, p629.
    [20] H·范·奥尔芬,许冀泉译.粘土胶体化学导论.北京:农业出版社,1982.1.
    [21]薛禹群,吴吉春,谢春红等.莱州湾沿岸海水入侵与咸水入侵研究.科学通报,1997,42(22):2360-2368.
    [22]陈鸿汉,王新民,张永祥,等.潍河下游地区海咸水入侵动态系统分析.地理科学,1996,16(3):224-231.
    [23] Hardy, M. Influence of geogenesis and pedogenesis on clay mineral distribution in northern Vietnam soils. Soil Sci. 1993, 156: 336–345.
    [24] Khilar K.C. and H.S.Fogler. Water Sensitivity of Berea Sandstone. Ph.D. dissertation, University of Michigan, Ann Arbor. USA. 1981,MI, 112
    [25] Khilar.K.C.et.al. Sandstone Water Sensitivity: Existence of A Critical Rate of Salinity Decrease for Particle Capture. Chemical Engineering Science. 1983,5:789-800.
    [26] Khilar K.C. and H.C.Fogler. Migration of Fines in Porous Media. Boston: Kluwer Academic Publication, 1998.
    [27] De Wiest, R. J. M. Geohydrology, John Wiley, New York, 1965.
    [28] Gomis-Yagues V, boluda-Botella N, Ruiz-Bevia F. Gypusum precipitation/dissolution as an explanation of the decrease of sulphate concentration during seawater intrusion. Journal of Hydrology, 2000,228(1): 48-55.
    [29] Kamei, G., C. Oda, S. Mitsui, M. Shibata, and T. Shinozaki. Fe(II)-Na ion exchange at interlayers of smectite: Adsorption- desorption experiments and a natural analogue. Eng. Geol. 1999, 54: 15–20.
    [30]张绍槐等.储层损害的机理研究.石油学报. 1994年第15卷第4期.
    [31]樊世忠等.钻井液完井液及保护油气层技术.北京:石油大学出版社,1996.
    [32] Brinkman, R. Ferrolysis: A hydromophic soil forming process. Geoderma 1970, 10:199–206.
    [33] Mungan N., J. Petrol. Tech. 1965, 17:1449.
    [34] Sumner, M.E. Sodic soils: New perspectives. Aust. J. Soil Res. 1993, 31:683–750.
    [35] Qadir M., R.H. Qureshi, and N. Ahmad N. Horizontal flushing: A promising ameliorative technology for hard saline-sodic and sodic soils, Soil Tillage Res. 1998, 45:119–131.
    [36] McBride, M.B. Environmental chemistry of soils. Oxford University Press, New York. 1994.
    [37]樊世忠等.钻井液完井液及保护油气层技术.北京:石油大学出版社,1996.
    [38] Brinkman, R. Ferrolysis: A hydromophic soil forming process. Geoderma 1970, 10:199–206.
    [39] Mungan N., J. Petrol. Tech. 1965, 17:1449.
    [40] O’Neill, M.E. A sphere in contact with a plane wall in a slow linear shear flow, Chem. Eng. Sci., 1968, 23, 1293–1298.
    [41] Sharma, M.M. Transport of Particulate Suspensions in Porous Media. Ph.D. Thesis, University of South California, USA. 1985.
    [42] Fabrice C. and Gilles P. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity. Journal of Contam. Hydrology. 49(2001), 1-21.
    [43] Goldenberg L.C. and Magaritz. Decrease of Hydraulic Conductivity in sand at the Interface between seawater and dilute clay suspendions. Journal of hydrology. 1985,78:183-199.
    [44] Goldenberg L.C. and Magaritz. Experimental Investigation on Irreversible Changes of Hydraulic Conductivity on the Seawater-freshwater Interface in Coastal Aaquifers. Water Resources Research.1983, 19(1): 77-85.
    [45] Goldenberg L.C. and Magaritz. Changes in hydraulic conductivity of lab sand-clay mixtures caused by a seawater-freshwater interface. Journal of Hydrology. 1984,70:283-297
    [46] Mehnert E. and A.A. Jennings. The Effect of Salinity-dependent Hydraulic Conductivity on Seawater Intrusion. Journal of Hydrology. 1995, 80:329-336.
    [47] Monoghan and Hewitt C H. Analytical techniques for recognizing water sensitive reservoir rocks. J of Petroleum Tech., 1963, 8.
    [48] Land C S and Baptist O C. Effect of hydration of montmorillonite on the permeability to gas of water-sensitive reservoir rocks. J of Petroleum Tech. 1965, 11
    [49] Khilar K C, H S Fogler. The existence of a critical salt concentration for particle release.Journal of Colloid and Interface Science ,1984, 101(1):214-224.
    [50]郑西来,钱会,多孔介质中弥散度测定.西安工程学院学报. 1998(4):51-56
    [51]郑西来、李永乐、林国庆.土壤对可溶性油的吸附作用及其影响因素分析.地球科学. 2003(5):563-567
    [52] Zheng Xilai, Bingchen Wang, Yuying Li. Degradation kinetics of petroleum contaminants in soil-water systems. Geologica Sinica. 2004 (3):825-828.
    [53] Frenkel,H.,J.O.Goertzen,and J.D.Rjoades. Effects of soil type and content,exchangeablesodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Science Society of America Journal 1978,42:32-39
    [54]肖振华,万洪富等.灌溉水质对土壤水力性质和物理性质的影响.土壤学报. 1998,35(3): 359-366
    [55] Baghdikian, S.Y., Sharma, M.M., Handy, L.L. Flow of clay suspensions through porous media. Soc.Petrol. Eng., Reservoir Eng. 1989, 213–220, May.
    [56] Khilar K.C. and H.S.Fogler. Water Sensitivity in Sandstones,SPE J,1983,23(1):55-64.
    [57] Mukvl M Sharma, Habib Chamoun, Sita Rama Sarma D S H etc. Factors controlling the hydrodynamic detachment of particles from surfaces . Journal of colloid and interface science, 1992,149 (1), 1021-1033
    [58] Abu-Sharar, T.M. Stability of soil aggregates as inferred from optical transmission of soil suspensions. Soil Sci. Soc. Am. J. 1988, 52:951–954
    [59] Arora, H.S., and N.T. Coleman. The influence of electrolyte concentration on flocculation of clay suspensions. Soil Sci. 1979, 127: 134–139 Boivin, P., F. Favre, C. Hammecker, J.L. Maeght, J. Delarivie` re, J.C. Poussin, and M.C.S.
    [60] Wopereis. Processes driving soil solution chemistry in a flooded rice-cropped vertisol: Analysis of long-time monitoring data. Geoderma 2002, 110:87–107
    [61] Brinkman, R. Ferrolysis: A hydromophic soil forming process. Geoderma 1970, 10:199–206.
    [62] Brinkman, R. Problem hydromorphic soils in north-east Thai- land. Physical and chemical aspects, mineralogy and genesis. Neth. J. Agric. Sci. 1977, 25:170–181
    [63] Herny, H. R., Effects of dispersion on saltwater encroachment in coastal aquifers. U.S. Geol. Survey, Water Supply Paper, 1964, 613
    [64] Chartres, C.J. Sodic soils: An introduction to their formation and distribution in Australia. Aust. J. Soil Res. 1993, 31:751–760
    [65] Shainberg, I., J.D.Rhoades, and R.J.Prather. Effect of low lectrolyte concentration on clay dispersion and hydraulic conductivity of a sodic soil. Soil Science Society of America Journal,1981, 45, 273-277
    [66] Abu-Sharar, T.M. Stability of soil aggregates as inferred from optical transmission of soil suspensions. Soil Sci. Soc. Am. J. 1988, 52:951–954
    [67] Shainberg,I.,J.D.Rhoades,and R.J.Prather. Effect of low lectrolyte concentration on claydispersion and hydraulic conductivity of a sodic soil. Soil Science Society of America Journal,1981, 45, 273-277.
    [68] Conway, Michael W. (Stim-Lab Inc);Himes, Ron E.; Gray, Russell . Proceedings - SPE International Symposium on Formation Damage Control, 2000, 381-388.
    [69] Gregory, J. Fundamentals of flocculation, Critical Reviews in Environmental Control, 1989, 19 (3): 185–230.
    [70] Hertzig, J.P., Leclerc, D.M., Le Goff, P. Flow of suspensions through porous media -Application to deep filtration, Ind. And Eng. Chem., 1970, 62 (5): 129–157.
    [71] Ceuppens, J., and M.C.S. Wopereis. Impact of non-drained irrigated rice cropping on soil salinization in the Senegal River Delta. Geoderma 1999, 92:125–140.
    [72] McNeal, B.L.et al. Effect of solution composition on the swelling of extracted soil clays. Soil Science Society of America Journal 1966,111:214-219.
    [73] Saiers and Hornberger. The Influence of Ionic Strength on the Facilitated Transport of Cesium by Kaolinite colloids. Water Resourses Research. 1999,35(6):1713-1727.
    [74] Jones, F. O., Jr., 1964. Influence of chemical composition of water on clay blocking of permeability. J. Pet. Technol., (Ap.): 441.
    [75] Quirk, J.P. and Schofield, R. K., the effect of electrolyte concentration on soil permeability. J. Soil Sci., 6(2):163.
    [76] Kia S F,Fogler H S,Reed M G. Effects of pH on colloidally induced fines migration. JColloid Int Sci 1987,118(1):158-168.
    [77] Rowel D L, Payne D, Ahmed H. The effects of the concentration and movement of solutions on the swelling and dispersion.J. Soil Sci. 1969,20(1):176-188.
    [78] Hardcastle J H, Mitchel J K. Electrolyte concentration permeability relationships in sodium–illite silt mixtures. Clays Clay Minerals, 1974,22:143.
    [79] Kolakowski J E, Matijevic E. Particle adhesion and removal in model systems,Part 1-Monodispersed chromium hydroxide on glass. J. Chem. Soc. Faraday Trans, 1979,I 75(8): 65-78.
    [80] Pupisky H, Shainberg I. Salt Effects on the Hydraulic Conductivity of a Sandy Soil. Soil Science Society of America Journal 43,429-433.
    [81] Ryan, Gschwend. Effects of ionic and flow rate on colloidal release: relating kinetics tointerface potential energy, Colloid Interface Sci. 1994,164:21-34.
    [82] Kia S F,H S Fogler,M G Reed. Effects of salt composition on clay release in Berea sandstone,SPE Production Engin.,1987B:277-283.
    [83] O’Neill, M.E. A sphere in contact with a plane wall in a slow linear shear flow, Chem. Eng. Sci., 1968, 23, 1293–1298.
    [84] Cleaver J W, B Yates. Machanism of detachment of colloidal particles from a flat substrates in a turbulent flow. J.Colloid interface Sci.,1973,44(3):464-474.
    [85] Das S K,R S Schether ,M M Sharma, The role of surface roughness and contact deformation on the hydrodymnamic detachment of particles from surface, J. colloid Interface Sci,1994,164:63-77.
    [86] Arulanadan K,E Gillogley ,R Tulley. Development of quantitative methods to predic critical shear and rate of erosion of natural undisturbed cohesive soils. Technical Report GL-80-5, USCOE Waterways,Exp.Stn., Vickshurg ,Miss,1980.
    [87] Gruesbeck C, R E Collins. Entrainment and deposition of fine particles in porous media. Soc.Pet.Engin.J.,1982:847-856.
    [88] César M, Cerda. Mobilization of kaolinite fines in porous media. Colloid Surfaces, 1987,27:219-241.
    [89] Chang, F.F., Civan, F. Practical model for chemically induced formation damage, J. Petroleum Science and Engineering, 1997, 17: 123–127.
    [90] Civan, F. A multi-purpose formation damage model, Paper SPE 31101, In: Proceedings of the SPE International Symposium on Formation Damage Control, Lafayette LA, USA, 1996, pp. 311–326.
    [91] Civan, F. Interactions of horizontal wellbore hydraulics and formation damage, Paper SPE 35213, In: Proceedings of the SPE Permian Basin Oil and Gas Recovery Conference, Midland TX, USA, 1996, March 27–29, pp. 561–569.
    [92] Donaldson, E.R., Baker, B.A., Particle transport in sandstones, SPE Paper 6905, In: 52nd Annual Fall Technical Conference and Exhibition of the SPE of AIME, Denver CO, USA, 1977, Oct. 9–12.
    [93] Eleri, O.O., Ursin, J.R. Physical aspects of formation damage in linear flooding experiments, Paper SPE 23784 In: Proceedings of the SPE International Symposium on Formation DamageControl, Lafayette LA, USA, 1992, Feb. 26–27, pp. 293–312.
    [94] Eylander, J.G.R. Suspended solids specifications for water injection from coreflood tests. SPE Reservoir Engineering, 1988, 1287–1300.
    [95] Gabriel, G.A., Inamdar, G.R. An experimental investigation of fines migration in porous media, SPE 12168, In: 58th SPE annual meeting, San Francisco CA, USA. 1983.
    [96] Hiemenz, P.C., Rajagopalan, R. Principles of Colloid and Surface Chemistry. Marcel Dekker, New York, 1997, 650 pp.
    [97] Litton, G.M., Olson, T.M. Colloid deposition rates on silica bed media and artifacts related to collector surface preparation methods. J. Environ. Sci. Technol. 1993, 27(1): 185–193.
    [98] Matlack, K.S., Houseknecht, D.W., Applin, K.R. Emplacement of clay into sand by infiltration. J. Sediment. Petrol. 1989, 59(1): 77–87.
    [99] Ryan, J.N., Elimelech, M. Colloid mobilization and transport in groundwater. Colloids Surf. A 1996, 107, 1–56.
    [100] Saiers, J.E., Hornberger, G.M., Harvey, C. Colloidal silica transport through structured, heterogeneous porous media. J. Hydrol. 1994a, 163, 271–288.
    [101] Saiers, J.E., Hornberger, G.M., Liang, L. First- and second-order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resour. Res. 1994b, 30(9): 2499–2506.
    [102] Uebler, R.L., Swartzendruber, D. Flow of kaolinite and sewage suspensions in sand and sand-silt: I. Accumulation of suspension particles. J. Soil Sci. Soc. Am. 1982, 46: 239–244.
    [103] Yan, Y.D. Pulse-injection chromatographic determination of the deposition and release rate constants of colloidal particles in porous media. Langmuir 1996, 12: 3383–3388.
    [104] Curtin, D.,H. Steppuhn, and F. Selles. Clay dispersion in relation to sodicity, electrolyte concentration and mechanical effects. Soil Sci. Soc. Am. J. 1994, 58:955–962.
    [105] Djeran-Maigre, I., D. Tessier, D. Grunberger, B. Velde, and G. Vasseur. Evolution of microstructures and of macroscopic prop- erties of some clays during experimental compaction. Mar. Petrol. Geology 1998, 15:109–128.
    [106] Goldberg, S., and R.A. Glaubig. Effect of saturating cation, pH and aluminum and iron oxide on the flocculation of kaolinite and montmorillonite. Clays Clay Miner. 1987, 35:220–227.
    [107] Goldberg, S., and H.S. Forster. Flocculation of reference clays and arid–zone soil clays. SoilSci. Soc. Am. J. 1990, 54:714–718.
    [108] Goldberg, S., H.S. Forster, and E.L. Heick. Flocculation of illite/ kaolinite and Illite/montmorillonite mixtures as affected by sodium adsorption ratio and pH. Clays Clay Miner. 1991, 39:375–380.
    [109] Mukul M, Sharma. Factors controlling the hydrodynamic detachment of particles from surfaces. Journal of Colloid Interface Science,1991,149(1):121-134.
    [110] O’neill M E. A sphere in contact with a plane wall in a slow linear shear flow.J. Chem.Engin.Sci,1968,23:1293-1297.
    [111] Faure, M.H., Sardin, M., Vitorge, P. Release of clay particles from an unconsolidated clay-sand core: experiments and modeling. J. Contam. Hydrol. 1997, 26, 169–178.
    [112] Gronow, J.R.. Mechanisms of particle movement in porous media. Clay Miner. 1986, 21, 753–767.
    [113] Gruesbeck, C., Collins, R.E. Entrainment and deposition of fine particles in porous media. Soc. Petrol. Eng. J. 1982, 22(6): 847–856.
    [114] Hendry, M.J., Lawrence, J.R., Maloszewski, P. The role of sorption in the transport of Klebsiella oxytoca through saturated silica sand. Ground Water 1997, 35(4): 574–584.
    [115] Ryan J N ,M Elimelich. Review: Colloid mobilization and transport in groundwater. Colloids and Surface A 1996,107:1-56.
    [116] Bunn A R et al .Mobilization of natural colloids from an iron oxide coated sand aquifer: Effect of pHand Ionic Strength. Environment Science and Technology. 2002,36:314-322.
    [117] Zhuang Ya-Feng. et .al. Flow Injection Determination of Palavering Based on Its Sensitizing Effect on the Chemiluminescence’s Reaction of Permanganate-sulfite. Analytical and Bioanalytical Chemistry, 2003, 375(2):281-286.
    [118] Roy S.B. et al. Colloid Release and Transport Processes in Natural and Mogel Porous Media, Colloids and Surfaces. 1996,107:245-262.
    [119] Grolimund. et al. Transport of in situ Mobilized Colloidal Particles in Packed Soil Columns. Environmental Science and Technology. 1998, 32(22):3562-3569.
    [120] Atwood, D.K. Restoration of Permeability to Water Damaged Cores. J. of Petroleum Tech.1963, 8.
    [121] Kia, S.F., Fogler, H.S., Reed, M.G., Vaidya, R.N. Effect of salt composition on clay releasein Berea sandstones. SPE Production Engineering, 1987, 277–283.
    [122] Khilar K C,Vaudya R N,Fogler H S. Colloidally-induced fines release in porous media.J Petro Eng Sci 1990,4:213-221.
    [123]许冀泉,熊毅.粘较层状硅酸盐,土壤胶体(熊毅等.1983),第一册,土坡胶体的物质基础.第一章,科学出出版社. 1983.
    [124] Buol, S.W., Hole, F.D. Clay skin genesis in Wisconsin soils. Soil Sci. Soc. Proc. 1961, 377–379.
    [125] Elimelech, M., O’Melia, C.R. Kine.ics of deposition of colloidal particles in porous media. Environ. Sci. Technol. 1990, 24, 1528–1536.
    [126] Elimelech, M., Gregory, J., Jia, X., Williams, R.. Particle Deposition and Aggregation. Butterworth Heinemann, Oxford, 1995, 441 pp.
    [127] Gray D. H. and Rex R. W., 14th Nat.Conf. on clay and clay minerals 1966, 355.
    [128] Milligan. et al. Some Scale Model Tests to Investigate the Use of Reinforcement to Improve the Performance of Fill on Soft Soil. Quarterly Journal of Engineering Geology, 1982, 15(3): 209-215.
    [129] Harvey. et al. Microorganisms as Tracers in Groundwater Injection and Recovery Experiments: A Review. FEMS Microbio. Rev.1997, 20:461-472.
    [130] Harvey. et.al. Laboratory Investigations on the Role of Sediment Surface and Groundwater Chemistry in Transport of Bacteria through a Contaminated Sandy Aquifer. Environmental Science and Technology, 1992, 26 (7):1410-1417.
    [131] Vaidya R N,Fogler H S. Formation damage due to colloidally induced fined migration. Colloids Surfaces,1990,50:215-229.
    [132] McDowell-Boyer L M, J R Hunt, N Sitar. Particle transport through porous media. Water Resour. RES. 1986, 22 :1901-1921.
    [133] McCarthy J F, J M Zachara. Subsurface transport of contaminants:bingding to mobile and immobile phases in groundwater aquifers.Environ,Sci.Technol.,1989,23:496-504.
    [134] Ryan.J.N et al. Effect of Solution Chemistry on Clay Colloid Release From an Iron Oxide-coated Aquifer Sand. Environmental Science and Technology, 1994,28(9):1717-1726.
    [135] Kretzschmar R, M Borkovec, D Grolimund et al. Mobile subsurface colloids and their role in contaminant transport.Adv.Agron.1999,66:121-193.
    [136] Sen,T K, Khilar K C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Advances in colloids and Interface Science .2005:1-95.
    [137]李白玲,毛昶熙.海水入侵地下水的研究.水利水运科学研究,1992(2):145-155.
    [138]季明川,赵德三.海水入侵机制及因素分析.海岸工程,1992,11(1):55-60.
    [139]牟孝松,李宝珠.青岛市海(咸)水入侵及其防治.海岸工程,1993,12(3):43-47.
    [140] Mahesha.运用抽水—注水系统控制海水入侵.1998,19(3):20-22.
    [141] Richard W.Atwater, Linda Palmquist and John Onkka. The West Basin Desalter Preject: A viable alternative, Desalination, 1995,103: 117-125.
    [142]冯绪胜,刘洪国,郝京诚等.胶体化学.北京:化学工业出版社,2005,37-39.
    [143]王连生.有机污染化学进展.北京:化学工业出版社[M].2006,14-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700