用户名: 密码: 验证码:
深海采矿移动机器人的鲁棒控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海采矿作业技术的研究是一项复杂的高技术,是继航空航天开发之后世界各国面临的一个新的重大课题,其开发手段的研究,对我国矿产资源的可持续利用具有重要的战略意义。
     深海底采矿机器人的工作环境为6000m深海底,是“极稀软”沉积物底质、无自然光、高压、强扰动、未知复杂的环境。同时,采矿机器人设计的特殊性决定了其很强的非线性。深海采矿系统要求采矿机器人能在未知的复杂海底环境中,以一定的精度按照预定的轨迹行驶、高效地采矿。作为深海采矿的载体,采矿机器人控制效果的好坏直接关系到我国大洋战略开发的实施质量,机器人工作在剪切强度较弱且随机变化的深海“稀软底”,与同类陆地履带车辆相比,更易产生打滑,严重时将深陷入沉积物中,丧失作业行走能力。而机器人设计的特殊性和作业环境的特殊性决定了相关控制问题的复杂性。因此,深海采矿移动机器人的控制相关问题是深海采矿技术诸多挑战中的重要研究问题之一,保障深海采矿机器人行驶的安全性成为一个亟待解决的问题,具有很重大的现实意义和科学意义。
     本文重点研究了深海采矿机器人的鲁棒控制问题,旨在为深海采矿技术提供一些前期的理论研究和技术支持。
     论文主要研究工作及研究成果如下:
     (1)在深入分析深海采矿机器人机构的基础上,针对采矿机器人属于履带车辆,通过对采矿机器人行走特点分析,采用差动转向方式,建立了机器人运动学模型。基于机器人的左右履带驱动轮采用液压驱动的特点,分别针对液压驱动系统中的电液比例阀、柱塞式变量泵、液压马达建立了数学模型,实现了对深海采矿机器人运动学系统的有效描述。
     分析了采矿系统运动状态和动态特性的一些影响因素。从动力学的角度对深海采矿系统进行了分析,建立了软管、硬管的动力学方程,分析了加在软管上的流体力和不同工况下软管端受力情况,建立了航向控制的数学模型,为深海采矿机器人的鲁棒控制奠定理论基础。
     (2)根据深海采矿机器人定位系统的功能要求,给出了深海采矿机器人的定位系统框架。针对深海底采矿机器人的定位这一复杂问题,提出了一种基于伪长基线和航位推算的组合定位方法,给出了完整的卡尔曼滤波器结构,为提高位置估计精度,滤波器采用了自适应卡尔曼滤波算法,在线修正滤波器的增益,仿真结果说明了该方法的可行性,并且相对传统方法的估计精度有较大的提高,为深海采矿机器人的定位提供了一种新的途径。
     (3)在分析了履带防滑控制原理的基础上,揭示了滑转率与附着条件的关系,基于附着系数和滑转率曲线形状的辨识方法,通过马达转矩和履带角加速度得到最佳滑转率值,建立了以滑转率控制为目标的防滑控制系统。
     (4)针对深海采矿机器人作业时打滑严重,运动状态不确定、变化大,关键运动参数难以直接测量的问题,在力学分析和液压驱动原理分析的基础上,研究了基于动力学的采矿机器人路径控制方法。建立了采矿机器人驱动轮有效半径、左右履带打滑率等关键运动参数的在线估计模型,完成了对滑转率和有效驱动半径的有效估计。在关键参数的有效估计基础上,设计了基于位置误差和偏航角误差的控制器,仿真结果说明了方法的可行性。
     (5)针对深海采矿机器人控制模型、结构参数和外部环境等诸多不确定性,结合鲁棒控制和神经网络,研究了深海采矿机器人的自适应鲁棒路径控制策略。用RBF神经网络逼近不确定性的上界来解决系统不确定结构未知的问题,在状态反馈基础上,构建基于虚拟输入的航向控制鲁棒自适应律,给出了在左右履带速度输入与虚拟输入之间的模糊控制推理规则,构建了采矿机器人的行走控制策略。仿真结果说明了方法的可行性。
     (6)在开发的深海采矿机器人的模型车仿真系统上,对模型车进行了大量跑车试验,模型车左右履带稳定速度和过渡过程速度曲线、模型车航向角变化和航向角偏差曲线以及模型车轨迹跟踪变化曲线等试验结果验证了采矿机器人控制系统的可行性和有效性。
Exploration technique on deep seabed is a kind of complicated high technology and a new important project which follows aerospace exploration faced in the world. It has important strategic significance for our country's mineral resource continual utilization and development.
     Deep seabed mining robot works in 6000m-depth seabed unknown complex environment with very dilute and soft bottom, no natural light, high pressure, and strong disturbance. Moreover, the special design of mining robot leads to its strong nonlinearity. Deep seabed mining system requires mining robot works efficiently following desired path with certain accuracy in unknown complex environment. As the carrier of deep seabed mining system, the control quality of mining robot has direct influence on our countries ocean exploitation strategy. The mining robot is operating in the deep-sea sediment, which shows itself weak shear intensity and varies randomly. Compared with the similar type of tracked-vehicle on land, it is easy to slip seriously, even easy to sink into the sediment and lose its ability to run. However, the robot's special design and special working environment cause the complexity of control problem. Therefore, the research on control of mining robot for deep seabed mining is an important problem among many challenges of deep seabed mining technique. It is high time to research how to control the slip to safeguard the running of the robot. The research has great practical significance and great scientific significance.
     The dissertation mainly studies the robust control problem of mining robot for deep seabed mining aims to providing some previous theoretical research and technical support for deep seabed mining.
     The major innovation research achievements include:
     (1) With the analyzing mechanisms of deep seabed mining robot deeply, considering mining robot belongs to a kind of tracked vehicle, analyzing robot's walking characteristics, using differential steering, the mining robot dynamics model is established. Mathematical model of electro-hydraulic proportional valve, plunger-type variable displacement pump, hydraulic motor are built. The motion system of deep seabed mining robot is described effectively.
     Influential factors of mining system motion states and dynamic characteristics are analyzed. Dynamic equations of soft pipe and rigid pipe are established, fluid force analysis on soft pipe is performed, force on soft pipe end is given, and the mining robot yaw control mathematical model is established.
     (2) On the basis of deep seabed mining robot localization system functional requirements, the localization system frame is proposed. Aiming at complex localization problem, an integrated location method based on pseudo long baseline and dead reckoning is proposed, and the Kalman filter structure is established. To improve precision, adaptive Kalman filtering algorithm is applied for data fusion and amending filter gain. The feasibility of this method is tested by simulation research results, estimation accuracy has a great enhancement comparing with existing method. A new location approach is put forward.
     (3) On the Analysis of the principle of anti-skid control of the track reveals the relationship of the slip ratio and adhesion coefficient, the optimal slip ratio of deep-sea sediment is gained according to the ratio and the adhesion coefficient curve, an anti-slip controller is developed.
     (4) Deep seabed mining robot works with high slip and great uncertain moving state change, the key moving parameters are difficult to measure. Path tracking control approach is studied based on mechanical analysis and hydraulic driving principle analysis. The parameters including tracks slip rate and effective radiuses of driving wheels identification model is built, it builds basis for optimal unbiased estimation of deep seabed mining robot key moving parameters. Controller is designed based on efficient key moving parameters estimation, position error and yaw angle, simulation experiment results show the effectiveness of the method.
     (5) Considering the uncertainty of mining robot control model, structure parameter and external environment, combining robust control with neural network, path tracking adaptive robust control approach is concerned. RBF neural network is used to learn the unknown bounds of system uncertainties adaptively, adaptive heading robust control algorithm is presented based on status feedback and virtual input. And control method on the crawling of deep seabed mining moving robot is described after discussion on fuzzy rule between virtual input and tracks velocity. The feasibility of this method is tested by simulation research results.
     (6) Experiments have been made on seabed mining robot vehicle model simulation system. Velocity changing curves, yaw angle changing curves, yaw angle error curves and path tracking curves test the feasibility and validity of mining robot control system.
引文
[1]吴自军,周怀阳.刍议中国国际深海资源开发中长期发展战略[J].国际海底开发动态,2004,9(1):1-6.
    [2]肖林京,方湄,张文明.大洋多金属结核开采研究进展与现状[J].金属矿山,2000,(8):11-14.
    [3]肖林京.深海采矿扬矿管运动学和动力学特性研究[D]:[博士学位论文].北京:北京科技大学,2000.
    [4]神谷夏实.深海底矿物资源开发的现状[J].国外金属矿山,1994,23(5):48-54.
    [5]国土资源部信息中心.世界矿产资源年评[R],2000-2001.
    [6]Mineral Commodity Summaries[M],2002.
    [7]Mining Journal Ltd.Mining Annual Review[M],2002.
    [8]中华人民共和国国务院新闻办公室.中国的矿产资源政策[R].2003,12.
    [9]吴荣庆.我国矿产资源总体形势及主要短缺矿产的发展趋势[J].中国金属通报,2006,(43):13-18.
    [10]中国大洋协会办公室.国际海底区域研究开发“十五”总体设计[R].北京:中国大洋协会,2001.
    [11]简曲,王明和,高宇清等.大洋采矿集矿技术和集矿模型机研究[J].有色金属,1997,(3):23-26.
    [12]简曲.大洋采矿集矿机的现状与展望[J].矿山机械,1997,(8):1-3.
    [13]WANG Zhen-yu,LIU Shao-jun,LI Li.Crawling feasibility simulation study on tracked vehicle for deep ocean mining[J].系统仿真学报,2004,16(4):644-646.
    [14]陈勇,桂卫华,阳春华,等.深海采矿移动机器人控制的关键技术[C].第26届中国控制会议,湖南,张家界,北京:北京航空航天大学出版社出版,2007,660-663.
    [15]黄祖永.地面车辆原理[M].北京:机械工业出版社,1983.
    [16]Gigler JK,Ward M.Simulation model for the prediction of the ground pressure distribution under tracked vehicles[J].Journal of Terramechanics 1999,36(3):139-158.
    [17]韩雪梅,刘侃,周玉珑.履带车辆行驶力学[M].北京:国防工业出版社,1988.
    [18]Michael D.,Letherwood David.Ground vehicle modeling and simulation of military vehicles using high performance computing[J].Parallel Computing 2001,27(2):109-140.
    [19]Caccia M.,Indivery G.,Tiano A.,Veruggio G.Modeling and identification of open frame variable configuration unmanned underwater vehicles[J].IEEE Journal of Oceanic engineering,2000,25(2):227-240.
    [20]刘溧,扬东来,陈慧岩.遥控履带车辆数字化操纵技术的研究[J].农业机械学报,2002,2(33):127-128.
    [21]王学宁.越野环境中坦克动力学建模研究[M].长沙:国防科技大学出版社,2002.
    [22]Pere Ridao,Joan Batlle,Marc Carreras.Dynamics model of an underwater robotic vehicle[R].Institute of Informatics and Applications,University of Girona,2001.
    [23]Anthony Beis.A finite eliment analysis of the NPS autonomous underwater vehicle intended to operate in deep waters[R].NPS-ME-01-005,Naval Postgraduate School,Monterey,CA,1999.
    [24]吴旭光,徐德民.水下自主航行器动力学模型.建模和参数估计[M].西安:西北工业大学出版社,1998.
    [25]张禹,刘开周,邢志伟,等.自治水下机器人实时仿真系统开发研究[J].计算机仿真,2004,4(21):155-158.
    [26]孟伟,张国印,韩学东.一种新型的系统建模方法[J].哈尔滨工程大学学报,2000,10(21):42-45.
    [27]潘瑛,徐德民.自主式水下航行器空间运动矢量建模与仿真[J].系统仿真学报,2003,3(15):538-540.
    [28]王随平.海底采矿集矿车的导航控制[J].矿业研究与开发,1998,18(3):30-32
    [29]Keith Vickery.Acoustic positioning systems-a practical overview of current systems[M].Sonardvne,Inc.2003.
    [30]Milne,P.H..Underwater acoustic positioning systems[M].Huston,Gulf Publishing Co.,1983.
    [31]Pan-Mook Lee,Bong-Huan Jun,Hyun Taek Choi,et al.An integrated navigation systems for underwater vehicles based on inertial sensors and pseudo LBL acoustic transponders[C].Oceans 2005 Conference,SEP 17-23,2005.
    [32]Elbert S.Maloney.Dutton's navigation and piloting[D].Annapolis,MD Naval Institute Press,1985.
    [33]胡丹丹,肖书明,王燕清,等.基于多传感器的数据融合技术[J].东北电力学院学报,2004,24(1):62-67.
    [34]王军,苏剑波,席裕庚.多传感器融合综述[J].数据采集与处理,2004,19(1):72-77.
    [35]刘同命.数据融合技术及其应用[M].北京:国防工业出版社,2001.
    [36]于德新,杨兆升,刘雪杰.基于卡尔曼滤波的GPS/DR导航信息融合方法[J].交通运输工程学报,2006,6(2):65-69.
    [37]雪丹,曹喜滨,吴云华,等.基于轨道根数差的卫星编队自主定轨研究[J].系统仿真学报,2006,18(10):2952-2955.
    [38]盛跃宾,陈定昌,任强,等.双被动红外运动探测器三维定位算法及仿真[J].系统仿真学报,2006,18(10):2746-2748,2756.
    [39]Koteswara Rao S.Pseudo-linear estimator for bearings-only passive target tracking[J].IEEE Proc Radar Sonar Navigation,2001,48(1):16-22.
    [40]Carlson N A,Berarducei M P.Federated Kalman filter simulation results[J].Navigation,1994,41(3):297-321.
    [41]邢志伟,张禹,封锡盛.基于超短基线/多普勒的水下机器人位置估计[J].机器人,2003,25(3):231-234,263.
    [42]Mohamed A H,et al.Adaptive Kalman filter for INS/GPS[J].Journal of Geodesy,1999,73:193-203.
    [43]Bian Hongwei,Jin Zhihua,Tian Weifeng.IAE-adaptive Kalman filter for INS/GPS integrated navigation system[J].Journal of Systems Engineering and Electronics,2005,17(3):502-508.
    [44]Wang J L,M P Stewart.Kinematics GPS positioning with adaptive Kalman filtering technology[C].Proc IAG'97,Rio de Janeiro:Springer Verlag,1997:389-394.
    [45]杨丽梅,郭立红.飞行器视觉定位方法的研究与仿真[J].电子器件,2006,29(3):784-787.
    [46]于秀梅,段海滨,龚华军.基于卡尔曼滤波的机器人视觉定位[J].电光与控制,2004,11(2):29-34.
    [47]刘川来,颜秉勇.卡尔曼滤波的一种改进算法在GPS中的应用[J].青岛科技大学学报,2004,25(6):525-529.
    [48]M.Bennamon.The development of an integrated GPS/INS/SONAR navigation system for autonomous underwater vehicle navigation[C].Proceedings of IEEE OCEAN's96,1996,256-261.
    [49]Yun,X.,R.E.Bachmarm,R.B.McGhee et al.Testing and evaluation of an integrated GPS/INS system for small AUV navigation[J].IEEE Journal of Oceanic Engineering,1999,24(3):396-404.
    [50]李备,吉春生,朱琳.基于阿尔法系统的船舰综合导航信息融合方法与仿真[J].舰船电子工程,2005,25(6):99-102.
    [51]马野,王孝通,李博.基于Elman网络的船舰组合导航系统误差补偿研究[J].中国航海,2004,(61):54-56,63.
    [52]YANG Bo.The method of autonomous position determination using star sensor and analysis of precision for spacecraft[J].Journal of Astronautics,2002,23(3):81-84.
    [53]Psiaki,Mark L.Autonomous orbit determination for two spacecraft fro-m relative position measurements[J].Journal of Guidance,Control,and Dynamics,1999,22(2):305-312.
    [54]Markley F.L.Automomous navigation using landmark and inter-satellite data[C].AIAA/AAS Astro-dynamics Conf.,Seattle,Washington,Aug,1984:20-22.
    [55]Wong JY,Garber M,Preston-Thomas.Theoretical prediction and experimental substantiation of the ground pressure distribution and tractive performance of tracked vehicles[C].Proc.of the institution of Mechanical Eng.,1989:265-285.
    [56]Z Shiller.Trajectory Planing of Tracked Vehicle[C].In:Proc of the IEEE Int.Conf.on Robotics and Automation,1993.
    [57]Murakami,H,Watanable,K and Kitano.A mathematical model for spatial motion of tracked vehicles on soft ground[J].Journal of Terramechanics,1992,(1):71-81.
    [58]Tran,DT,O'Brien,J and Muro,T.An optimum method for the design of a robotic tracked-vehicles to opreate over fresh concrete under steering motion[J].Journal of Terramechanics,2002,39:1-22.
    [59]Hong,S and Choi.Experimental study on grouser shape effects on trafficability of extremely soft seabed[C].Proc.of the 4th Ocean Mining Symposium,2001,115-121.
    [60]Choi,JS,Hong,S,Kim and Lee,TH.An experimental study on tractive performance of tracked vehicle on cohesive soft soil[C].Proc.of the Fifth Ocean Mining Symposium,2003,139-143.
    [61]Kim,HW,Hong.A study on predictio model of tracked vehicle for straight maneuvering on soft soil[C].Proc.of the Fourteenth ISOPEL,83-89.
    [62]Ahamadi,M,Polotski,V and Hurteau R.Path tracking control of tracked vehicles[C].Proc of 2000 IEEE International Conference on Robotics &Automation,2398-2943.
    [63]Martinez,JL,Mandow.Kinematic modeling of tracked vehicles by experimental identification[C].Proc.of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,1487-1492.
    [64]Zhejun Fan,Y,Koren,D.Wehe.Tracked mobile robot control:hybrid approach[J].Control Eng.Practice,1995,3(3):329-336.
    [65]K.Rintanen,H.Makela.Development of an autonomous navigation system for an outdoor vehicle[J].Control Eng.Practice,1996,4(4):499-505.
    [66]Kanayama Y.J,Fahroo F.A new line tracking method for noholonomic vehicles[C].Proceedings of the 1997 IEEE International Conference on Robotics and Automation,Albuquerque,NM,April 1997,209-215.
    [67]Egerstedt M,Hu X.,Stotsky.A.Control of a car-like robot using a dynamic model[C].IEEE International Conference on Robotics and Automation,v4,leuven,Belgium,1998,3273-3278.
    [68]高峻蛲,龚建伟,熊光明.轮式机器人横向纵向统一遗传模糊神经网络控制研究[J].计算机测量与控制,2004,12(5):443-445.
    [69]杨欣欣,何克忠,郭木河,等.基于神经网络的室外移动机器人前轮转向模型[J].自动化学报,2003,26(2):154-161.
    [70]李艳,高峰.3自由度移动机器人的模糊跟踪控制器设计[J].西安交通大学学报,2004,38(5):521-524.
    [71]Hiroaki Kataoka,Hideo Sado.Optimal slip ratio estimator for traction control system of electric vehicle based on fuzzy inference[J].Electrical Engineering in Japan,2001,135(3):56-63.
    [72]Zibin Song,Yahya H Zweiri,Lakmal D Seneviratne.Non-linear observer for slip estimation of skid-steering vehicles[C].IEEE International Conference on Robotics and Automation,Orlando,Florida,2006.
    [73]Fujii,Kiyoshi Traction control based on slip ratio estimation without detecting vehicle speed for electric vehicle[C].4th Power Conversion Conference,Nagoya,Japan,2007.
    [74]Spiryagin,Maksym.Control system for maximum use of adhesive forces of a railway vehicle in a tractive mode[J].Mechanical Systems and Signal Processing,2008,22(3):709-720.
    [75]方志强,王红岩,贺小军,等.一种测定履带车辆行驶地面性质参数的新方法[J].兵工学报,2007,28(4):391-395.
    [76]郑太雄,李锐.载重汽车ABS路面辨识算法研究[J].中国机械工程,2007,18(3):374-377.
    [77]余卓平,左建令,陈慧.基于四轮驱动电动车的路面附着系数估算方法[J].汽车工程,2007,29(2):141-145.
    [78]边明远,李克强.基于双指数模型的纵向附着系数计算模型[J].农业机械学报,2005,36(5):5-9.
    [79]马鹏飞.全液压推土机液压行驶驱动系统动力学研究[D]:[博士学位论文].西安:长安大学,2006.
    [80]陈峰,韩晓英,桂卫华.基于FSUKF的全液压履带机器车打滑率估计及应用[J].中山大学学报(自然科学版),2007,46(2):199-203.
    [81]Kawabe,Taketoshi.Sliding mode controller for wheel slip ratio control system[J].Vehicle System Dynamics,1997,27(5):393-408.
    [82]Byung Ryong Lee,Kyu Hyun Sin.Slip-ratio control of ABS using sliding mode control[M].Ulsan Univ.,South Korea:KORUS,2000.
    [83]Daegun Hong,Paljoo Yoon.Wheel slip control Systems utilizing the estimated tire force[C].Minneapolis,Minnesota,USA:the 2006 American Control Conference,2006.
    [84]Herzog K,Schulte E,Atmanand M A,et al.Slip control system for a deep-sea mining machine[J].IEEE Transactions On Automation Science And Engineering,2007,4(2):282-286.
    [85]刘志新,张大卫,李幼德.基于滑转率的四轮驱动汽车防滑模糊控制仿真[J].农业机械学报,2005,36(12):21-24.
    [86]郑伟峰.汽车防抱制动逻辑门限控制算法研究[D]:[硕士学位论文].长沙:国防科技大学,2003.
    [87]李静,张家财.汽车驱动防滑遗传PI控制半实物仿真[J].系统仿真学报,2006,18(7):1972-1975.
    [88]余驰,贾玉红.飞机防滑刹车系统的MATLAB/SINMULINK建模与仿真[J].系统仿真学报,2007,19(5):1144-1147.
    [89]田广来,谢利理,岳开宪,等.飞机防滑刹车系统的最佳滑移率式控制方法研究[J].航空学报,2005,26(4):461-464.
    [90]周素莹,林辉,齐蓉.飞机防滑刹车系统模糊控制律的仿真研究[J].计算机仿真,2005,22(1):58-61.
    [91]唐国元,宾鸿赞.ABS的模糊滑模变结构控制方法及仿真研究[J].中国机械工程,2007,18(13):1629-1632.
    [92]张成宝,丁玉兰,吴光强,等.变结构控制方法在汽车驱动防滑控制中的应用[J].同济大学学报,1999,27(5):576-580.
    [93]孙逢春,陈树勇,郭汾.基于转矩控制策略的电传动履带车辆驱动特性研究[J].兵工学报,2007,28(2):129-133.
    [94]林国重,盛东初.液压传动与控制[M].北京:北京工业学院出版社,1986.
    [95]逢振旭.考虑能耗的大功率复杂液压系统仿真与控制技术的研究[D]:[博士学位论文].上海:上海交通大学,2001.
    [96]曾孟雄,陈冬生,禹中文.基于单片机-电液比例阀的工作装置控制系统[J].矿山机械,2000,(2):35-36.
    [97]郭小刚,张立人,金星等.深海采矿流-固耦合软管系统的非线性动力学模型[J].工程力学,2000,17(3):93-104.
    [98]李艳,刘少军,禹宏云.基于多刚体离散元模型的深海采矿系统动力学分析[J].中南大学学报(自然科学版),2006,37(4):742-747.
    [99]凌胜,肖林京,申焱华,等.深海采矿开采系统运动状态和动态特性影响因素分析[J].中国工程科学,2002,4(3):78-83.
    [100]王刚,刘少军,李力.深海采矿长管线系统布放过程的数值仿真[J].中南大学学报(自然科学版),2004,35(6):978-982.
    [101]汤伟,冯雅丽,冯福璋,等.5000m深海采矿扬矿管所受水平液动力分析与计算[J].冶金设备,2005,5:5-9.
    [102]徐海良.单泵与储料罐组合的深海采矿软管输送系统研究[D]:[博士学位论文].长沙:中南大学,2004.
    [103]Jiaming Wu,Allen T.Chwang.A hydrodynamic model of a two-part underwater towed system[J].Ocean Engineering,1998,27(2000):455-472.
    [104]冯铁成.浮筒的波浪力计算[J].海洋工程,1996,14(3):36-40.
    [105]Nomoto,K.On the steering quality of ships[M].International Shippbuilding Progress,1957.
    [106]杜斯特 F,梅林 A,怀特洛 J.H著,沈熊,许宏庆,周作元译.激光多普勒测速技术的原理和实践[M].北京:科学出版社,1992.
    [107]Arye Nehorai.Acoustic vector-sensor array processing[J].IEEE Transactions on Signal Processing,1994,42(9):2481-2491.
    [108]邓鲁华,宗光华,王巍.机器人导航中数字罗盘HMR3000的数据处理方法[J].沈阳航空工业学院学报,2006,23(4):15-17.
    [109]Kuroda S.A simple stray-free capacitance meter by using an operational amplifier[J].IEEE Transactions on Instrumentation and Measurement,1983,32(4):512-513.
    [110]陈志勇,高钟毓,张嵘.微角速度传感器在不同气压下的振动特性[J].清华大学学报,2002,42(6):799-801,813.
    [111]江南,黄建国,李姗.长基线水下目标定位新技术研究[J].仪器仪表学报.2004,25(4):77-80.
    [112]陈峰.深海采矿机器车运动建模与控制研究[D]:[博士学位论文].长沙:中南大学,2005.
    [113]Hall D.L.Mathematical techniques in multisensor data fusion[M].Artech House,Boston,London,1992.
    [114]Edward W,Jarnes L.Multisensor data fusion[M].Artech House,Boston,London,1990.
    [115]Tian Junfeng,Zhao Weidong,Du Ruizhong.New data fusion model of intrusion detection-IDSFP[J].Journal on Communication,2006,27(6):115-120.
    [116]Xia Youshen,Leung Henry,Bosse Eloi.Neural data fusion algorithms based on a linearly constrained least square method[J].IEEE Transaction on Neural Networks,2001,41(2):53-55,59.
    [117]罗中良,方清城,张前进.一种多传感器数据融合方法及应用[J].传感器技术,2002,21(2):784-791.
    [118]Kohl Ch,Krause M,Maierhofer Ch et al.3D-visualisation of NDT data using a data fusion technique[J].Insight:Nondestructive Testing and Condition Monitoring,2003,45(12):800-804.
    [119]程洪玮.多目标跟踪关联中的多特征数据融合方法[J].电子学报,1999,27(3):136-139.
    [120]Sun Yao,Zhu Lin,Xu Xingjie.Design of C3I information fusion system architecture basing on data fusion tree[J].HangKong Xuebao,2006,27(2):305-309.
    [121]Dan Simon.Training fuzzy systems with the extended Kalman filter[J]. Fuzzy Sets and Systems,2002,32:189-199.
    [122]D.Bouvet,G.Garcia.Performance evaluation of proprioceptive sensor sets for civil-engineering articulated vehicle localisation[C].Proceedings of the 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation,Monterey,California,1999,282-287.
    [123]姚怀新.工程机械底盘理论[M].北京:人民交通出版社,2002.
    [124]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990.
    [125]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995.
    [126]姚琼荟.变结构控制系统[M].重庆:重庆大学出版社,1997.
    [127]Bakker E,Pacejka H,Lidner L.A new tire model with and application in vehicle dynamics studies[J].Society of Automotive Engineers,1989,101-113.
    [128]Burckhardt M.Chassis and powertrain:Wheel-slip control systems[M].Wrzburg:Vogel Verlag,1993.
    [129]Kinche U,Dasis A.Estimation of tyre friction for enhanced ABS-systems[M].Tokyo:AVEC,1994.
    [130]GONG Dewen,YANG Ning,YU Mengdi.Development of control of COMRA's deep sea miner[C].Proceedings of the Fifth ISOPE OFFSHORE MECHANICS SYMPOSIUM,KRISO,Daejeon,California,2002,78-80.
    [131]JI Meng,SUN Zhenguo,WANG Junb,et al.Robust backstepping control of tracked mobile robot[C].Proceedings of SPIE-The International Society for Optical Engineering,United States,Newton,MA,2001,235-243.
    [132]D BEYMER and J MALIK.Tracking vehicles in congested traffic[C].The Proceedings of IEEE International Conference on Intelligent Vehicles,1996,130-135.
    [133]陈峰,桂卫华,王随平,等.深海底采矿机器车的研究现状[J].矿山机械,2005,33(9):6-11.
    [134]桂卫华,冯磊华,王随平.深海集矿机模型车行走驱动系统[J].中南大学学报(自然科学版),2005,(3):470-474.
    [135]王随平,熊光辉.深海履带机器车的实时导航和避障[J].中南大学学报(自然科学版),2007,38(1):128-132.
    [136]Anh Tuan Le,David.C.Rye and Hugh.F,Durrant-Whyte.Estimation of track-soil interactions for autonomous tracked vehicles[C].International Conference on Robotics and Automation,New Mexico,1997,1388-1393.
    [137]M.G.Bekker.Introduction to terrain-vehicle systems[M].University of Michigan Press,Ann Arbor,1969.
    [138]Wong,J.Y.Computer aided analysis of the effects of design parameters on the performance of tracked vehicles[J].Journal of Terramechanics,1986,23(2):95-124.
    [139]杨盐生,贾欣乐.一类不确定非线性系统变结构自适应鲁棒控制[J].电子学报,2001,29(7):905-908.
    [140]杨盐生.船舶航向非线性系统自适应鲁棒自动舵的设计[J].大连海事大学学报,2002,28(3):1-4.
    [141]Z.H.Man,X.H.Yu,K.Eshraghian et al.A robust adaptive sliding mode tracking control using a RBF neural network for robotic manipulators[C].Prec.of IEEE Int.Conf.on Neural Network,San Diego,1995,2403-2408.
    [142]Gang Feng,C.K.Chak.Robot tracking in task Space using neural networks[C].Proc.of IEEE Int.Conf.on Neural Networks,1994:2854-2858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700