用户名: 密码: 验证码:
单泵与储料罐组合的深海采矿软管输送系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于陆地资源日益枯竭,当今世界各国都在加紧对深海矿产资源开采技术进行研究,为“海洋经济时代”的到来做技术储备,我国也非常重视深海采矿技术的研究。锰结核和钴结壳是重要的海洋矿产资源,赋存于1500~6000m的海底,深海采矿系统必须将从海底采集的矿石输送到海面采矿船上,因此,矿石输送技术是深海采矿的关键技术。在这一领域,普遍公认采用水力输送的矿石输送系统具有工业应用前景,其中采用软管输送的采矿系统为最佳方案。本文是针对软管输送系统进行研究,主要内容如下:
     根据深海采矿软管输送系统特点,发明了一种由储料罐与高压水泵组合而成的新的矿石输送设备,应用于深海采矿;借鉴水泵理论、管道输送原理、两相流理论和储料罐输送特点,建立该设备的设计理论,并针对能将矿石从5000m海底直接输送到海面的输送系统和1000m钴结壳采矿中试输送系统进行参数分析。
     针对输送软管两端在采矿船和采矿车的牵引下运动,同时受到浮力、重力、海浪、海流、海水阻力、海水压力和管内流体等复杂载荷耦合作用的情况,运用海浪和海流理论、流体力学和Morsion阻力方程,建立输送软管在复杂运动和复杂外载耦合作用下的分析理论,对输送系统的运动和外部载荷进行了分析。
     运用虚功原理、牛顿-拉斐逊方法,建立输送管道的有限元法几何非线性静态分析理论;根据输送管道上作过程大变形特点,推导出弹性材料管单元的切线刚度矩阵和输送系统整体刚度矩阵;对1000m钴结壳采矿中试输送系统,当采矿车和采矿船采用不同运动模式,管道在不同外载耦合作用下,进行几何非线性静态分析,同时对采矿车和采矿船的运动速度和运行模式、采矿车的工作范围、输送管道两端的受力情况、管道的空间形状、管道下段浮体加栽火小和浮力分布等参数进行了研究。
     从橡胶管道结构分析出发,对输送管道的性能进行了理论分析。对5000m深海采矿输送系统,当采矿车和采矿船在不同运动状态,管道在不同外载耦合作用下的情况,进行几何非线性静态分析,同时对采矿车和采矿船的运动速度和运行模式、采矿车的工作范围、输送管道两端的受力情况、管道的空间形状、管道下段浮体加载大小和浮力分布等参数进行了研究。
     根据达朗培尔(D'Alembert)虚功原理,建立了输送系统动力学分析理论。通过模态分析,确定了1000m钴结壳中试输送系统和5000m深海采矿输送系统的振动频率特性。针对输送系统在海浪循环力作用下和上端随海浪循环运动两种情况,分别对1000m中试输送系统和5000m深海采矿输送系统上下两端结点反力的谐响应进行了分析。
     根据相似理论,建立由储料罐与高压水泵组合的模拟实验设备,针对5000m深海采矿输送系统进行模拟实验分析。建立了输送管道力学模拟实验分析的相似理论,选择了模拟输送管道,在实验装置上,对管道两端的结点反力和管道形状进行了实验分析,通过实验和计算的比较分析,证明了本文采用有限元对输送系统进行计算分析是可信的。
     本文运用先进的理论和计算方法以及先进的实验手段,采用理论、计算、实验相互验证的研究方法,研究出一种能将矿石从5000m海底直接输送到海面的输送设备,应用于软管输送系统,由此研究而得到了一种技术先进、理论完善的适用于深海采矿的输送系统技术原型,为1000m钴结壳采矿中试系统提供了技术支持。
Because of the resource scarcity on land, many developed countries are carrying research on deep-sea mining technology for the "ocean economy age". China also attaches great importance to this subject. The manganese nodules and cobalt crust are poly-metallic minerals that lying widely on the seabed about 1500-6000 meters deep. They have to be transported to the ship on the sea level through the deep-sea mining system of which the mineral transporting technology is most important. It is widely recognized that the hydraulic transporting system has great potential for industrial appliance and the system that adopts flexible pipe to transport mineral is the best scheme. This paper is a research on flexible pipe mineral transporting system, and the follow is the main content.Based on the requirements of flexible pipe mineral transporting system, a sort of mineral transporting equipment is invented by combining vessel with high-pressure pump for deep-sea mining. According to Bernoulli's equation, two phases hydrodynamics and principle of pipeline transporting as well as the features of vessel transporting, the designing theory of transporting equipment is established. Parameters of flexible pipe mineral transporting system for carrying minerals from 5000m sea floor to sea level as well as parameters for 1000m crust middle test mining system have been calculated and analysed. Conclusion has been reached accordingly that the combined transporting equipment is a kind of ideal designing for deep-sea mining.In real condition, the transporting pipe is moved under the draft of mining vehicle and ship, meanwhile it is under the action of the complex coupling loads that include gravity and buoyancy of the transporting pipe, the resistance caused by ocean current and pipe moving, and the force of the inner fluid exerted on the pipe. Based on gravity wave theory, the experience calculating formula of ocean current, hydrodynamics and Morsion resistance equation, the theory to analysis the moving and complex coupling loads of the transporting pipe is established. According to the established theory, the movement and the coupling loads of the system have been analysed.Based on D'Alembert principle and Newton-Raphson method, the geometric nonlinear finite element theory has been established to analysis the transporting pipe. According to the large deformation features of the transporting pipe, the tangent stiffness matrix of the pipe element and the stiffness matrix of the transporting pipe have been deduced. The geometric nonlinear static analysis for the transporting system of 1000m crust middle test mining system have been done under the hypothesis that the mining vehicle and ship moving in different modes and the transporting pipe under coupling action of different loads. The research covers the following parameters: the moving speed and mode of the mining vehicle and ship, the mining range of the mining vehicle, the forces on the two ends of the transporting pipe, the shape of the transporting pipe, how large the buoyancy of the buoy should be and how the buoyancy distributes along the transporting pipe etc.Starting with the configuration analysis of the transporting pipe, theoretic research has been done on the transporting pipe . The geometric nonlinear static analysis has been done for the 5000-meter-deep mineral transporting system under the hypothesis that the mining vehicle and ship moving in different modes and the transporting pipe under coupling action of different loads. The research covers the following parameters: the moving speed and mode of the mining vehicle
    and ship, the mining range of the mining vehicle, the forces on the two ends of the transporting pipe, the shape of the transporting pipe, how large the buoyancy of the buoy should be and how the buoyancy distributes along the transporting pipe etc.Based on D'Alembert principle, the dynamics analysis theory of mining transporting system has been established. Through modal analysis, the vibration features (natural frequencies) of the transporting system of 1000m middle test crust mining system and the 5000-meter-deep mineral transporting system have been determined. The harmonic response force of the transporting pipe ends has been analysed when the mineral transporting system of 1000m crust middle test mining system and the 5000-meter-deep mining system are under ocean wave force or the up end of the transporting pipe follows the ocean wave movingBased on model theory, the model equipment for the mineral transporting system has been made and through which the analysis on 5000-meter-deep mining transporting system has been done. The model experiment mechanics analysis theory of the transporting pipe has been established, and a model pipe has been selected for analysis. Experimental analysis has been made on the end forces and the shape of transporting pipe. The comparative analysis on experiments and calculating has proved that the application of finite element analysis in the mineral transporting systems is correct and believable.Through the application of advanced theories and calculating methods as well as experiments, this paper made research on the mineral transporting system for lifting minerals from 5000-meter-deep sea floor to sea level through flexible transporting pipe. The research provides an advanced technological prototype for deep-sea mining mineral transporting system and the 1000m crust middle test mining system.
引文
1.简曲.大洋多金属结核资源开发的回顾与展望[J].中国矿业(中文),1996,5(6):14-18.
    2.杜炳周,何思力 柯永清.太平洋中部沉积物类型与铁锰结核的丰度、覆盖率和品位的关系.太平洋中部铁锰结核研究论文集(一),地质出版社,1992,145-173.
    3.刘新波,萧绪绮.大洋微锰结构中纤锌锰矿的发现及其矿物学特征[J].海洋地质与第四纪地质(中文),1998,18(1):107-113.
    4.谢水龙.深海水力提升式采矿系统的研究[J].中国矿业(中文),1995,4(4):27-35.
    5.梁宏锋,刘季花.东太平洋海盆铁锰结核分布规律[J].海洋地质与第四纪地质(中文),1997,17(3):45-52
    6. Dean W S, Leinen M, Stow D A V. Classification of deep sea fine grained sediments[J]. Journal of Sedimentary Petrology(English), 1985, 55(2): 250-256.
    7.王明和,简曲.中国大洋矿区采矿环境研究[J].中国矿业(中文),1996,5(4):22-24.
    8.许东禹,金庆焕,梁德华.太平洋中部铁锰结核及其形成环境[M].北京:地址出版社,1994.
    9.简曲.21世纪的大洋采矿[J].矿山机械(中文),2000.4:8-11
    10.肖林京.深海采矿扬矿管运动学和动力学特性研究[D].北京:北京科技大学,2000
    11. Schwarz W, Freitag W, Grebe H, Hoffmann E.-O, Rehorn I. Tiefseemaschinen fur die Manganknollengewinnung[M]. Siegen Deutschland: Universitat-GH Siegen, 1992
    12.简曲,陈新明,王明和.21世纪中国的大洋多金属结核工业开采[J].中国矿业(中文),1997,6(3):17-19.
    13. Zhang Gang. Theoretische und experimentelle Untersuchungen an Ringspaltdichtungen mit kontakatkraftsteuerung[D]. Siegen Deutschland: Universitat-GH Siegen, 1994
    14. Imerie I. ASEA mineral slurry transport system for coarse coal transportation, proceedings of the 11th international conference on slurry technology, Hilton Head, South Carolina, USA, 1986. 195-199
    15. Schwarz W, Freitag W, Grebe H, Hoffmann E.-O. Untersuchungen zum dynamischen Verhalten flexibler Verbindungsleitungen zwischen Tiefseemaschinen und ihren Mutterschiffen. Berrict an die Deutsche Forschungsgemeinschaft. Forderkennzeichen Schw 339/3-1, Uniersitat-GH Siegen 1993.
    16. Danielzig H. Verhalten von statischen Sonden bei hohen Geschwindigkeiten[J]. Luftfahrtforschung(德文), Bd. 14, Lfg. 6, 1937: S. 304-309.
    17. Hapel K-H. Festigkeitsberechnung am langen Drilling-Riser zur Erdolexploration[J]. Stahlbau(德文), 45, Nr. 6, 1976: S. 161-170.
    18. Hapel K-H, Kohl M. Methoden zur statischen Berechnung der Biegespannungen in langen Drilling-Risern[J]. Meerestechnik(德文), 1979, 10, Nr. 4: S. 125-136.
    19. Hapel K-H, Kohl M. Statische Festigkeitsberechnungen und dynamische Untersuchungen an Drilling-Risern zur Erdolexploration bei 2000m Meerestiefe[J]. Meerestechnik(德文), 1982, 13, Nr. 1: S. 13-18
    20. Hapel K-H, Kohl M. Erzwungene Transversalschwingungen langer Drilling Riser-der Dampfungsparameter der linerisierten Widerstandskraft (Offshore-Technik)[J]. Stahlbau(德文), 1980, 49, Nr. 11, S. 335-341.
    21. Hapel K-H. Erzwungene Transversalschwingungen langer Drilling-Riser bei hohenveranderlicher hydrodynamischer Dampfung. 10. Aufbauseminar Meerestechnik- Marine Rohstoffgewinnung und Offshoretechnik (Berichswerk), Technische Uniersitat Berlin, 1987.
    22. Kohl M. Zum Stabilitats-und Schwingungsverhalten durchstromerter, langer vertikaler Rohre bei hydrodynamischer Dampfung[D]. Technische Uniersitat Berlin. 1986.
    23. Kohne M. Analyse des dynamischen Verhaltens elastischer Forderrohre zur Mineralgewinnung aus grossen Meerestiefen[J]. InterOcean(德文) 1976, 11, Nr. 79: S. 181-195.
    24. Rogalla B U. Zur statischen und dynamischen Berechnung geometrisch nictlinearer Linientragwerke unter Stromungs-und Wellenlasten[D]. Dissertation Universitat Hannover, 1988.
    25. Ablow C M, Schechter S. Numerical Simulation of Undersea Cable Dynamics[J]. Ocean Engineering(英文) 1983, 10, No. 6: 443-457.
    26. Milinazzo F, Wilkie M, Latchman S A. An Efficient Algorithm for Simulating the Dynamics of Towed Cable Systems[J]. Ocean Engineering(英文), 1987, 14, No. 6: 513-526
    27. Owen D G, Qin K. Model Tests And Analysis of Flexible Riser Systems[J]. Offshore Mechanics and Arctic Engineering(英文), 1986, Vol.3: 354-362.
    28. Ghadimi R. A Simple and Efficient Algorithm for the Static and Dynamic Analysis of Flexible Marine Risers[J]. Computers & Structures(英文), 1988, Vol. 29, No. 4: 541-555.
    29. Giese K. Ein Beitrag zur Untersuchung des nictlinearen statischen und dynamischen Verhaltens flexibler leitungen im Meer[D]. Dissertation RWTH Aachen, Aachen, 1989.
    30. Lu bbert M. Experimentelle Modellierung flexibler dynamisch bewegter Verbindungsleitungen zwischen selbstfahrenden tiefseemaschinen und ihren Mutterschiffen[D]. Siegen Deutschland: Universitat-GH Siegen, 1989.
    31. Freitag W. Theoretische und experimentelle Untersuchungen zum Verhalten langer Tiefseestrange[D]. Aachen: Universitat Aachen, 1993.
    32. Hoffmann E-O. Verhalten flexiber Verbingungsleitungen zwischen bewegten Untwerwassergeraten und schwimmenden Stationen[D]. Aachen: Universitat Aachen, 1995.
    33. Grebe H. Allgemeines mathematisches Modell fur strangverbindungen zwischen mobilen Tiefseegeraten und ihren Mutterstationen[D]. Siegen: Universitat-GH Siegen, 1997.
    34. Chung J S. A Motion Analysis of a Riser Upper Joint Interacting with a Floating Vessel[J]. Pressure Tech(英文), 1978, ASME, Vol 100: 91-97
    35. Chung J S, Felippa. Nonlinear Static Analysis of Deep-Ocean Mining Pipe-PartⅡ: Numerical Studies. J Energy Resources Tech(英文), 1981, ASME, Vol 103: 16-25.
    36. Chung, J S, Whitney A K, Loden W A. Nonlinear Transient Motion of Deep-Ocean Mining Pipe[J]. J Energy Resources Tech(英文), 1981, Vol 103: 2-10
    37. Chung J S, Whitney A K. Dynamic Vertical Stretching Oscillation of a Deep-Ocean Mining Pipe[A]. Proc Offshore Tech Conf[C], Houston. 1981.
    38. Chung J S, Whitney A K. Flow-Induced Moment and Lift for a Circular Cylinder with Attached Cable[J]. Int J Offshore and Polar Eng(英文), ISOPE, 1993, Vol 3, No 4: 280-287.
    39. Chung J S. Added Mass and Damping on an Oscillation Surface-Piercing Circular Column with a Circular Footing[J]. Int J Offshore and Polar Eng(英文), ISOPE, 1994, Vol 4, No 1: 11-17.
    40. Chung J S, Tsurusaki K. Advance in Deep-Ocean Mining and Polar Eng Conf, Osaka, ISOPE, 1994 Vol 1: 18-31
    41. Chung J S. Deep-Ocean Cobalt-Rich Crust Mining System Concepts[A]. Proc MTS-94 Conf[C], Marine Tech Soc, Washington, DC, 1994: 98-104.
    42. Chung J S, Cheng B-R, Huttelmaier H-P. Three-Dimensional Coupled Responses of Deep-Ocean Pipe: Part Ⅰ. Excitation at Pipe Ends and External Torsion[J[. Int J Offshore and Polar Eng(英文), ISOP, 1994, Vol 4, No 4: 320-330.
    43. Chung J S, Cheng B-R, Huttelmaier H-P. Three-Dimensional Coupled Responses of Deep-Ocean Pipe: Part Ⅱ. Excitation at Pipe Ends and External Torsion[J]. Int J Offshore and Polar Eng(英文), ISOP, 1994b, Vol 4, No 4: 331-339.
    44. Chung J S, Whitney A K, Lezius D, Conti R. Flow-Induced Torsional Moment and Vortex Suppression for a Circular Cylinder with Attached Cable[A]. Proc 4 th Int Offshore and Polar Eng Conf[C], Osaka, ISOPE, 1994: 447-459.
    45. Chung J S, Cheng,\B-R. Effects of Flexible Joints Along a long Pipe on the 3-D Nonlinear Coupled Pipe response[A]. Proc 5th Int Offshore and Polar Eng Conf[C], The Haguae, ISOPE, Vol.2. 1995.
    46. Chung J S. Assessment of Option in Design of Deep-Ocean Mining Pipe Systems[A]. Proc ISOPE-Ocean Mining Symp[C], Tsukuba, Japan, ISOPE, 1995: 23-30.
    47. Chung J S. Deep-Ocean Mining: Technologies for Manganese Nodules and Crusts[J]. Int Offshore and Polar Eng(英文). ISOPE, 1996, Vol 6, No 4: 244-245.
    48. Chung J S, Cheng B-R. Eigenvalues for a Long Vertical Deep-Ocean Pipe with Elastic Joints[A]. Proc Flow-Induced Vibration Symp[C], Honolulu, ASME, PVP-Vol 298, 1995: 153-160.
    49. Chung J S, Cheng B-R. Effects of Multiple Flexible Joints Along a Long Pipe on the 3-D Nonlinear Coupled Pipe Responses[J]. Int J Offshore and Polar Eng(英文), ISOPE, 1996, Vol 6, No 3: 203-211.
    50. Baorong Cheng, Jin S Chung. Effects of Axial Damper and Elastic Joints on the 3-D Dynamic Responses of a Deep-Ocean Pipe with Torsional Coupling[J]. Int J Offshore and Polar Eng(英文). 1997, ISOPE, Vol.7, No. 1: 36-43.
    51. Bao-rong Cheng, Jin S Chung, Zhao-Chang Zheng. Effects of Flexible Joints on the 3-D Nonlinear Coupled Responses of a Long Vertical Pipe[A]. Proc 5th Int Offshore and Polar Eng Conf[C], The Hague, The Netherlands, June 11-16, 1995. ISOPE: 236-243.
    52. Baorong Cheng, Jin S Chung. Effects of Axial Damper and Elastic Joints on the 3-D Dynamic Responses of a Deep-Ocean Pipe with Torsional Coupling[A]. Int J Offshore and Polar Eng Conf[C], Los Angeles, ISOPE, Vol 1, 1996: 37-45.
    53. Jin S Chung, B R Cheng. MSE and FEM Modeling of Thrusts to Elastic Joints of Long Vertical Pipe in 3-D Nonlinear Motions[J], Int J Offshore and Polar Eng(英文). 1999, Vol.9, No.2, ISOPE: 117-125.
    54. Jin S Chung, B R Cheng. 3-D Responses of Vertical Pipe Bottom Pin-Joined to a Horizontal Pipe to Ship Motion and Thrust on Pipe -Part Ⅰ: MSE and FEM Modeling[A], Proc 9 th Int Offshore and Polar Eng Conf[C], Brest, France, 1999, ISOPE: 265-271.
    55. Baorong Cheng, Jin S Chung. Application of Thrusts to Elastic Joints on Long Vertical Pipe in 3-D Nonlinear Motions-Part Ⅱ: Numerical Examples by MSE and FEM Results[A], Proc 8th Int Offshore and Polar Eng Conf[C], Montreal, Canada, 1998. ISOPE: 189-198.
    56. Eck B. Technische Stromungslehre[M]. Band 2, Anwendungen. Berlin, 1981, springer Verlag Berlin Heidelberg.
    57. Sallet D W. A Method of Stabilizing Cylinder in Fluid[J]. Journal of Hydronautics(英文). 1970, Vol. 4, No. 1: 40-45.
    58. Nakajama T. On the Dynamic Analysis of Multi-Component Mooring Lines[J]. OTC(英文), 4309, 1982
    59. McNamara J F, Hibbitt H D. Numerical Analysis of Flexible pipes and Risers in Offshore Application[M], 1986
    60. Rehorn I. Entwicklung eines Tiefseeraupenfahrzeugs und Untersuchung seiner inneren Fahrwiderstande[D], Dissertation Universitat-GH Siegen. Aachen, 1994
    61. Dorfler G. Untersuchungen der Fahrwerk-Boden-Interaktion zur Gestaltung von Raupenfahrzeugen fur die Befahrung weicher Tiefseeboden[D], Dissertation Universitat Karlruhe, Karlsruhe, 1995.
    62. Kirk C L, Etok E U, Cooper M T. Dynamic and Static Analysis of a Marine Riser[J]. Ocean Research(英文), 1979, Vol. 1, No. 3: 125-135.
    63. Krolikowski L p, Gay T A. An Improved Linearization Technique for Frequency Domain Riser Analysis[J]. OTC(英文), 37-77, 1980.
    64. Markoulidis P. Nichtlineare statische und dynamische Analyse von Seilen, Kabeln und flexiblen Leitungen im Seegang unter Anwendung des Finite-Elemente-Verfahrens[D]. Dissertation RWTH Aachen, Aachen, 1989.
    65. Bergen D, Mathissen K. Large Displacement Analysis of Highly Flexible Off-shore Structures. Berlin, Springer Verlag, 1991.
    66. Smith P A, Stansby P K. Postcritical Flow Around a Circular Cylinder by the Vortex Method[J]. Journal of Fluid and Structures(英文). 1989, Vol. 3: 275-291,.
    67. V Schmidt F-W. kinematische Beschreibung von Fahrzustanden bodengangiger selbstfahrender Atbeitsmaschinen auf dem Meeresboden[D]. Unveroffentlichte Studienarbeit, Universitat-GH Siegen, 1995
    68. Hirschle H, Neuroth N-D. Geschleppte Geraterager und Tiefseeschleppkabel[J]. InterOcean(德文) 1976: 952-563
    69. Leuther A. Mathematische Modellierung eines am Kabel geschleppten Gerats mit TragflUgein und verstellbarem Leitwerk zur Erkundung des Meeresbodens. Unveroffentlichte Diplomarbeit[D], Universitat-GH Siegen, 1996.
    70. Grill H. APEX ein modular aufgebautes, aktiv positioniertes Explorationssystem fur Stationsarbeit am Meeresboden. Statusseminar Marine Rohstofforschung, Goslar, KFA Ju lich, 1988
    71. Chaziteodoru G. Grundlagen des Meeresbergbaus, Dr. Riederer-Verlag GmbH Stuttgart 1977
    72. Kokkinowrachos K, Hoefeld J. Theoretische und experimentelle Untersuchungen des Bewegungsverhaltens von Halbtauchern[D]. Forschungsbericht NRW Nr.2915. Westdeutscher Verlag 1980
    73.赵振海.管道内固液混合物运动的基本方程[J].水泵技术,1992年1月1-4
    74.佟庆理.两相流动理论基础[M] 北京:冶金工业出版社
    75.毛纪陵,申焱华.深海采矿扬矿管工艺参数的模拟研究[J],中国矿业,1998,7(2),22-25
    76.申焱华,毛纪陵.深海采矿倾斜扬矿管提升工艺参数模拟[J],中国矿业,1998,8(4),11-23
    77.T W.粒状物料的水力输送,北京:冶金工业出版社,1990
    78. H E Engelmann. Vertical hydraulic lifting of large-size-A contribution to marine mining. OCT 3137, THE 10th Annual Offshore Technology Conference, 1978
    79. S P Kostuik. Hydraulic Hoisting and the Pilot-Plant Investigation of the Pipeline Transport of Crushed Magnetite. The Canadian Mining and Metallurgical Bulletin, 1996.1
    80.费祥俊.浆体与颗粒物料输送水力学部[M].北京:清华大学出版社,1994
    81.G W 戈威尔 K 阿济兹.复杂混合物在管道中的流动[M],北京:石油工业出版社,1983
    82.张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,1999,175-195
    83.潘文全.流体力学基础[M].北京:机械工业出版社,1980,277-279
    84. Morison J R, O'Brien M P, Johnson J W, Schaaf S A. The Force Exerted by Surface Waves on Piles[J]. Petroleum Transaction(英文). 1950, AIME, Vol. 189: 149-154.
    85.L M 米尔-汤姆森.理论流体动力学[M]。北京:机械工业出版社,1984,269-301
    86.徐次达,华伯浩.固体力学有限元理论、方法及程序[M]。北京:水利电力出版社,1983,107-134
    87.谢贻权,何福保.弹性和塑性力学中的有限单元法[M]。北京:机械工业出版社,1987,177-189
    88.吕和祥,蒋和洋.非线性有限元[M]。北京:化学工业出版社,1992,211-235
    89.R D库克.有限元分析的概念和应用[M].北京:科学出版社,1989,355-382
    90.蒋友谅.非线性有限元[M].北京:北京工业学院出版社,1988,212-290
    91.殷有泉.固体力学非线性有限元引论[M].北京:清华大学出版社,1987,122-159
    92.刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002
    93.蔡祥元.有限元软件—ANSYS融会与贯通[M].北京:中国水利水电出版社,2002
    94.R M琼斯.复合材料力学[M].上海:上海科学技术出版社,1981
    95.沈观林,复合材料力学[M].北京:清华大学出版社,1994.
    96.刘锡礼,王秉权.复合材料力学基础[M].北京:中国建筑工业出版社,1983
    97.李顺林.复合材料力学引论[M].上海:上海交通大学出版社,1985
    98.江守一郎.模型实验的理论和应用[M].北京:科学出版社,1984
    99.邹滋祥.相似理论在叶轮机械模型研究中的应用[M].北京:科学出版社,1984
    100.陆宏圻.射流泵技术的理论及应用[M].水利电力出版社,1987
    101. M. M. Bernitsas. Buckling of risers due to internal press: nonmovable boundaries[J]. In International Offshore Mechanics and Arctic Engineering Symposium(英文), Houston, Texas, 481-488, January 1983.
    102. M. M. Bernitsas. Problems in marine riser design[J]. Marine Technology(英文), 19(1): 73-78, January 1982.
    103. S. W. S. To, V. Kaladi. Vibration of piping systems containing a moving medium[J]. Journal of Pressure Vessel Technology (英文), 107: 344-349, November 1985.
    104. D. B. McIver, R. J. Oison. Riser effective tension-now you see it, now you don't[C]. In 37th. Petroleum Mechanical Engineering Workshop and Conference, Dallas, Texas, 177-187, September 1981.
    105. H. M. Hilber, T. J. R. Hughes, R. L. Taylor. Improved numerical dissipation for time integration algorithms in structural dynamics[J]. Earthquake Engineering (英文), 5: 283-291, 1977.
    106. J. F. McNamare, H. D. Hibbit. Numerical analysis of flexible pipes and risers in offshore applications. In First OMAE Specialty Symposium on Offshore and Arctic Frontiers[C], New Orleans, Louisiana, pages 343-352, February 1986.
    107. J.G. de Oliveira, Y.Goto, Theoretical and methodological approaches to flexible pipe[M]. In OTC 5021, 1985
    108. J.J. Feret, C.L. Bournazel. Calculation of stresses and slip in structural layers of unbonded flexible pipes[J]. In First ONAE Specialty Symposium on Offshore and Artic Frontiers, pages 311-317, 1986.
    109. M.B. Irani, V.J. Modi, F. Welt. Riser dynamics with internal flow and nutation damping. In 6-th International Offshore Mechanics and Arctic Engineering Symposium[C], Houston, Texas, pages 119-125, March 1987.
    110. M.Peuker. Zum Festigkeits-und Verformungsverhalten unidirektional cordverstarkter Elastornere[D]. PhD thesis, Fakultat fur Maschinenwesen, RWTH Aachen, 1981.
    111. R. Vettermann, M. Peuker. Steel reinforced elastomer pipes. In Flexible Pipe Technology Conference, 1986.
    112. B. U. Rogalla. Zur statischen uns dynamischen Berechnung geometrisch nichtlindarer Linientragweike unter Stromungs-uns Wekkenlasten[D]. PhD thesis, Fachbereich Bauingenieurwesen, UNI Hannover, 1988.
    113. C. P. Sparks. The influence of tension, pressure and weight on pipe and riser deformations and stresses[C]. In International Offshore Mechanics and Arctic Engineering Symposium, Houston, Texas, pages 443-452, January 1983.
    114. V. Perzborn, J. Hysky. Static and dynamic properties of a 6 inch 6000 psi flexible pipe for the offshore market. In New technologies for the exploration and exploitation of oil and gas resources[C], Third Hydrocarbon Symposium, Luxembourg, 1988.
    115.2001’中国大洋矿产资源研究开发学术研讨会论文集[上],中国大洋协会办公室,2001年4月
    116.长沙矿山研究院,”深海采矿中试集矿机技术设计”课题报告,长沙,2000
    117.国际海底区域研究开发”十五”计划项目总体设计,中国大洋矿产资源研究开发协会办公室,2001年3月
    118.深海中试系统扬矿系统初步设计,长沙矿山研究院,1999,1
    119.输送软管对集矿机行驶性能影响研究,上册,长沙矿山研究院,1999,11
    120.刘勇.深海钴结壳螺旋切削采集理论及实验研究[D].长沙:中南大学,2003
    121.夏建新.大洋多金属结核水力提升两相流体动力学及应用研究[D].北京:中国矿业大学,2001.
    122.[日]宇佐美毅,盛桂泷伊.多金属结核扬矿特征的研究.第一届中日浆体输送技术报告会论文集.1990,11.
    123. Shaojun liu, Gang Wang, Li Li. Virtual Reality Research of Ocean Poly-metallic Nodule Mining Based on COMRA's Mining System. Proc 11 th Int Offshore and Polar Eng Conf[C], beijing, china, 2002, ISOPE: 261-264
    124.王云龙.大洋多金属结核开采扬矿管震动控制[J].国际海底开发动态,1997,5(1).
    125.金翔龙,东太平洋多金属结核研究论文集(二).北京:地质出版社,1995,9.
    126.刘明深,21世纪的新兴产业—海洋采矿[J].国际海底开发动态,1998,6(2):1-8
    127.简曲,王明和,李立.大洋多金属结核商业采矿系统的设计[J].国际海底开发动态,1998,6(3).8-12.
    128.金键才.海底矿物从书[M].中国大洋矿产资源研究开发协会,1995
    129. Bath A R. Deep Sea Mining technology, Developments and Future Projects[C]. Proceedings of 21" Annual Offshore Technology Conference, OCT1998, Houston, May1-4, pp333-340.
    130. Brink A W, Chung J S. Automatic position Control of a 300,000Ton Ship Ocean Mining System, ASME Joural of Energy Resources Technology, Vol, 104, December 1982, pp285-293.
    131.简曲.大洋多金属结核工业开采前的技术准备[J].世界采矿快报,1997,13(11):3-5
    132.简曲.大洋采矿集矿机的现状与展望[J].矿山机械,1997,8:1-3.
    133.简曲.中国大洋采矿技术研究述评[J].中国矿业,1997,6(3):17-20.
    134.简曲.王明和.大洋采矿集矿技术和集矿模型机研究[J].中国矿业,1998,7(2):12-15.
    135.谢水龙.深海采矿的经济可行性评价[J].矿山研究,1997,8(2):14-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700