用户名: 密码: 验证码:
深海底采矿机器车运动建模与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海底蕴藏着丰富的矿产资源,对其开发手段的研究,对我国矿产资源的可持续利用,及深海作业技术的发展,具有重要的战略意义。深海底采矿机器车行走于6000m深海底“极稀软”沉积物底质,作业环境为无自然光、海底高压、未知复杂环境,其控制质量的好坏直接关系我国大洋战略开发的实施质量。为此,在国家大洋专项基金——国际海底区域研究开发“十五”项目(DY105-03-02-06)的资助下,本文重点研究了深海底采矿机器车的建模与控制技术。论文的主要研究成果包括:
     1) 深海底采矿机器车运动建模技术
     深海底采矿机器车工作于6000m深海“极稀软”沉积物底质,车辆设计的特殊性和作业环境的特殊性决定了其工作特性与普通履带车辆有所不同。针对深海底采矿机器车高尖三角齿、大沉陷、高打滑率、稀软海底低速作业的特点,在特别考虑履齿附加推力、推土阻力、水阻力,并忽略向心力情况下,采用深海底沉积物特殊环境参数,对机器车牵引力和运动阻力综合计算,建立了深海底采矿机器车动力学模型;采用机器人坐标系和地面坐标系,考虑深海底采矿机器车左右履带打滑率对车体姿态的影响,建立了深海底采矿机器车的运动学模型;实现了对深海底采矿机器车极限环境动力学和运动学系统的有效描述。
     针对深海底采矿机器车变量液压泵—定量液压马达容积调速系统参数复杂,高非线性的特点,将系统分解为电液比例方向阀、变量泵控制液压缸、柱塞泵和柱塞马达四个子系统分别建模,在此基础上综合建立了深海底采矿机器车液压驱动系统模型,实现了对深海底采矿机器车液压驱动系统的有效描述。
     将上述数学模型进行综合,运用MATLAB语言,建立了基于MALTAB的深海底采矿机器车运动系统仿真模型,进行了仿真研究,仿真结果验证了模型的有效性。
     2) 深海底采矿机器车关键运动参数在线辨识技术
     由于作业环境的未知、深海底沉积物的极稀软且不均匀特性,深海底采矿机器车作业打滑严重,运动状态不确定性变化大,机器车驱动轮有效半径、左右履带打滑率等关键运动参数难以直接测量。针对该问题,提出了深海底采矿机器车关键运动参数在线计算模型,该模型通过对机器车左右液压马达压差及左右履带沉陷的检测,实现对机器车左右履带打滑率及驱动轮半径的在线计算。在此基础上,取适当状态变量,建立了深海底采矿机器车左右履带打滑率和左右履带驱
Deep seabed contains abundant mineral resource. Research on it's explore technique has important significance for our country's mineral resource continual owner and development of deep-sea resource exploitation technology. Deep seabed mining robot vehicle works in 6000m-depth seabed unknown complex environment. The control quality has direct influence on our countries ocean exploitation strategy. So, in the support of project named as Internal seabed area research and exploitation, the thesis proposes a movement modeling and control strategy for deep seabed mining robot vehicle. The main research achievements include:(1)Deep seabed mining robot vehicle movement modeling techniqueDeep seabed mining robot vehicle works in 6000m-depth extra-soft seabed, the special design and special working environment decides it's special working property. Aiming at the properties of high-sharp triangle teeth, large sink, high slip rate and low speed., after special consideration on track teeth thrust, bulldozer resistance, hydraulic resistance, and omitting centrifugal force, the dynamic model of deep seabed robot vehicle is build. After that, the kinematical model is built in Cartesian coordinate system with consideration of track slip rates.Aiming at properties of complex parameters and high nonlinearity for the vehicle's variable-hydraulic pump to fix-hydraulic motor volume velocity modulation system, the system is composed as electric-hydraulic proportional directional valve, variable-pump-controlled cylinder, piston pump and piston motor module to build model separately. On the basis of the four sub modules, deep seabed mining robot vehicle hydraulic drive model is built.Combining the dynamic model, the kinematics' model and the hydraulic model, and realized in Matlab language, he deep seabed mining robot vehicle movement system simulation model is finished. Some simulations are done to verify the validity of the model.(2) Deep seabed mining robot vehicle key moving parameters identification techniqueBecause of the unknown mining environment, uneven and extra soft seabed sediment, the vehicle works with high slip and big uncertain moving state change. However, the key moving parameters such as effective radius of driving wheel and track slips are difficult to measure. A new approach identify these parameters is presented. First, based on moving analysis, the parameters identification model is
    built. The model is used to online calculate slip rate and effective radiuses of driving wheels by measurement on the motors' pressure and the sediments. After that, selecting several state variables, the nonlinear parameters estimation model of deep seabed mining robot vehicle's left and right track slip rates and effective radiuses of driving wheels is built. It builds basis for optimal unbiased estimation of deep seabed mining robot vehicle's key moving parameters.Then, an improved SUKF algorithm-FSUKF is presented: fuzzy algorithm is used to regulate sigma set operator, which makes ideal model be more identify to real model. The Mackey -Glass time series model is used to verify the validity of the algorithm.In the end, the proposed model and algorithm are used to estimate the key parameters; the simulation result verifies the validity of the method.(3)Deep seabed mining robot vehicle motion control techniqueBased on deep seabed mining robot vehicle control hardware structure and working rule, a motion control system of the vehicle is presented. The system is consisted of modules such as movement planning, parameter estimation, trajectory tracking error computation and tracking control etc. Functions of the Modules are designed separately.Usual sampling approach for trajectory planning is equal interval sampling. In order to improve control precision, a sample approach based on fuzzy rule is presented. This approach has the function of on-line tuning distance between vehicle's real place and target, according to the distance and angle errors.After analysis of tracked vehicle's tracking errors, an expert-fuzzy based cross coupling controller is designed. The internal error is deal with cross-coupling controller; an expert-fuzzy controller eliminates the external error. Simulation results are provided to verify the proposed scheme.(4) Deep seabed mining robot vehicle simulation system developmentDeep seabed mining robot vehicle is voluminous and needs high driving power. It's too expensive for usual motion control exercise. So, a small deep seabed mining robot vehicle model and a simulation system is developed to solve the problem. Some exercise is done based on vehicle model, the result is provided also.
引文
[1] 吴白军,周怀阳.刍议中国国际深海资源开发中长期发展战略,国际海底开发动态,2004,9(1):1~6
    [2] 神谷夏实.深海底矿物资源开发的现状,国外金属矿山,1994,23(5):48~54
    [3] 国土资源部信息中心.世界矿产资源年评,2000~2001
    [4] 中华人民共和国国务院新闻办公室.中国的矿产资源政策,2003,12
    [5] 我国矿产资源供需形势及发展趋势.中国矿业报,2003,9
    [6] Mineral Commodity Summaries, 2002
    [7] Mining Journal Ltd. Mining Annual Review, 2002
    [8] 朱光文.我国海洋探测技术五十年发展的回顾与展望(一),海洋技术,1999,18(2):1~15
    [9] 朱光文.我国海洋探测技术五十年发展的回顾与展望(二),海洋技术,1999,18(3):1~13
    [10] 朱光文.我国海洋探测技术五十年发展的回顾与展望(三),海洋技术,2000.19(1):23~31
    [11] Hein, J. R. A. Koschinsky, M. Bau, F.T. Manheim, J-K Kang and leanne Roberts. Cobalt-Rich Ferromanganese Crusts in the Pacific. Handbook of Marine Mineral Deposits, David S. Cronan (editor), CRC Press, Boca Raton, FL, pp. 239-279.
    [12] Libes, S. M. (1992). Iron-manganese nodules and other hydrogenous minerals. In:Introduction to Marine Biogeochemistry. John Wiley and Sons, New York, pp. 288-300.
    [13] Morgan, Charles L. (2000). Resource estimates of the Clarion-Clipperton Manganese Nodule Deposits. In: Handbook of Marine Mineral Deposits, David S. Cronan (editor),CRC Press, Boca Raton, FL, 406 p.
    [14] Z. Nawab. Proposed Technologies for Mining Deep-Seabed Polymetallic Nodules (International Seabed Authority, Kingston, Jamaica, 2001), 26-27.
    [15] 联合国海洋法公约附件三:探矿、勘探和开发的基本条件
    [16] Conrad Welling. Ocean Mining Systems. Mining Congress Journal, 1976, 9: 64-65
    [17] 宋连清,大洋多金属结核矿区沉积物土工性质,海洋学报,1999,6(21):47~54.
    [18] 倪建宇,周怀阳,中国多金属结核开辟区的深海环境,2002,2(22):43~47
    [19] Black, JRH. Metals Recovery from Manganese Nodules: A Review of ProcessingSchemes. Marine Mining: A NewBe ginning, 1982, pp 93-107, Humphrey, PB, ed, The State of Hawaii, Honolulu, Hawaii.
    [20] Brink, AW, and Chung, JS (1980, 1982). Automatic Position Control of a 300,000 Ton Ship Mining Systems, Proc Offshore Technology Conf, Houston, 1980; also in ASME Trans J Energy Resources Technology, 1982.
    [21] R. Handschuh, H. Grebe, J. Panthel, E. Schulte, B. Wenzlawski, W. Schwarz. Innovative Deep Ocean Mining Concept based on Flexible Riser and Self-propelled Mining Machines. ISOPE OMS-2001Szczecin, Poland 23.-27. Sept. 2001
    [22] Sritama Sarkar, Neil Bose, Raymond Gosine, Dan Walker, Mridul K. Sarkar. Design & Development of an Autonomous submersible dredger/miner. Proceedings of the International Conference on Coastal and Ocean Technology, 2003,11:65-76.
    [23] R Deepak, M A Shajahan, M A Atmanand, M Ravindran, Schulte E, Grebe H, Schwarz W. Underwater mining in shallow waters using flexible riser concept-the first step towards deep sea mining of polymetallic nodules. Proceedings of the International Conference on Coastal and Ocean Technology. 2003,11:77-90.
    [24] Henning Grebe, Sheela Nair L. Analysis Of Dynamic Behaviour Of Flexible Risers for 500M Shallow Seabed Mining. Proceedings of the International Conference on Coastal and Ocean Technology. 2003,11:337-351.
    [25] WANG Zhen-yu, LIU Shao-jun, LI Li, Crawling Feasibility Simulation Study on Tracked vehicle for Deep Ocean Mining.系统仿真学报,2004,16(4):644-646
    [26] 简曲,王明和,高宇清,李力。大洋采矿集矿技术和集矿模型机研究,有色金属,1997,3,23-26
    [27] 简曲。大洋采矿集矿机的现状与展望,矿山机械,1997,8:1-3
    [28] 黄祖永。地面车辆原理。1983,北京:机械工业出版社
    [29] Gigler JK, Ward M. Simulation model for the prediction of the ground pressure distribution under tracked vehicles[J]. Journal of Terramechanics 199, 30(6): 461-9
    [30] 韩雪梅,刘侃,周玉珑。履带车辆行驶力学。1988,北京:国防工业出版社
    [31] Michael D., Letherwood David. Ground vehicle modeling and simulation of military vehicles using high performance computing [J]. Parallel Computing 2001,27(2): 109~140
    [32] Caccia M., Indivery G., Tiano A. and Veruggio G. Modeling and identification of open frame variable configuration unmanned underwater vehicles[J]. IEEE Journal of Oceanic engineering, 2000, 25(2):227~240
    [33] 亚斯特列鲍夫等。水下机器人。1984,北京:海洋出版社
    [34] 刘溧,扬东来,陈慧岩。遥控履带车辆数字化操纵技术的研究。农业机械学报,2002,2(33):127-128
    [35] Merritt H. E. Some considerations influencing the design of high-speedtrack-vehicles. The Inst. of Automobile Engineers, 1939, 398-430,
    [36] Jakobsson B. Styrning av bandfordon (On steering of tracked vehicles). Dissertation (in Swedish), 1947. Chalmers University of Technolog, G¨oteborg, Sweden.
    [37] Olsson K.-O. Gerbert G. On track vehicles running through curves. Division of Machine Elements, Chalmers University of Technology, Lund Technical University, 1982.
    [38] Thuvesen, D., Steering of Tracked Vehicles on Solid Ground, 7th European ISTVS Conference, Ferrara, Italy, October 8-10,1997.
    [39] M. G. Bekker. Introduction to Terrain-Vehicle Systems. University of Michigan Press, Ann Arbor, MI 1969
    [40] Wong, J. Y. Computer aided analysis of the effects of design parameters on the performance of tracked vehicles. Journal of Terramechanics, 1986, 32(2):95-124
    [41] Wong, J. Y. Theory of Ground Vehicles. Wiley, New York, 1989, second edition.
    [42] Yamakawa, J. Watanabe, K. A spatial motion analysis model of tracked vehicles with torsion bar type suspension. Journal of Terramechanics, 2004,2(41):113-126
    [43] 韩宝坤,李晓雷,孙逢春。基于DADS的履带车辆多体模型与仿真。系统仿真学报,2002,11(14):1531-1540
    [44] 史力晨,王良曦,张兵志。高速履带车辆悬挂系统动力学仿真。系统仿真学报,2004,7(16):1429-1432
    [45] 王学宁。越野环境中坦克动力学建模研究。国防科技大学研究生院,2002,1
    [46] Anh Tuan Le, Modelling and Control of Traccked Vehicles. Department of Mechanical and Mechatronic Engineering, The University of Sydney, 1999
    [47] Zvi Shiller, William Serate, Minh Hua. Trajectory Planning of Tracked Vehicles. 1993 IEEE Int. Conf. On Robotics and Automation, Atlanta, GA, pp. 796-801
    [48] M. Ahmadi, V. Polotski, R. Hurteau. Path Tracking Control of Tracked Vehickes. Proceeding of the 2000 IEEE International Conference on Robotics & Automation, 2000, San Francisco, CA.: 2938-2943
    [49] 贺建飚,廖迪洪,张彭。履带式移动机器人行动规划技术的研究。机器人,1994,11(16):329-356
    [50] 贺建飚,唐修俊,张彭,赵经纶。越野移动机器人自动驾驶专家系统的研究。机器人,1994,9(16):264-268
    [51] 刘溧,杨东来,陈慧岩。遥控履带车辆数字化操纵技术的研究。农业机械学报,2002,3(33):127-128
    [52] 吴绍斌,丁华荣,刘溧,陈慧岩。履带车辆遥控驾驶的转向控制技术。兵工学报,2002,8,(23):402-405
    [53] 彭晓军,史美萍,贺汉根。虚拟环境中装甲车辆运动仿真的研究。计算机仿真,2004,2(21):28-31
    [54] 郭齐胜,刘永红,李光辉,薛青,杨瑞平,郑长伟,朱吴。83A水陆坦克驾驶训练模拟器仿真软件的研制。系统仿真学报,2002,8(14): 1006-1009
    [55] Pere Ridao, Joan Batlle, Marc Carreras. Dynamics Model of an Underwater Robotic Vehicle, Research report. Institute of Informatics andApplications, University of Girona, 2001, 3
    [56] Stefan B. Williams, Paul Newman, Julio Rosenblatt, Gamini Dissanayake, Huge Durrant-Whyte. Autonomous Underwater Navigation and Control. Robotica Journal, 2001, 7 (19): 481-496
    [57] Anthony Beis. A Finite Eliment Analysis of the NPS Autonomous Underwater Vehicle Intended to Operate in Deep Waters. Research Report NPS-ME-01-005, Naval Postgraduate School, Monterey, CA. 1999
    [58] James G Bellingham et al. Keeping layered control simple. Preceeding of the Symposium on Autonomous Underwater Vehicle Technology, 1990:3-8.
    [59] Riedel, JS and Healey, AJ, Model Based Predictive Control of AUVs for Station Keeping in a Shallow Water Wave Environment, Proceedings of the International Advanced Robotics Program IARP 98, 1998, 2
    [60] 张铭钧,段群杰.基于神经网络的水下机器人运动预测控制方法.中国造船,42:43-521(2001)
    [61] 吴旭光,徐德民。水下自主航行器动力学模型-建模和参数估计。1998,西安:西北工业大学出版社
    [62] Gianni Ferretti, Roberto Girelli. Modelling and Simulation of an agricultural tracked vehicle. Journal of Terramechanics 1999, (36): 139-158
    [63] 张禹,刘开周,邢志伟,封锡盛。自治水下机器人实时仿真系统开发研究。计算机仿真,2004,4(21):155-158
    [64] 孟伟,张国印,韩学东。一种新型的系统建模方法。哈尔滨工程大学学报,2000,10(21):42-45
    [65] 潘瑛,徐德民。自主式水下航行器空间运动矢量建模与仿真。系统仿真学报,2003,3(15):538-540
    [66] Kalman R E. A new approach to linear filtering and prediction problem. Journal of Basic Eng(ASME), 1960, 82D: 95-108
    [67] 邓自立,最优滤波理论及其应用,哈尔滨工业大学出版社,2000
    [68] 秦永元,卡尔曼滤波与组合导航原理,西北工业大学出版社,1998
    [69] 高钟毓,工程系统中的随机过程,清华大学出版社,1989
    [70] 史忠科,最优估计的计算方法,科学出版社,2001
    [71] Harold w. Sorenson, Kalman Filtering: Theory and Application, IEEE Press, 1985
    [72] Sunahara Y. An approximate method of state estimation for nonlinear dynamical system, Joint Automatic Control Conf, Univ. of Colorado, 1969
    [73] Bucy R.S, Renne k D., Digital synthesis of nonlinear filter, Automatica, 1971,7(3): 287-289
    [74] Liang, Yan, An. Dexi, Estimation of time-varying time delay and parameters of a class of jump Markov nonlinear stochastic systems. Computers and Chemical Engineering, 2003,12(27): 1761-1768
    [75] Niedzwiecki, M,, Wasilewski, A., Application of adaptive filtering to dynamic weighing of vehicles, Control Engineering Practice. 1996, 5(4):635-644
    [76] Plett, Gregory L.. Extended Kalman filtering for battery management systems of LiPB-based HEY battery packs: Part 3. State and parameter estimation, Journal of Power Sources, 2004,8(134): 277-292
    [77] EI Harrouni, k. Ouazar, D. Aquifer parameter estimation by extended Kalman filtering and boundary elements, Engineering Analysis with boundary Elements, 1997,4(19): 231-237
    [78] Sage A P, Husa G W. Adaptive filtering with unknown prior statistics, Joint automatic control conf. Boulder, CO, 1969: 760-769
    [79] Yoshimura T, Seuda T. A technique for compensating the filter performance by a fictitious noise, Trans. ASME, 1978,100(2):154-156
    [80] Friedland B. Treatment of bias in recursive filtering. IEEE Trans. AC, 1969,14(4):359-367
    [81] Jazwinsky A. H. Stochastic processes and filtering theory, Academic Press, New York, 1970
    [82] Sorenson HW. Comment on 'A Practical non-diverging filter',.AIAI Journal, 1970,9, 767
    [83] 张金槐,自适应衰减记忆滤波中时变衰减因子的最佳选择,飞行器测控学报,1994,1:9-13
    [84] 史忠科,神经网络控制理论,西北工业大学出版社,1996
    [85] 吴美平,陆用激光陀螺捷联惯导系统误差补偿技术研究:[博士学位论文],国防科技大学,2000
    [86] S. J. Julier, J. K. Uhlmann, H. F. Durrant-Whyte. A new approach for filtering nonlinear system, in Proc. Am. Contr. Conf., Seattle, WA, 1995
    [87] S. J. Julier, J. K. Uhlmann, H. F. Durrant-Whyte. A new method for nonlinear transformation of means and covariances in filters and estimators, IEEE Trans. Automatic Control, 2000, vol. 415, 477-482
    [88] E.A. Wan, R. Van der Merwe, The unscented kalman filter for nonlinear estimation, in Proc. of IEEE Symposium 2000, Lake Louise, Alberta, Canda, 2000,10
    [89] R. Van der Merwe, E.A. Wan, The squra-root unscented kalman filter for state and parameter estimation.
    [90] Julier, Simon J. H. F. Durrant-whyte. Navigation and parameter estimation of high speed road vehicles. Robotics and Automation conference, 1995,101-105
    [91] S. J. Julier and J. K. Uhlmann. A new extension of the Kalman filter to nonlinear systems. In Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Simulation and Controls, volume Multi Sensor Fusion, Tracking and Resource Management Ⅱ, 1997..
    [92] Van der Merwe, R. E.A. Wan, Effcient derivative-free kalman filters for online learning, European symposium on artificial neural networks, Bruges, Belgium, 2001.
    [93] Zhejun Fan, Y, Koren, D. Wehe, Tracked mobile robot control: hybrid approach. Control Eng. Practice, 1995, 3, (3): 329-336
    [94] k. Rintanen, H. Makela, etc. Development of an autonomous navigation system for an outdoor vehicle. Control Eng. Practice, 1996, 4(4): 499-505
    [95] C.W. Chen, G. G. Wang, S. H. Wang. Design of turning control for a tracked vehicle. IEEE Control Systems, April 1990, pp. 122-125
    [96] Zhejun Fan, Yoram Koren, David Wehe. A simple traction control for tracked vehicles. Proceeding of the American control conference, seattle, Washington, 1995,7
    [97] 倪建宇,周怀阳,彭晓彤,梁楚进.中国多金属结核开辟区的深海环境.海洋地质与第四纪地质,2002,22(1):43-47.
    [98] Shiller, Z., Serate, W., and Hua, M. (1993). Trajectory planning of tracked vehicles. IEEE Transaction on Robotics and Control, 3: 796-801.
    [99] 李力.《自行式海底作业车的研制研究报告》.中国大洋矿产资源研究开发协会.2001
    [100] 李洪人.液压控制系统.国防工业出版社,1981.
    [101] M.K. Bahr, J. Svoboda, R. B. Bhat. Vibration analysis of constant power regulated swash plate axial piston pumps. Journal of Sound and Vibration, 2003, 259(5):1225-1236.
    [102] N. D. Manring and R. E. Johnson. Modeling and designing a variable-displacement open loop pump. Journal Dynamic Systems, Measurement, and Control, 1996, 118:262-272
    [103] Rudolph van der Merwe, Nando de Freitas, Arnaud Doucet, Eric Wan. The Unscented Particle Filter. Adv. Neural Inform, Process. Syst.,11,2000.
    [104] S. J. Julier and J. K. Uhlmann, The scaled unscented transformation. Proc. Amer. Control Conf., 2002, 4555-4559.
    [105] S. J. Julier, Unscented filtering and nonlinear estimation. Proc. Of the IEEE, 92(3):401-422
    [106] R.M. Murray and S. Sastry, Steering nonholonomic systems using sinusoids[J],IEEE Conference on Decision and Control, 1990, 2097-2101
    [107] 马保离,宗光华,霍伟.非完整链式系统的路径规划一多项式拟合法[I].自动化学报,1999,25(5),662-666
    [108] 曹洋,非完整足球机器人运动控制策略的研究与实现[M].东北大学. 2004.
    [109] koren, Y. Corss-coupleing biaxial computer control for manufacturing systems. Journal on manufacturing system, Measurement and control. 1980, 11(102): 265-272
    [110] Koren Y, Lo C C. Advanced controller for feed drives. Annals of the CIRP, 1992, 41(2): 140-148
    [111] P. k. Kullami and K. Srinivasan, "Cross-coupled control of biaxial feed drive servomechanisms. ASME J. dynamic Syst.. Meas.. Control, (112): 225-232.
    [112] 易小刚,焦生杰,刘正富,全液压推土机关键技术参数研究.[J]中国公路学报,2004,17,(2):119-123.
    [113] 张京开,拖拉机田间滑转率测定的理论探讨[J].农业质量与监督,1996,1:11-12.
    [114] 戴学民,履带推土机整体性能试验中的几个问题[J].工程机械,1997(8):13-15.
    [115] 贾建章,邵明亮,董立军,车轮瞬时滑转率的测量和提高处理精度的方法[J].汽车研究与开发,1998,5:30-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700