用户名: 密码: 验证码:
东海陆坡海底滑坡识别及致滑因素影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底滑坡广泛发育于海底陆坡上,是改变海底地形地貌的主导因素,也是大陆坡上沉积物往深海盆地搬运的重要方式。突发大规模的海底滑坡事件可能造成海啸,给沿海地区居民的生命和财产带来巨大损失。因此近几十年来许多学者开始研究海底滑坡分布、物质来源、形成机制以及演化模式,为人类的防灾减灾提供科学依据。
     东海海域是被动型大陆边缘,具有较陡的大陆坡,海底构造复杂,东海大陆边缘发育大量的海底滑坡。然而,由于过去缺乏高精度、高分辨率的多波束水深数据资料,因此,在东海陆坡海域尚未系统的对海底滑坡作基本形态特征分析与机理探讨。
     已有的研究表明,海底滑坡在地形上出现下列特征:在坡度剧烈变化处,有弧形主陡坎,沿着主要陡坎的两侧向下延伸则会出现近平行的侧壁;或者在海底峡谷侧壁和在较顺直的海底斜坡上突然出现圈椅状的陡坎或陡壁。本研究基于海底滑坡的地形特征,使用目前较高精度的多波束水深地形资料,利用专业的商用软件CARIS HIPS把离散的多波束水深数据进行网格化,构建高分辨率的海底数字地形模型,绘制海底地形三维立体图和坡度图,以海底滑坡所呈现出的地形特征来识别其发生的位置。识别出海底滑坡后,量测和计算滑坡坡度、主要陡坎高度、滑坡发生的水深、滑坡面积与体积等。
     识别结果显示,在东海中部陆坡共有102处海底滑坡,面积大小由0.06km2至15.51km2不等;体积大小介于0.001km3和1.942km3之间。估计还有许多地貌形态特征不显著和规模较小滑坡未被计算在内体积最大的滑坡位于已发现海底泥火山附近,海底滑坡的规模可能和泥火山发育有相关性。
     根据统计可知,大部分海底滑坡发生在局部坡度小于20°、水深在200m~1200m的海底;海底局部坡度与海底滑坡的规模具有较好的正相关性;海底滑坡搬运的土层厚度平均为26m。
     根据前人研究经验,作为海底滑坡分类参数的H/L值表明研究区海底滑坡发育崩塌型、旋转型和平移型滑坡,而缺少流动型滑坡。崩塌型和旋转型滑坡主要分布在海底峡谷谷壁及其附近海底;而平移型滑坡主要分布在开阔的非海底峡谷陆坡区。
     通过3个非饱和土模型的土工离心模拟试验表明,研究区海底滑坡区附近发育的泥火山,是海底斜坡失稳过程中孔隙气和孔隙水在压力差作用下,自海底下向上逸出而形成的。土体含气通过影响土体的密度来影响土体的抗剪强度,而对孔压随重力加速变化的斜率影响不明显。
     通过Slope/W软件进行斜坡稳定性分析表明,研究区海底斜坡上末次冰期以后形成的沉积层在地震烈度7度下可能会发生斜坡失稳现象,在地震烈度6度下局部坡度超过3.1°海底斜坡沉积物可能会发生失稳滑坡,在静压力下,斜坡不会发生失稳现象。
     本论文主要创新点:1、利用高精度多波束资料对东海中部陆坡的海底滑坡进行系统识别和特征研究,并进行初步分类;2、针对研究区土体含气的情况,采用厌氧发酵法制备含气非饱和土,利用土工离心模拟试验进行斜坡失稳模拟研究。
Submarine landslide that widely occurs on the continental slope is one of the major forces which affect the morphology of continental margin, and one of the major mechanisms of sediment transport from the shallow water to the deep basin. Sudden large-scale submarine landslide may trigger tsunami, causing huge losses in property and human life of coastal residents. Therefore, it is important to investigate the distribution, source, mechanisms and evolution model of submarine landslides.
     East China Sea is a passive continental margin, characterized by rifted, rotated fault blocks and steeper continental slope. Thus, the geological condition is suitable for the development of submarine landslide. However, in the past years, due to lack of high resolution multi-beam bathymetric data, submarine landslides alone the continental slope of the East China Sea have not yet been synthetically studied on its characteristics and mechanism.
     Typical geomorphologic features of submarine landslide consist of an arcuate headscarp, two sub-parallel sidewalls and sometimes with slumped material appear at the base of the landslide scar. This study is based on seafloor morphology derived from the multi-beam bathymetric data. The discreet multi-beam data are incorporated in the CARIS Hydrographic Information Processing (HIPS) software packages and gridded. Then high resolution digital terrain models are constructed, slope maps and artificial hill-shade images created are used to identify the location of submarine landslides. After the Identification of submarine landslide, various aspects of the failures/fractures, including landslide area, run-out distance, the head-scarp height and slope, and adjacent local un-failed slope gradient, are measured and the relationships statistically analyzed. morphometric statistics give us useful insight into submarine landslides.
     Based on our investigation, the total number of submarine landslides identified is 102, and the area of the identified landslides ranges from 0.06km2 to 15.51km2, and the volume of the landslide is between 0.001km3 and 1.942km3, and averages 0.165km3. The largest landslide is approximately connected with the reported mud volcanoes.
     Most landslides occur on the local slopes less than 20°, with the depth of 200m~1200m. There is a high correlation between slope gradient and area. And the thickness of sliding layer is approximately 26m for each landslide. According to previous research experience, submarine landslides could be categorized by the H/L value. The statistic data show that most frequently observed submarine landslide belong to slump, rotational slide and translational slide and that there is a lack of flow slide in the study area. Most slumps and rotational slides are present on the submarine canyon system, and most translational slides are observed on the open continental slope.
     Three centrifuge modelling experiments of unsaturated soils show that the formation of mud volcano near the submarine landslides is facilitated by the process that the pore gas and water escape under the pressure difference while submarine slope is under instability. The gas in the soil could have effect on the soil strength by affecting its density, and have no significant effect on the rate of the water pore pressure change with the increase of the gravity acceleration.
     By using Slope/W software, the result of slope stability analysis shows that the sediments deposited in the study area after the last glacial period are under instability in the seismic intensity of 7 degrees, or in the seismic intensity 6 degrees with slope more than 3.1°.but the slope is stable under the self gravity
     The main innovations in this dissertation include:(1) Submarine landslides in the continental slope area between 27°N and 30°N are identified, statistically analyzed and preliminarily categorized, based on seafloor morphology derived from multi-beam bathymetric data. (2) Considering the gas content in the soil, the slope stability is analyzed and simulated in the centrifuge model test of submarine unsaturated soil slope with soil samples preparation under the anaerobic condition.
引文
[1]党靖,胡李俐,南帅.含水量及天然密度对土体抗剪强度参数的影响研究.中国西部科技,2007,5:14~15
    [2]范奉鑫,林美华,江荣华,等.东海陆架前缘斜坡(冲绳海槽西坡)北部的断块隆脊地貌.青岛海洋大学学报,2000,30(1):173~176
    [3]冯志强,冯文科,薛万竣.南海北部地质灾害及海底工程地质条件评价.南京:河海大学出版社,1996
    [4]冯秀丽,沈渭全,杨荣民,等.现代黄河水下二角洲软土沉积物工程地质特性.青岛海洋大学学报,1994.12: 132~137
    [5]冯秀丽、叶银灿,马艳霞,等.动荷载作用下海底粉土的孔压响应及其动强度.青岛海洋大学学报,2002,32(3):431~435
    [6]傅命佐,刘乐军,郑彦鹏,等.琉球“沟-弧-盆系”构造地貌:地质地球物理探测与制图.科学通报,2004,49(14):1447~146
    [7]傅命佐.冲绳海槽构造地貌发育模式研究:[博士论文].青岛:中国科学院研究生院(海洋研究所),2005
    [8]付晓泰,王振平,卢双舫.气体在水中的溶解机理及溶解度方程.中国科学(B辑),1996,26(2):124~130
    [9]高立辉.非饱和黄土边坡危险含水量分析.企业科技与发展,2009,8:63~64
    [10]高金满,李国胜,孙家淞,等.冲绳海槽的地形地貌特征.海洋地质与第四纪地质,1987,7(1):51~60
    [11]何起祥.中国海洋沉积地质学.北京:海洋出版社,2006,171~224
    [12]胡日军.舟山群岛海域泥沙运移及动力机制分析:[博士论文].青岛:中国海洋大学,2009
    [13]胡光海,刘忠臣,孙永福,等.海底斜坡土体不稳定性研究状况.海岸工程,2004,1:23~45
    [14]胡光海,仲德林.海底土体失稳过程分类及其声学特征.中国地质灾害与防治学报,2004,15(3):91~95
    [15]胡光海,阎通,吴永亭,等.东海陆坡海底块体运动地形分析方法.中国海洋大学学报,2009,39(2):309~312
    [16]黄培华,苏维加,陈金波.冲绳海槽和琉球海沟的地震活动和应力场.地震学报,1994,16(4):407~415
    [17]黄志全,王思敬.离心模型试验技术在我国的应用概况.岩石力学与工程学报,1998,17(2):199~203
    [18]黄润秋,戚国庆.非饱和渗流基质吸力对边坡稳定性的影响.工程地质学报,2002,10(4):338~344
    [19]黄文熙.土的工程性质.北京:水利电力出版社,1983
    [20]黄一刚.台湾西南海域非活动型大陆边缘海底块体运动之探讨:[硕士论文].台湾:台湾大学,2008
    [21]侯晋芳.软粘土土坡稳定性研究:[博士论文],天津:天津大学,2007
    [22]寇养琦.南海北部的海底滑坡.海洋与海岸带开发.1990,7(3):48~51
    [23]李安龙,杨荣民,林霖,等.波浪加载下海底土质特性变化的研究.青岛海洋大学学报,2003.33(1):101~106
    [24]李本川,李凡,海洋灾害地质研究.见(in):曾呈奎,周海鸥和李本川(eds).中国海洋科学研究及开发.北京:海洋出版社,1992
    [25]李成钢,范奉鑫,阎军.东海陆架前缘斜坡北部的滑塌带海洋科学.2007,31(5):90~92
    [26]李风岐,苏育嵩.海洋水团分析.青岛:青岛海洋大学出版社,2000,348~385
    [27]李广雪,刘守全,姜玉池,等.黄河三角洲北部海底刺穿初步研究.中国科学(D辑),1999.29(4):379~384
    [28]李广雪,庄克琳,姜玉池.黄河三角洲沉积体的工程不稳定性.海洋地质与第四纪地质,2000,20(2):21~26
    [29]李广雪,杨子庚,刘勇.中国东部海域海底沉积环境成因研究.北京:科学出版社,2005
    [30]李家彪.多波束勘测原理技术与方法.北京:海洋出版社,1999
    [31]李家彪.东海区域地质.北京:海洋出版社,2008
    [32]李乃胜,李常珍,姜丽丽.冲绳海潮北部的构造活动性研究.海洋科学集刊,1998,40:89~102
    [33]李铁刚,常凤鸣.冲绳海槽古海洋学.北京:海洋出版社,2009
    [34]李巍然,杨作升,王琦,等.冲绳海槽陆源碎屑峡谷通道搬运与海底扇沉积.海洋与湖沼,2001,32(4):371~380
    [35]李维树,邬爱清,丁秀丽.三峡库区滑带土抗剪强度参数的影响因素研究.岩土力学,2006,27(1):56~60
    [36]李西双,刘保华,吴金龙,等.冲绳海槽西部陆坡地震相模式与沉积体系.海洋与湖沼,2004,35(2):120~129
    [37]李晓红,卢义玉,唐勇,等.岩石力学实验模拟技术.北京:科学出版社,2007,114~144
    [38]刘保华,李西双,赵月霞,等.冲绳海槽西部陆坡碎屑沉积物的搬运方式:滑塌和重力流.海洋与湖沼,2005,36(1):1~9
    [39]刘乐军.东海灾害地质分区研究的理论与实践:[博士论文],青岛:中国科学院海洋研究所,2004
    [40]刘红军,王小花,贾永刚,等.黄河三角洲饱和粉土液化特性及孔压模型试验研究.岩土力学,2005,26(2):93~97
    [41]刘红军,张民生,贾永刚,等.波浪导致的海床边坡稳定性分析.岩土力学,2006.27(6):986~990
    [42]刘忠臣,陈毅兰,丁继胜,等.东海海底地形分区特征和成因研究.海洋科学进展,2003,21(2):160~173
    [43]刘忠臣,刘保华,黄振宗,等.中国近海及邻近海海域地形地貌.北京:海洋出版社,2005
    [44]刘振夏,Berne.东海陆架的古河道和古三角洲.海洋地质与第四纪地质.2000,20(1):9~14
    [45]刘锡清,刘守全,王圣洁,等.南海灾害地质发育规律初探.中国地质灾害与防治学报,2002,13(1):12~16
    [46]柳飞.砂土地基承载力离心模型试验研究:[硕士论文].青岛:中国海洋大学,2007
    [47]贾永刚,单红仙.黄河口海底斜坡不稳定性调卉研究.中国地质灾害与防治学报,2000,11(1):1~5
    [48]贾永刚,史之君,单红仙,等.黄河口粉土强度丧失与恢复过程现场振动试验研究.岩土力学,2006,26(3)351~358
    [49]孟宪伟,刘保华,石学法,等.冲绳海槽中段西陆坡下缘天然气水合物存在的可能性分析.沉积学报,2000,18(4):629~633
    [50]栾锡武,秦蕴珊,张训华,等.东海陆坡及相邻槽底天然气水合物的稳定域分析.地球 物理学报,2003,46(4):467~475
    [51]孙湘平.中国近海区域海洋.北京:海洋出版社,2006
    [52]彭晓彤,周怀阳,陈光谦,等.论天然气水合物与海底地质灾害、气象灾害和生物灾害的关系.自然灾害学报,2002,11(4):18~22
    [53]单红仙,刘媛媛,贾永刚.水动力作用对黄河水下三角洲粉质十微结构改造研究.岩土工程学报,2004,26(5):654~658
    [54]孙运宝,吴时国,王志君,等.南海北部白云大型海底滑坡的几何形态与变形特征.海洋地质与第四纪地质,2008,28(6):69~77
    [55]孙树林,王利丰.饱和、非饱和有机质粉土抗剪强度的对比.岩土工程学报,2006,28(11):1932~1935
    [56]孙永福,胡光海,宋玉鹏,等.埕岛油田灾害地质研究成果报告.青岛:国家海洋局第一海洋研究所,2006
    [57]孙永福,董立峰,蒲高军,等.风暴潮作用下黄河水下三角洲斜坡稳定性研究.工程地质学报,2006,14(5):582~587
    [58]汤新福,赵云刚.含水量对压实粘土抗剪强度的影响.金属材料与冶金工程,2009,37(3):49~53
    [59]王年香,章为民.离心模型试验技术在岩土工程中的应用.中国水利水电工程未来与发展.2002,大连,396~399
    [60]王述功,王冠荣,何长海.东海陆架盆地与冲绳海槽盆地构造活动的差异性.黄渤海海洋,1999,17(3):44~49
    [61]王元勋.土质边坡稳定性分析的离心模型:[硕士论文].成都:西南交通大学,2003
    [62]吴佳瑜.台湾南部海域海底崩移之分布与特征:[硕士论文].台湾:台湾大学,2008
    [63]邢建营.土工离心模型试验技术的研究和应用:[硕士论文].杨凌:西北农林科技大学,2005
    [64]刑义川.非饱和土的有效应力与变形—强度特性规律的研究:[博士论文].西安:西安理工大学,2001
    [65]许国辉,单红仙,贾永刚,等.风暴浪导致的黄河口水下土体破坏试验研究.青岛海洋大学学报,2003,33(5):675~679
    [65]许国辉.波浪导致粉质土缓坡海底滑坡的研究—以黄河水下三角洲为例:[博士学位],青岛:中国海洋大学,2006
    [66]许忠淮,徐国庆,吴少武.东海地区现代构造应力场及其成因探讨.地震学报,1999,21(5):495~501
    [67]徐光明,陈爱忠,曾友金,等.超重力场中界面土压力的测量.岩土力学,2007,28(12):2671~2674
    [68]殷宗泽.土工原理.北京:中国水利水电出版社,2007
    [69]颜文涛,陈建文,范德江.海底滑坡与天然气水合物之间德相互关系.海洋地质动态,2006,22(12):38~40
    [70]杨启伦.海洋开发和海底不稳定性调查研究的关系.海洋技术,1994,13(4):65~67
    [71]杨文达,陆文才.东海陆坡—冲绳海槽天然气水合物初探.海洋石油,2000,4:23~28
    [72]杨子庚.海洋地质学.青岛:青岛出版社,2000
    [73]杨作升,陈卫民,陈彰榕,等.黄河口水下滑坡体系.海洋与湖沼,1994,25:573~581
    [74]杨作升,王涛.埕岛油田勘探开发海洋环境.青岛:青岛海洋大学出版社,1993
    [75]张士林,王冬梅,李根华.非饱和土坡危险含水量分析.中国工程科学,2004,6(5):
    [76]张士林,邵龙潭.非饱和土坡的稳定分析.西部探勘工程,2006,18(12):
    [77]赵月霞.东海陆坡海底峡谷地形地貌特征及其主要控制因素:[博士论文].青岛:中国海洋大学,2006
    [78]赵汗青,吴时国,徐宁,等.东海与泥底辟构造有关的天然气水合物初探.现代地质,2006,20(1):115~122
    [79]周孟津,张榕林,蔺金印.沼气实用技术.北京:化学工业出版社,2009
    [80]周秋娟.软土卸荷力学特征及软弱地层中基坑稳定性研究:[博士论文].广州:暨南大学,2009
    [81]周兴华、陈永奇.多波束声纳数据的底质分类.见(in):我国专属经济区和大陆架勘测研究论文集.北京:海洋出版社,2002,1~8
    [82]Andersen K.H., Lunne T., Kvalstad T.J., Forsberg C.F.. Deep water geotechnical engineering. Proceedings of the XXIV national conference of the Mexican Society of soil mechanics, Aguascalients,2008, 26~29
    [83]Ahlbrandt TW. Future petroleum energy resources of the world. Int Geol Rev,2002,44: 1092~1104
    [84]Bear J., Hydraulics of groundwater, Mcgrawhill, USA,1979
    [85]Beardsley R C,Limburner R,Yu H et al.. Discharging of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Researeh,1985,4(1/2):57~76
    [86]Biscontin G, Pestana J M, Nadim B F.. Seismic Triggering Of Submarine Slides In Soft Cohesive Soil Deposits. Marine Geology,2004,203:341~354
    [87]Boea R, et al.. Submarine Slide Scars and Mass Movements in Karmsundet and Skudenesfjorden, Southwestern Norway:Morphology and Evolution. Marine Geology,2000, 167:147-165
    [88]Canals M, Lastras G, et al.. Slope Failure Dynamics and Impacts from Seafloor and Shallow Sub-seafloor Geophysical Data:Case Studies from the COSTA Project. Marine Geology, 2004,213:9~72
    [89]Cathles L.M., Zheng Su, Duofu Chen.. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Marine and Petroleum Geology,2010,27:82~91
    [90]Chaytor JD.. Size distribution of submarine landslides along the U.S. Atlantic margin, Mar. Geol., doi:10.1016/j.margeo.2008.08.007.
    [91]Craig W.H. The seven age of centrifuge modeling, In S.M. Springman (ed.) Workshop on constitutive and centrifuge modeling:Two extremes, Monte Verita, Ascona, Ticino, Switzerland,2001,165~174
    [92]Cui, Y. J., Delage, P., Marcial, D., Terpereau, J.-M., and Marchadier, G., "Sur la susceptibilite a l'effondrement des loess du Nord de la France," Proceedings of the 16th International Conference on Soil Mechanic and Geotechnical Engineering, Osaka, Balkema,2005,1: 495~498
    [93]Dan G, Sultan N and Savoye B, The 1979 Nice harbour catastrophe revisited:Trigger mechanism inferred from geotechnical measurements and numerical modeling, Marine Geology,2007,245:40~64
    [94]Della Vedova B, Pellis G, Camerlenghi A, Foucher JP, Harmegnies F, The thermal history of deep-sea sediments as a record of recent changes in the deep circulation of the eastern Mediterranrean, Review of Geophysics,2003,108(C9),8110~8135.
    [95]Gardner,J.V.,Mayer,L.A.and Clarke,J.E.H., Morphology and processes in Lake Tahoe (California-Nevada), Geological Society of America Bulletin,2000,112:736~746
    [96]Fredlund, D.G. soil mechanics principles that embrace unsaturated soils. Proc.11th Int. Conf. Soil Mech. Found. Eng., San Francisco,1985, Vol.2,465~472
    [97]Forsberg C.F., Planke S., Tjelta T. I., Svanφ G, Strout J. M. Svensen H. Formation of Pockmarks in the Norwegian Channel. Proceedings of the 6th International Offshore Site Investigation and Geotechnics Conference:Confronting New Challenges and Sharing Knowledge,2007, London, UK,112-113
    [98]Green, A.,Uken, R.. Submarine Landslideing And Canyon Evolution On The Northern Kwazulu-Natal Continental Shelf, South Africa,Sw Indian Ocean. Marine Geology,2008, 254:152~170
    [99]Grozic J.L.H., Kvalstad T.J. Effect of gas on deepwater marine sediments. Proceedings of the fifteenth international conference on soil mechanics and geotechnical engineering,2001, Istanbul,27~31
    [100]Grozic J.L.H. S.M.R. Imam, P.K. Robertson, and N.R. Morgenstern. Constitutive modeling of gassy sand behavior. Canadian Geotechnical Journal,2005,42:812~829
    [101]Grozic J.L.H. Liquefaction potential of gassy marine sands. In Jacques Locat, Jurgen Mienert (eds). Submarine mass movements and their consequences:1st international symposium-proceedings (Advances in Natural and Technological Hazards Research),2003, Kluwer Academic Publishers,37~45
    [102]Hampton,M.,Lee,H.. Submarine Landslides. Reviews of Geophysics,1996,34(1):33~59
    [103]Haeussler P, Lee H, Ryan H, Labay K, Suleimani E, Alexander C, Kayan R, Submarine Landslides and Tsunamis at Seward and Valdez Triggered by the 1964 Magnitude 9.2 Alaska Earthquake[A]. Alaska Geology, Newsletter of the Alaska Geological Society,2008, 39(2):1~2
    [104]Hampton M.A., Lee H.J. and Locat J.Submarine Landslides, Review of Geophysics,1996, 34(1):33~59
    [105]Haflidason H, Sejrup H P, Nygard A, et al. Architecture, Geometry and Slide Development of the Storegga Slide. Marine Geology,2004,213:201~234
    [106]Hongrui Hu. A Block Model for Submarine Slides involving Hydroplaning.2007, Dissertation, The University of Texas at Austin
    [107]Hsu SK, Tsai C-H, Ku C-Y et al. Flow of turbidity currents as evidenced by failure of submarine telecommunication cables. In:Chiocci FL, Ridenti D, Casalbore D, Bosman A (eds.) Intern Conf on Seafloor Mapping for Geohazard Assessment, Extended Abs, Rendiconti online, Societa Geologica Italiana,2009,7:167~171.
    [108]Hutton Eric W H, James P, Syvitski M. Advances in the Numerical Modeling of Sediment Failure during the Development of a Continental Margin. Marine Geology,2004,203:367~ 380
    [109]Huanerbach V, Masson D, et al. Landslides in the North Atlantic and its Adjacent Seas:an Analysis of Their Morphology, Setting and Behaviour. Marine Geology,2004,213:343~ 362
    [110]HU Guanghai, YAN Tong,LIU Zhenxia, Maarten Vanneste, and DONG Lifeng. Size Distribution of Submarine Landslides Along the MiddleContinental Slope of the East China Sea. J. Ocean Univ. China,2009,8(4):322~326
    [111]Imam, S.M.R., Robertson, P.K., Chan, D.H., and Morgenstern, N.R. A critical-state constitutive model for liquefiable sand. Canadian Geotechnical Journal,2005,42:830~855
    [112]Imam, S.M.R. Modeling the constitutive behavior of sand for the analysis of static liquefaction:[Ph.D. thesis], Edmonton, Alta, University of Alberta,1999
    [113]Ilstad T, Marr J G, Elverhbi A and Harbitz C B. Laboratory Studies of Subaqueous Debris Flows by Measurements of Pore-Fluid Pressure and Total Stress. Marine Geology,2004,213: 403~414
    [114]Ilstad T, De Blasio F V, Elverhbi A, et al. On the Frontal Dynamics and Morphology of Submarine Debris Flows. Marine Geology,2004,213:481~497
    [115]Jeng D S. Mechanism of the Wave-Induced Seabed Instability in the Vicinity of A Breakwater:A Review. Ocean Engineering,2001,28:537~570
    [116]Juan Acosta, et al. The Balearic Promontory Geomorphology (Western Mediterranean): Morphostructure and Active Processes. Geomorphology,2002,49:177~204
    [117]Kubo A., Eiichi Fukuvama. Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes. Earth and Planetary Science Letters, 2003,210:305~316
    [118]Lastras G. M, Canals R, Urgeles M, et al. Characterisation of the Recent Big'95 Debris Flow Deposit on the Ebro Margin, Western Mediterranean Sea, after a Variety Of Seismic Reflection Data. Marine Geology,2004,213:235~255
    [119]Lee S H, Chough S K, Back G G, et al. Chirp (2-7-KHz) Echo Characters of the South Korea Plateau,East Sea:Styles of Mass Movement and Sediment Gravity Fow. Marine Geology, 2002,184:227~247
    [120]Leynaud D, Mienert J and Nadim F. Slope Stability Assessment of the Helland Hansen Area Offshore the Mid-Norwegian Margin. Marine Geology,2004,213:457~480
    [121]LIU ZhenXia, BERNE S, SAITO Y, et al, Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea. J. of Asian Earth Sciences. 2000,18:441~452.
    [122]Locat J, Bornhold B, Hart B, et al. Costa-Canada, a Canadian Contribution to the Study of Continental Slope Stability:An Overview[A], Proceedings of the 54rd Canadian Geotechnical Conference[C]. Calgary, Alberta, Canada,2001.730~737
    [123]Locat J., Lee H.J., Submarine landslides:advances and challenges, Canadian Geotechnical Journal,2002,39:193~212
    [124]Lykousis, V., Doussakis, G., Alexandri, M., Pavlakis, P. and Papoulia, I., Sliding and regional slope stability in active margins:North Aegean Trough (Mediterranean), Marine Geology, 2002,186:281~298
    [125]Marsset T, Marsset B, Thomas Y, et al. Analysis of Holocene Sedimentary Features on the Adriatic Shelf From 3D Very High Resolution Seismic Data (Triad Survey). Marine Geology, 2004,213:73~89
    [126]McAdoo, B.G., Pratson, L.F.Pratson, Orange,D.L., Submarine landslides geomorphology, US continental slope, Marine Geology,2000,69:103~136
    [127]Micallef A, Berndt C, Masson DG, Stow DAV. Scale invariant characteristics of the Storegga Slide and implications for large-scale submarine mass movements. Mar. Geol.2008, 247:46~60
    [128]Nageswaran S.. Effect of gas bubble on the sea bed behavior:[Ph.D. thesis], London, University of Oxford,1983
    [129]Miller Karrie L. The paradox of high sediment supply to the east china sea continental margin and the absence of submarine fans and large-scale slope failure in the Okinawa Trough.http://gsa.confex.com/gsa/2001AM/finalprogram/abstract_23873.htm
    [130]Mienert, J., Berndt,J.S.Laberg and Vorren,T.O., Slope Instability of continental Margins [M], From Wefer G et al,(eds),2002, Ocean Margin Systems.Springer-Vedag Berlin Heidelberg,179~193
    [131]Mulder T. and P. Cochonat, Classification of Offshore Mass Movements, Sedimentary Research,1996,1:43~57
    [132]Nixon M.F.. Influence of gas hydrates on submarine slope stability:[Master thesis], Alberta, University of Calgary,2005
    [133]Orange, D.L., Angell, M.M. and Lapp, D., Using seafloor mapping (bathymetry and backscatter) and high resolution sub-bottom profiling for both exporation and production: Detecting seeps, mapping geohazards and managing data overload with GIS[M], Offshore Technology Conference,1999
    [134]Pestana & Biscontin. A Simplified Model Describing the Cyclic Behavior of Lightly Overconsolidated Llays in Simple Shear, ucb/gt/2000-03,2000
    [135]Prior D.B. and J.N.Suhayda, Submarine Mudslide Morphology and Development Mechanisis, Mississippi Delta[M], the 11th. Annual Offshore Technology Conference, Houston, Texas, 1979,1055~1061
    [136]Prior, D.B. and Coleman, J.M. Active Slides and Flows in Underconsolidated Marine-Sediments on the Slopes of the Mississippi Delta[A]. In:Marine Slides and Other Mass Movements. ed. Saxov S. and J K Nieuwenhius,1982.21~49.
    [137]Prior D.B., Z-S.Yang, B.D.Bornhold, GH.Keller, N.Z.Lu, W. J. Wiseman, Jr. L.D.Wright, J.Zhang, Active Slope Failure, Sediment Collapse and Silt Flows on the Modern Subaqueous Huanghe Delta, Geo-marine Letters,1986,6:85~96
    [138]Saxov S., Marine-slides-some introductory remarks, Marine Geotechnology,1990,9:110~ 114
    [139]Serge BERNE, Pierre VAGNER, Zhenxia LIU et al, Pleistyocene tidal sand ridges and regressive deltas in the East China Sea. Marine Geology,2002(188):293~315
    [140]Solheim A, Bryn P, Sejrup HP, Mienert J, Berg K, Ormen Lange-an integrated study for safe development of a deep-water gas field within the Storegga Slide Complex, NE Atlantic continental margin; executive summary. Mar Pet Geol,2005,22:1~9
    [141]Sultan N, Cochonat P, Mienert J. Effect Of Gas Hydrates Melting On Seafloor Slope Instability. Marine Geology,2004,213:379~401
    [142]Sultan N, Cochonat P, Canals M, et al. Triggering Mechanisms of Slope Instability Processes and Sediment Failures on Continental Margins:A Geotechnical Approach. Marine Geology, 2004,213:291~321
    [143]Sultan N, Foucher J P, Cochonat P, et al. Dynamics of Gas Hydrate:Case of the Congo Continental Slope. Marine Geology,2004,206:1~18
    [144]Sultan N.. Excess pore pressure and slope failures resulting from gas-hydrates dissociation and dissolution. OTC18532,2007, Houston, Texas,1~9
    [145]Tappin, D. R., Watts,P., McMurtry GM, et al. The Sissano, Papua New Guinea tsunami of July 1998:Offshore evidence on the source mechanism, Marine Geology,2001,175:1~23
    [146]ten Brink US, Giest EL, Andrews BD. Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophys. Res. Let.2006,33, L11307
    [147]Tinti S, Manucci A, Pagoni A, Armigliato A, Zniboni F,The 30 December 2002 landslide-induced tsunamis in Stromboli:sequence of the events reconstructed from the eyewitness accounts,Natural Hazard Earth System Science,2005.5:763~775
    [148]Thiem R., Berntsen J., et al. Gas exploration beyond the shelf break:an oceanographic challenge. Environmental Modelling & Software,2006,21:136~141
    [149]Trincardi F, Cattaneo A, Correggiari A and Ridente D. Evidence of Soft Sediment Deformation, Fluid Escape, Sedimentfailure and Regional Weak Layers within the Late Quaternary Mud Deposits of the Adriatic Sea. Marine Geology,2004,213:91~119
    [150]Vanoudheusden E, Sultan N and Cochonat P. Mechanical Behaviour of Unsaturated Marine Sediments:Experimental and Theoretical Approaches. Marine Geology,2004,213:323~ 342
    [151]Wheeler S. J.. The stress-strain behavior of soils containing gas bubbles:[Ph.D. thesis], London, University of Oxford,1986
    [152]Wheeler S. J.. The undrained shear strength of soils containing large gas bubbles. Geotechnique,1988,38:399~413
    [136]Wheeler S.J., Sivakumar V.. An elasto-plastic critical state framework for unsaturated soil. Geotechnique,1995,45:35~53
    [153]Xinghua ZHOU and Yongqi CHEN, Seafloor Classification of Multibeam Sonar Data Using Neural Network Approach. Marine Geodesy,2005,28:201~206
    [154]XU Guohui, SUN Yongfu, HU Guanghai et al. Wave-induced shallow slides and their features on the subaqueous yellow river delta. Can.Geotech. J.,2009,46:1406~1417
    [155]Yang, Q.. Preliminary study of unstability of East China Sea Floor. In Liu & Liang ed. Geological Hazards and Environmental Studies of China offshore Areas. Qingdao:Qingdao Ocean University Press.1995,27~36
    [156]Yin, P, Berne, B, Vagner, P, Loubrieu, B., Liu, Z., Mud volcanoes at the shelf Margin Of The East China Sea, Marine Geology,2003,194:135~149
    [157]Yuan Di, Tadanobu Sato. Liquefaction Analysis of Saturated Soils Taking into Account Variation in Porosity and Permeability with Large Deformation. Computers and Geotechnics,2003,30:623~635

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700