用户名: 密码: 验证码:
深水导管架海洋平台安全可靠性分析及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深水导管架海洋平台由于工作水深较大,施工方便等优点,得到快速发展和推广。但由于深水导管架海洋平台自身复杂的结构、庞大的体积、昂贵的造价以及极恶劣的工作环境,对其安全性与经济性提出了更高的要求。本文依托中石化应用基础项目-“深水导管架平台关键技术研究”,通过理论推导、数值模拟、工程实例分析及配套软件开发等手段,重点开展了深水导管架海洋平台安全可靠性分析及优化设计的研究。
    
     本文主要研究内容如下:
     (1)基于非线性地基梁理论,采用非线性土弹簧模型模拟桩-土相互作用,建立了深水导管架海洋平台非线性动力分析模型。对比分析了采用等效桩法与考虑桩-土耦合法时平台的振动模态及关键部位处位移、速度及加速度的动力响应规律;考虑了桩-土耦合法计算时的群桩效应问题,分析了海底表层土性质、桩间距及桩径对平台动力响应的影响规律。
     (2)采用时程分析法对平台在地震载荷作用下的非线性动力响应进行分析,并与反应谱法计算结果进行了对比研究。分别运用IDA方法及Pushover法对深水导管架平台的抗震性能进行分析,并对Pushover法不同侧力加载模式的适用性与准确性进行分析比较,得到了适合深水导管架海洋平台的侧力加载模式。针对平台设计参数、材料参数、地震载荷的随机性,建立了平台在地震作用下的动力可靠性分析模型,并进一步考虑了地震导致的土层液化对平台动力可靠性的影响。
     (3)针对深水导管架海洋平台在随机波浪载荷作用下的疲劳问题,采用能够准确考虑海洋波浪能量沿整个频率范围分布情况的谱分析方法,并引入结构可靠性理论,建立了深水导管架海洋平台的疲劳可靠性模型,并同基于等效Weibull分布方法的计算结果进行了对比。
     (4)由于深水导管架平台疲劳问题突出,因此,要设计合理的平台结构形式,必须考虑平台的疲劳性能。本文通过MATLAB编程实现了Hooke-Jeeves直接优化算法,将ANSYS有限元软件作为求解器进行深水导管架海洋平台的动力响应及疲劳可靠性计算,并将疲劳可靠性指标作为优化的一项约束条件,通过MATLAB循环调用批处理模式下的ANSYS软件实现最终的平台结构优化分析过程。同时,引入一种可行的简化方法,即先进行极限静力载荷工况下的导管架海洋平台静力优化分析,然后在静力优化的基础上,将平台固有频率和安全疲劳可靠性指标作为约束条件进行动力优化分析。
     (5)针对深水导管架海洋平台选型这一复杂问题,基于层次分析法、综合模糊评判方法等理论,引入三级模糊优选决策理论以及专家群组评判可信度方法建立了深水导管架海洋平台模糊优化选型模型。以200m水深导管架海洋平台为例,对平台四种方案进行综合模糊优选。
     (6)以风险评估理论和模糊数学理论为基础,结合深水导管架海洋平台设计施工特点,对平台上驳过程、拖航过程和下水过程中不确定因素潜在的风险进行了分析。通过故障树法对各个过程的风险因素进行识别,并建立对应的故障树模型。引入基于专家群组可信度方法求解各风险因素的相对权重、各因素的发生概率隶属度以及各因素的后果严重程度隶属度。最后编制了针对深水导管架上驳过程、拖航过程及下水过程的综合施工风险评估程序。
The deep water jacket platform has been fast developed and generalized,because of the advantages of greater operating water depth and convenient construction. However, in consideration of the complicated structure, huge size, expensive cost and the adverse working conditions, the safety and economics of deep water jacket platform has been put forward higher demand. In this study, the safety reliability analysis and optimization design of deep water jacket platform were emphatically researched by means of theoretical derivation, numerical simulation, engineering example analysis and corresponding software development, on the basis of applied basic research project of China Petroleum & Chemical Corporation-“The key technology research of deep water jacket platform”
     The main research contents of this thesis are as follows:
     (1)Based on the nonlinear foundation beam theory, the nonlinear dynamic analysis model of deep water jacket platform was established, with the nonlinear soil spring model used to simulate the interaction of pile and soil. The vibration mode and the dynamic response rules of displacement, velocity and acceleration of key position, which were computed respectively by equivalent pile method and pile-soil interaction method, were comparatively analyzed; The group effect was considered when the pile-soil interaction method was used, and the influence laws of seabed surface layer property, pile spacing and pile diameter to dynamic response of platform were analyzed.
     (2)The nonlinear dynamic response of the deep water jacket platform under the earthquake load, was computed by the time history analysis method and the results were compared with response spectrum method. The seismic behavior of the deep water jacket platform was analyzed by IDA method and Pushover method respectively;The accuracy and applicability of different lateral load patterns for Pushover analysis method was studied, and the most suitable lateral load patterns for deep water jacket platform was obtained. Aiming at the randomness of design parameters, material parameters and seismic load, the dynamic probability analysis module for deep water jacket platform was established, and then the influence of soil liquefaction caused by earthquake on dynamic probability of platform was analyzed.
     (3)Considering the fatigue problems of deep water jacket platform under random wave forces, the spectrum analysis method was introduce, which can describe the distribution of wave energy exactly along the whole frequency domain. Then, the fatigue reliability model was established by the structural reliability theory and the calculation results were compared with those by equivalent Weibull method.
     (4)Because the fatigue problem was a serious problem for deep water jacket platform, to get a reasonable platform structure design, it is necessary to consider the fatigue property of the platform.The Hooke-Jeeves direct search optimization algorithm was realized by using the MATLAB software; the ANSYS program was used as an equation solver to calculate the dynamic response and fatigue reliability of deep water jacket platform; the ANSYS program was circularly called in patch model by MATLAB, so the optimization analysis process was performed with the fatigue reliability index as an optimization constraint.At the same time, a feasible simplified optimization method was introduced, in which a static optimizing analysis of platform under static extreme load was performed firstly, and then the dynamic optimum analysis was performed on the basis of the static optimization analysis results with natural frequency and fatigue reliability index as constraint conditions.
     (5)The optimization lectotype of deep water jacket platform is a complicated system question. According to analytic hierarchy process method and comprehensive fuzzy evaluation method, the fuzzy optimization model for optimum lectotype of deep water jacket platform was established, basing on three-level fuzzy evaluation method and expert group credit degree methods. Finally, a jacket platform for 200 m water was taken as an example; a fuzzy optimum selection was performed between the four initial schemes.
     (6)Basing on risk assessment theory and fuzzy mathematics theory, the potential risks caused by uncertain factors during the process of loading-out, towing and launching for deep water jacket platform were analyzed, in consideration of the design- construction properties of deep water jacket platform .The risk factors for each process were identified by fault tree method, and the corresponding fault tree model was established. The relative weights, the memberships of occurrence probability and accident consequences of risk factors were obtained by expert group credit degree methods. Finally, the risk assessment software was developed for the process of loading-out, towing, and launching.
引文
[1] Sterling G.H., Cox B.E., Warrington R.M., et al. Design of the cognac platform for 1025 feet water depth, Gulf of Mexico [A]. Proceedings of 11th Offshore Technology Conference[C]. Houston, Texas, 1979:1185-1198.
    [2] Sterling G.H., Cox B.E., Warrington R.M., et al. Installation of the pile foundation for the cognac platform[A]. Proceedings of 11th Offshore Technology Conference [C]. Houston, Texas, 1979:1221-1232.
    [3] Forristall G.Z. Measurements of Current Blockage by the Bullwinkle Platform [J]. Journal of Atmospheric and Oceanic Technology, 1996, 13(6): 1247-1266.
    [4] Mayfield J.G., Arnold P., Eekman M.M., et al. Installation of the bullwinkle platform [A]. Offshore Technology Conference [C]. Houston, Texas, 1989:107-120.
    [5] Rusaas P., Giske S.R., Barrett G., et al. Design, operations planning and experience from the marine operations for the europipe jacket with bucket foundations [A]. Offshore Technology Conference [C].Houston, Texas, 1995:885-896.
    [6]施晓春,徐日庆,龚晓南,等.桶形基础发展概况[J].土木工程学报, 2000, 33(4): 68-92.
    [7]王兴国.导管架海洋平台结构优化设计研究[D].大连:大连理工大学, 2003.
    [8]竺艳蓉.海洋工程波浪力学[M].天津:天津大学出版社,1991.
    [9]邱大洪.波浪理论及其在工程上的应用[M].北京:高等教育出版社, 1985.
    [10]陈士荫,顾家龙,吴宋仁.海岸动力学[M].北京:人民交通出版社, 1988.
    [11]竺艳蓉,谢峻,龚佩华.各种波浪谱在海洋工程中适用性的研究[J].海洋学报, 1994, 17(5): 126-131.
    [12]俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社, 2000.
    [13]文圣常,余宙文.海浪理论与计算原理[M].北京:科学出版社, 1984.
    [14] Sarpkaya T, Isaacson M. Mechanics of wave forces of offshore structures [M]. London: Van Nostrand Reinhold Company, 1981.
    [15] Sorensen R.M.. Basic coastal engineering [M]. New York, John Wiley & Sons, 1978.
    [16] Horiawa K.. Near shore dynamics and coastal process [M]. University of Tokyo Press. 1988.
    [17] Malhorta, A.K. Penien, J. Response of offshore structures to random wave forces [J]. Journal of the Structural Division,1970, 96(10): 2155-2173.
    [18] Morison J. R., 0’Brien M. P., Johnson J.W, et al. The forces exerted by surface waves on piles [J]. Petro.Trans., Am. Inst. of Mining Eng., 1950, 189: 149-54.
    [19]初良成,曲乃泗,邬瑞峰.附连水质量对结构动力响应影响的摄动分析[J].振动与冲击, 1994,(2): 67-75.
    [20]童予靖,刘止兴.流固耦合问题中的附连水质量研究[J].上海力学, 1997,18(4): 311-320.
    [21]钱勤,黄玉监.求附连水质量的一种直接方法[J].力学与实践, 1996, 18(5): 19-21.
    [22]金占礼,王宗利,李红云,等.结构在无限流体域中振动时附连水质量的数值计算方法[J].上海交通大学学报, 2000, 34(8): 1078-1082.
    [23] Niedzwecki J.M., Sandt E.W.. Nonlinear wave load effects on the stochastic behavior of fixed offshore platforms[C]. OTC 5139, 1986: 491-98.
    [24] Sandt, E.W., Niedzwecki, J.M. Response of Flexible structures in random seas [J] Eng. Struct. 1990, 12: 277-83.
    [25] Malhorta, A.K. Penien, J. Non-deterministic analysis of offshore structures [J]. Journal of the Engineering Mechanics Division,1970, 96(12): 985-1003.
    [26] Mostafa Y.E.. Response of fixed offshore platforms to environment loads [D]. University of Western Ontario, 2002.
    [27] Mostafa Y.E., El Naggar M.H.. Response of fixed offshore platforms to wave and current loading including soil-structure interaction [J]. Soil Dynamics and Earthquake Engineering, 2004, 24(4): 357- 368.
    [28] Mostafa Y.E., El Naggar M.H.. Effect of seabed instability on fixed offshore platforms [J]. Soil Dynamics and Earthquake Engineering, 20062, 26: 1127-1142.
    [29] Borgman L.E.. Spectral analysis of ocean wave forces on piling [J]. ASCE J Waterways Harbours Div, 1967, 93(WW2):129-156
    [30] Berge B, Penzien J.. Three-dimensional stochastic response of offshore towers to wave forces[A]. Offshore Technology Conference[C]. Houston, Texas, 1974:173-190.
    [31] Penzien J., Kaul M.K., Berge B.. Stochastic response of offshore towers to random sea waves and strong motion earthquakes [J]. J.Computers & Structures, 1972, 2(5-6):733-756.
    [32] Malhorta A K., Penzien J. Response of offshore structures to random wave forces [J]. J. Struct. Div., 1970, 2155-2173.
    [33] Brebbia C.A., Walker S. Dynamic analysis of offshore structures [M]. Newnes -Butterworths, London, 1979.
    [34] Changa M.T., Tunga C.C.. An approximate method for dynamic analysis of offshorestructures to wave action [J]. Engineering Structures, 1990, 12(2):120-123.
    [35] Spidsoe N., Brathaug H.P., Skj?stad O., et al. Nonlinear random wave loading on fixed offshore platforms [A]. Offshore Technology Conference[C]. Houston, Texas, 1986, 183-192.
    [36] Kareem A., Hsieh C.C., Tognarelli M.A.. Frequency-domain analysis of offshore platform in non-gaussian seas [J]. Journal of engineering mechanics, 1998, 124(6): 668-683.
    [37] Hartnett M, Mullarkey T.P.. Numerical evaluation of hydrodynamic loadings on fixed offshore structures [J]. Advances in Computational Techniques for Structural Engineering, 1996, 26: 263-268.
    [38]陆文发,李林普,高明道.近海导管架平台[M].北京:海洋出版社, 1992.
    [39]马汝建.浅海结构物波浪力计算及实验研究[J].中国石油大学学报:自然科学版, 2000, 24(2): 79-81.
    [40]金伟良,郑忠双,邹道勤,等.海洋导管架平台随机响应混合分析方法[J].海洋工程, 2001, 19(01): 14-19.
    [41]俞聿修,张宁川.三桩桩列上的不规则波浪力[J].港口工程, 1989,(3):1-7.
    [42]俞聿修,张宁川.不规则波作用于双桩桩列上的横向力[J].海洋学报, 1991, 13(2): 254-261
    [43]张宁川,俞聿修.不规则波作用下的群桩效应[J].海洋通报, 1993, 12(3): 95-101.
    [44]杨江辉,张宏,刘锦昆,等.基于ABAQUS/AQUA的深水导管架平台动力分析研究[J].中国海洋平台, 2007, 22(6):29-33
    [45] Biot M.A. Theory of elastic systems vibrating under transient impulse with an application to earthquake-proof buildings [J]. Proc Nat AcadSci ,1933,19(2): 262-268.
    [46] Housner, G. W., Brennan, J. F., The estimation of linear trends [J]. Ann. Math. Stat. 1948, 19: 380-388.
    [47] Tung T.P., Newmark N.M.. Response spectrum techniques in engineering seismology [C]. Proceedings of the first world conference on earthquake engineering, Berkeley, California, 1956, 4.1-4.12.
    [48] Housner G.W., Jennings P.C.. Generation of artificial earthquakes. [J]. Journal of the Engineering Mechanics Division, 1964, 90(EM1): 113-150
    [49] Housner G.W., Jennings P.C.. The capacity of extreme earthquake motions to damage structures [J]. Structural and Geotechnical Mechanics, A volume honoring N MNewmark, Prentice Hall: 1977, 102-116.
    [50]武藤清.结构物动力设计[M].藤家禄,译.北京:中国建筑工业出版社, 1986.
    [51] Karadenia H.. Spectral analysis of offshore structures under combined wave and earthquake loadings[A]. Proceedings of the Ninth International Offshore and Polar Engineering Conference[C]. France, Brest, 1999: 504-511.
    [52] Yamada Y., H.lemura. Seismic response of offshore structures in random seas [J]. Earthquake Engineering & Structural Dynamics, 1989, 18(7):965-981.
    [53] Hesham M.,El Naggar, M.A. Shayanfar, et al. Simplified BNWF model for nonlinear seismicresponse analysis of offshore piles with nonlinearinput ground motion analysis[J]. Can. Geotech. J, 2005, 42(2): 365–380.
    [54] Behrouz Asgarian, Hamed R. Shokrgozar, Ali shaken talarposhti. Seismic performance evaluation of the jacket type offshore platforms through incremental dynamic analysis considering soil-pile-structure interaction [A]. Seismic Engineering Conference[C]. Reggio di Calabria, Italy, 2008:1787-1795.
    [55]俞载道,陈锫,傅公康.固定式海洋平台的抗震分析[J].同济大学学报, 1984, 4.
    [56]周昌年,孙复中,金国斐.海洋结构地震响应及参数的影响[J].海洋工程, 1985, 4(4): 13-24.
    [57]李家柽,潘如钧,王立字,等.浅水导管架平台的抗地震分析[J].海洋工程,1984(,1).
    [58]秦小军.桩基导管架海洋平台的土-桩相互作用及地震反应分析[D].国家地震局力学研究所硕士学位论文.1988.
    [59]严岳,冯军.地震载荷作用下桩基导管架结构的响应-线性分析与非线性分析[J].中国海洋平台, 1992,(3).
    [60]梁永超,李巨川,张剑波.浅海导管架平台地震响应分析[J].中国海洋平台, 2003,18(6):5-17
    [61]王兴国,周晶,田明俊,等.导管架海洋平台基于地震作用下的多目标优化设计[J].土木工程学报, 2004, 37(12): 6-9.
    [62]刘廷权,王兴国,周晶,等.基于桩-土-结构相互作用的海洋平台结构抗震优化设计[J].船舶力学, 2004, 8(4): 80-85.
    [63]韩晓双.导管架式海洋平台地震响应研究[D].大连理工大学博士学位论文,2008.
    [64]荣棉水,彭艳菊,吕悦军.导管架式海洋平台的地震动时程分析[J].世界地震工程, 2009, 25(1): 25-30.
    [65] Freudenthal A M. Safety of structure [J].Trans.ASCE, 1947, 112:125-128.
    [66] Marshall P.W.. Risk Evaluation for offshore structures [J]. J.Str.Div., 1969, 12.
    [67] Marshall P.W., BEA R.G. Failure Modes of Offshore Platforms[A]. Proc. BOSS'76 Conf. [C]. NIT, Trondheim, 1976.
    [68] Burke R. G., Tighe J.T. A timeseries model for dynamic behaviour of offshore structures [A]. Proc. 3rd OTC[C]. Houston, 1971: 775-788.
    [69] M.R. Justino Filhoa, N.F.F. Ebeckena. Structural safety analysis of fixed offshore platforms [J]. Computing Systems in Engineering, 1994,5(4-6): 369-374.
    [70] Y.F. Guenard. Application of structural system reliability analysis to offshore structure [D]. Stanford, Stanford University, 1985.
    [71] Toula Onoufriou. Reliability based inspection planning of offshore structures [J]. Marine Structures, 1999, 12(7-8): 521-539.
    [72] Mahmood Hosseinia, Somayyeh Karimiyanib, Amin Ghafooripourc, et al. The seismic reliability of offshore structures based on nonlinear time history analyses[A]. Seismic Engineering Conference[C]. Reggio di Calabria, Italy, 2008.
    [73]胡云昌,刘闯等.导管架平台的三维可靠性分析[J].海洋学报, 1995, l7(6): 117-125
    [74]庄一舟,金伟良.海洋导管架平台抗震可靠性分析方法[J].海洋学报,1999, 21(5): 129-136
    [75]邓洪洲.大型结构系统疲劳及可靠性研究[D].西安:西北工业大学, 1995.
    [76]邓洪洲,孙秦,杨庆雄.海上平台结构系统静强度可靠性分析程序系统[J].西北建筑工程学院学报.1996, 13(1):79-83.
    [77]邓洪洲,孙秦.海洋平台结构系统疲劳可靠性分析方法[J].中国造船,1995,(4): 62-68.
    [78]方华灿,陈国明.冰区海上结构物的可靠性分析[M].北京:石油工业出版社, 2000.
    [79]方华灿.海洋石油钢结构的疲劳寿命[M].东营:石油大学出版社, 1990.
    [80]方华灿.模糊概率断裂力学[M].东营:石油大学出版社, 1999.
    [81]方华灿.冰区海上采油平台极端冰载下断裂的可靠性分析[J].石油工业技术监督,1998, 14(7): 32-36.
    [82]许亮斌,陈国明.考虑断裂和腐蚀失效的海洋平台动态可靠性研究[J].石油学报, 2009, 30(1): 132-135.
    [83]刘健,陈国明,黄东升.冰区海洋平台疲劳可靠性评估方法的研究[J].石油学报,2006, 27(5): 115-118.
    [84]刘健,陈国明,黄东升.海洋平台结构系统的冰激疲劳可靠性分析[J].机械强度, 2005, 27(6): 835-839.
    [85]郑忠双.极端环境下海洋平台结构物随机响应分析及动力可靠性研究[D].杭州:浙江大学, 2001.
    [86]金伟良,郑忠双,李海波.地震荷载作用下海洋平台结构物动力可靠度分析[J].浙江大学学报(工学版), 2002, 36(3): 233-238.
    [87]翟钢军.基于可靠度的导管架海洋平台结构优化设计研究[J].中国海洋平台, 2005, 20(1): 29-34.
    [88]徐发淙,翟钢军.导管架海洋平台可靠性模糊优化设计[J].工程力学, 2001 (A03): 729-733.
    [89] ?ien K., Sklet S. Risk control during operation of offshore petroleum installations [C]. Proceedings of the European Conference on Safety and Reliability, Germany, Balkema, 1999, 1297-1302.
    [90] Vinnem J. E., Aven T., Hundseid H., et al. Risk assessment for offshore installations in the operational phase[A]. In Proceedings of ESREL 2003[C]. Maastricht, The Netherlands, 2003:1607-1614.
    [91] Krueger J, Duncan S.. Practical approach to fire hazard analysis for offshore structures [J]. Journal of Hazardous Materials ,2003, 104(1-3): 107-122.
    [92] Lotsberg I, Olufsen O, Solland G, et al. Risk assessment of loss of structural integrity of a floating production platform due to gross errors[J]. Marine Structures, 2004,17(7): 551-573.
    [93] DiMattia D.G., Faisal I.K, Paul R. Amyotte. Determination of human error probabilities for offshore platform musters [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(4-6): 488-501.
    [94] Pula R., Faisal I. K., Veitch B., et al. Revised fire consequence models for offshore quantitative risk assessment [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(4-6):443 - 454.
    [95] Sklet S., Vinnem J.E., Aven T.. Barrier and operational risk analysis of hydrocarbon releases(BORA-Release): PartⅠ. Method description 2006, 137(2): 681-691.
    [96] Sklet S., Vinnem J.E., Aven T.. Barrier and operational risk analysis of hydrocarbon releases(BORA-Release): PartⅡ: Results from a case study [J]. Journal of Hazardous Materials, 2006, 137(2): 692-708
    [97]张圣坤,白勇,唐文勇.船舶与海洋工程风险评估[M].北京:国防工业出版社,2003.
    [98]胡云昌.系统失效树定量分析的新方法[J].天津大学学报, 1989: 45-56.
    [99]吕秀艳.固定式海洋平台结构风险评估及应用[D].青岛:中国海洋大学, 2005.
    [100]孟博,余建星,刘立名.海洋平台组块吊装装船过程的风险评估方法研究[J].中国海上油气(工程), 2004, 16(1): 51-54.
    [101]李承,余建星.模糊神经网络在近海机动卸载平台风险分析中的应用[J].山东科技大学学报(自然科学版), 2003, 2(4): 93-95.
    [102]余建星,李成,王广东.基于过程分析的工程系统风险分析方法[J].船舶工程, 2003, 25(5): 53-55.
    [103]李红涛,余建星.海上拖航过程的风险评估方法研究[J].海洋技术, 2005,24(3): 92-95.
    [104]谭振东,余建星.定量风险评估在导管架海上安装工程中的应用[J].海洋技术, 2006, 25(3): 111-115.
    [105]余建星,李彦苍.海洋平台及组块装船安全评价[J].海洋技术, 2006, 25(3): 106-110.
    [106]余建星,谭振东,田佳.深水导管架下水扶正过程定量风险分析[J].海洋工程, 2007, 25(1): 9-14.
    [107]余建星,田佳,谭振东.深水平台施工过程自然风险定量评估[J].自然灾害学报, 2007, 16(1): 113-118.
    [108] Sarpkaya T, Isaacson M. Mechanics of wave forces of offshore structures [M]. London: Van Nostrand Reinhold Company, 1981.
    [109]威尔逊.海洋结构动力学[M].杨国金,译.北京:石油工业出版社, 1991.
    [110]陆文发,李林普,高明道.近海导管架平台[M].北京:中国海洋出版社, 1992.
    [111] Gerhard Neumann. On ocean wave spectra and a new method of forecasting wind-generated sea [J]. J. Mar. Res, 1952, 11(3): 245-266.
    [112]李远林.近海结构水动力学[M].华南理工大学出版社, 1999.
    [113]徐芝伦.弹性力学[M].北京:高等教育出版社, 1992年.
    [114] Reese L.C., Cox W.R., Koop F.D. Field testing and analysis of laterally loaded piles in stiff clay[A]. Proceedings of the 7th Offshore Technology Conference[C].Houston, TX, 1975, 2: 671-690.
    [115] Coyle H.M., Reese, L.C.. Load transfer for axially loaded piles in clay [J]. Journal ofSoil Mechanics and Foundations Division, 1966, 9(2): 1-26.
    [116] Vijayvergiya V.N. Load movement characteristics of piles[A]. Proceedings of the Ports'77 Conference[C]. ASCE, 1977, 2:269-284.
    [117] Reese L.C., O'Neill M. Criteria for design of axially loaded drilled shafts [R]. Center for Highway Research Report, University of Texas, 1971.
    [118] Kraft L. M. Jr., Ray R. P., Kagawa T.. Theoretical t-z Curves [J]. Journal of the Geot. Eng. Div., ASCE, 1981, 107(11):1543-1561.
    [118] American Petroleum Institute. API RP 2A-WSD Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design[S]. Washington, D.C.: API Publishing Services, 2000.
    [119] Bea R.G.. Dynamic response of piles in offshore platforms, Dynamic response of pile foundations [S]. Journal of the Geotechnical Division, ASCE, 1980: 80-109
    [120] Briaud J.L., Garland E.E.. Loading rate method for pile response in clay [J]. Geotechnical Engineering Journal, 1985, 111(3): 319-335.
    [121] Matlock H. Correlations for design of laterally loaded piles in soft clay [A].Proceedings of the 2nd annual offshore technology conference[C]. Houston, Texas, 1970,1:577-594.
    [122] Matlock H, Foo S.H., Bryant L.L.. Simulation of lateral pile behavior [A]. Proceedings earthquake engineering and soil dynamics[C]. ASCE, New York, 1978:600-619
    [123] El Naggar M.H,Bentley K.J.. Dynamic analysis for laterally loaded piles and dynamic p-y curves [J]. Canadian Geotechnical Journal, 2000, 37(6): 1166-1183.
    [124] Mostafa Y E, El Naggar M H. Dynamic analysis of laterally loaded pile groups in sand and clay [J]. Canadian Geotechnical Journal, 2002, 39(6): 1358-1383.
    [125] Poulos H.G., Davis E.H.. Pile Foundation Analysis and Design [M]. New York, John Wiley & Sons, 1980.
    [126] Randolph M.F., Poulos H.G.. Estimation of the flexibility of offshore pile groups [A]. Second International Conference on Numerical Methods in Offshore Piling [C]. Univ. of Texas at Austin, 1982: 313-328.
    [127] A.M. Kaynia, E. Kausel. Dynamic stiffness and seismic response of pile groups. [R]. Research Report R82-03(Second Edition ed.), Massachusetts Institute of Technology, Cambridge, 1982.
    [128]中国船级社.海上固定平台人级与建造规范[S].北京, 1992: 23-24.
    [129]刘恢先.唐山大地震震害[M].北京:地震出版社, 1986.
    [130]冯秀丽,刘晓瑜,董立峰.波浪作用下埕岛海域海底土液化分区[J].中国海洋大学学报(自然科学版), 2007, 37(5): 815-818
    [131]张小玲,栾茂田,郭莹.海底管线周围海床瞬时液化的数值分析[J].防灾减灾工程学报, 2009, 29(2): 165-171.
    [132]栾茂田,张小玲,张其一.地震荷载作用下海底管线周围砂质海床的稳定性[J].岩石力学与工程学报, 2008, 27(6): 1155-1161.
    [133] Zhang X.L, Luan M.T, Guo Y, et al. Numecal analyses of dynamic response of saturated porous seabed-pipeline interaction under seismic loading [A]. Proceedings of the 3rd Sino-Japan Geotechnical Symposium[C]. Beijing: Science Press, 2007: 785-792.
    [134]邵广彪.近断层海底土层地震液化及侧移研究[D].青岛:中国海洋大学, 2005.
    [135] GB 500011-2001.建筑抗震设计规范[S]. 2001.
    [136]沈聚敏,周锡元,高小旺,等.抗震工程学[M].北京:中国建筑工业出版社, 2000.
    [137]王勖成.有限单元法[M].北京:清华大学出版社, 2003.
    [138]中国船级社.海上固定平台人级与建造规范[S].北京,1992.
    [139] Vamvatsikos D, Cornel C. A. Incremental dynamic analysis [J]. Earthquake Engineering & stmctural Dynamics, 2002, 31(3): 49l-514.
    [140] Kaul M.K. Stochastic characterization of earthquake through their response spectrum [J]. Earthquake Engineering and Structural Dynamics, 1978, 6(5): 497-509.
    [141]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响[J].地震工程与工程振动, 2004, 24(3): 92-29.
    [142]熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结果的影响[J].建筑科学, 2001, 17(5): 8213.
    [143] Lawson R.S, Vance V, Krawinkler H.. Nonlinear static pushover analysis-why, when and how? [A]. Proceedings of the 5 th U.S. National Conference on Earthquake Engineering[C]. Vo. Chicago, 1994, l11: 283-292.
    [144] Kilar V., Fajfar P.. Simple pushover analysis of symmetric buildings [J]. Earthquake Engineering and Structural Dynamics, 1997, 26(2): 233-249.
    [145] Chopra A.K., Goel R K.A modal pushover analysis procedure for estimating seismic demands for buildings [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 561-582.
    [146] Pacific Earthquake Engineering Research Center. PEER strong motion database [DB/OL]. California: Berkley, 2005. http://peer.berkeley.edu/smcat/index.html.
    [147] Helton J.C, Davis F.J. Latin hypercube sampling and the propagation ofuncertainty in analysis of complex systems [J]. Reliability Engineeringand System Safety, 2003, 81:23-69.
    [148] Olsson A, Sandberg G., Dahlblom O.. On Latin hypercube sampling for structural reliability analysis [J].Structural Safety, 2003, 25:47-68.
    [149] Liao S.S.C., Veneziano D., Whitman R.V.. Regression models for evaluating liquefaction probability [J]. Journal of the Geotechnical Engineering Division, 1988, 114(4): 389- 411.
    [150]王建华,戚春香,余正春,等.弱化饱和砂土中桩的p-y曲线与极限抗力研究[J].土工程学报, 2008, 30(3): 309-315
    [151]曹振中.基于可靠性理论的砂土液化判别方法研究[D].哈尔滨:中国地震局工程力学研究所, 2006.
    [152] Vughts J.H, Kinra R.K. Probabilistic fatigue analysis of fixed offshore structures[A]. Proceeding of 8th Annual Offshore Technology Conference[C]. Houston: Offshore Technology Conference, 1976: 889-906.
    [153] Hartnett M..The application of a spectral response model to fixed offshore structures [J]. Computers and Structures, 2000, 78(1-3): 355-364.
    [154]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析[M].北京:人民交通出版社, 1996: 77-213.
    [155] Wirsching P.H., Light M.C.. Fatigue under wide band random stresses [J]. Journal of the Structural Division, 1980, 106(7): 1593-1607.
    [156]海洋图集编委会.南海海洋图集[M].北京:海洋出版社, 2006, 333-392.
    [157] Li Gong, Liu Xiang,Liu Yuan,et al. Optimum design of ice-resistant offshore jacket platforms in the Bohai Gulf in consideration of fatigue life of tubular joints [J].Ocean engineering, 2008, 35: 184-493.
    [158] Hooke R, Jeeves T. A. Direct search solution of numerical and statistical problems [J]. Journal of the Association for Computing Machinery, 1961, 8(2): 221-229
    [159] Wen Yu-sun, Yuan Ya-xiang. Optimization theory and methods: nonlinear programming [M]. New York: Springer, 2006: 455-490.
    [160] Li Gang, Liu Xiang, Liu Yuan. Optimum design of ice-resistant offshore jacket platforms in the Bohai Gulf in consideration of fatigue life of tubular joints [J]. OceanEngineering, 2008, 35(No.5-6): 484-493.
    [161]翟刚军,封盛,康海贵,等.海洋平台设计选型的多级模糊优化及非结构性模糊决策分析[J].中国造船.2002, 43(1): 23-28.
    [162]桑松,李华军,董胜.交互式多目标决策方法及其在海洋平台方案综合优选中的应用[J].船舶力学, 2006, 10(4): 54-59.
    [163]李登峰,陈守煜.时序多目标决策的模糊优选法[J].系统工程与电子技术, 1994, 16(3):13-17.
    [164] M.Reha Civanlar, H.Joel Trussell. Constructing membership functions using statistical data [J]. Fuzzy Sets and Systems, 1986,18(1): 1-13.
    [165]王浩,庄钊文.模糊可靠性分析中的隶属函数确定[J].电子产品可靠性与环境试验, 2000,(4): 1-7
    [166] Beynon, M. J.. A method of aggregation in DS/AHP for group decision- making with the non-equivalent importance of individuals in the group [J]. Computers & Operations Research, 2005, 32(7): 1881-1896.
    [167]秦学志,王雪华,杨德礼. AHP中群组评判的可信度法(II)[J].系统工程理论与实践, 2000,(5): 76-79.
    [168] CAN/CSA-Q850-97. Risk management: guideline for decision-makers [S]. Canadian Standards Association, 1997.
    [169]中国石油天然气集团公司质量与环保部.石油风险评价概论[M].北京:石油工业出版社, 2001.
    [170]陈健峰.长输管道工程建设项目风险管理指导手册作者[M].北京:石油工业出版社, 2008.
    [171] NORSOK Z-013. Risk and emergency preparedness analysis [S]. Norsok, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700