用户名: 密码: 验证码:
锌冶炼除钴过程建模与智能优化方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿法炼锌工艺是世界上锌冶炼的主要工艺,采用该工艺生产的锌占世界总产量的80%以上。净化除钴过程是湿法炼锌工艺的一个重要工序,主要通过添加锌粉置换除去硫酸锌溶液中的钴离子杂质。由于净化除钴过程机理复杂,流程长且影响因素多,特别是杂质离子浓度无法在线检测,导致过程优化控制困难,净化除钴过程锌粉消耗大。
     论文在分析净化除钴过程影响因素和过程信息特点的基础上,研究了基于数据的过程建模与优化控制方法,构建了过程优化控制总体结构。在过程异常数据检测、缺失数据补全的基础上,提出了基于时间序列分析的入口溶液离子浓度在线估计方法,建立了基于支持向量机的净化除钴过程工艺指标预测模型,在此基础上研究结合案例推理预设定和支持向量机补偿修正的优化控制技术,并将其成功应用于净化除钴过程的控制系统中。论文主要研究工作及创新性成果如下:
     (1)提出了净化过程数据预处理技术。在分析净化除钴过程异常数据产生原因的基础上,提出了基于局部平均距离和工况参数预估的数据异常检测方法。针对过程数据丢失、异常等原因造成数据缺失问题,研究了基于案例推理的缺失数据补全方法。采用工业现场过程数据进行模拟分析与验证,结果表明所提方法有效提高了过程数据质量,为基于数据的净化除钴过程建模与优化创造了条件。
     (2)提出了基于时间序列的入口溶液离子浓度在线估计方法。利用小波分解的方法,将离子浓度人工分析检测时间序列分解为多个子序列,通过相空间重构,在重构的子空间建立支持向量机模型。将子序列模型输出重构,实现了净化除钴入口溶液离子浓度的在线估计。其中支持向量机的参数采用混沌粒子群算法进行优化。应用工业生产数据验证的结果表明,相对误差小于10%的样本达97.5%,模型在线估计精度满足现场实际生产工艺要求,为净化除钴过程的优化控制提供了可靠信息。
     (3)建立了基于模糊聚类和支持向量机的工艺指标预测模型。针对净化除钻过程数据量大、过程具有很强的非线性等特点,研究了基于加权模糊聚类的分类方法,将样本空间进行分类;在分类得到的每个类中,建立了各个类的模糊支持向量机子模型,综合考虑样本数据时间域和空间域的影响,设计了一种复合模糊隶属度函数;在此基础上,将子模型输出集成,得到了过程指标预测模型的输出。其中,采用递阶粒子群算法对于属性选择和权重进行优化。研究了模型的校正方法,提高了模型的精度。现场数据实验验证了该方法的有效性。
     (4)提出了基于案例推理的预设定模型以及基于支持向量机的补偿模型,实现了净化除钴过程的优化控制。该方法依据在线估计模型提供的离子浓度信息,结合入口溶液流量,利用案例推理策略建立了锌粉添加量的预设定模型,有效克服了浓度、流量等因素对优化控制的影响。在此基础上,根据过程指标预测模型计算的出口离子浓度预测值与期望目标之间的偏差,建立了基于支持向量机的锌粉添加量补偿模型。实验结果表明,所提出的优化控制策略有效减少了锌粉的添加量,节约锌粉6.48%。
     (5)开发了净化除钴过程的优化控制系统。该系统利用OPC技术实现与现场DCS系统之间的数据通信,实现了净化除钴过程的入口溶液离子的浓度在线估计、过程工艺指标预测以及锌粉添加量操作优化等功能。此外,还实现了净化过程全流程监视、数据查询以及过程报表分析等功能。实际工业运行结果表明了该系统的有效性和可行性。
Above 80% of total yield of zinc is prodecued by hydrometallurgy in the world. The cobalt removal in purification process is the critical step in zinc hydrometallurgy, where the cobalt in the zinc sulfate solutions is removed by cementation reaction using zinc powder. The cobalt removal mechanism is complex and there are many factors that influence the removal effects. Especially, the ion concentration of the zinc sulphate solution cannot be measured online. These factors lead to the difficulty in operation parameters optimization and more consumption of Zinc powder in cobalt removal processs.
     Based on the analysis of influencing factors and the characteristics of the process data in the cobalt removal process, the process modeling and optimization control strategy is studied with industrial data and the whole structure of optimization control technology is proposed. Firstly, a preprocess method of process data including the outlier identification and imputation of missing data is proposed. Then, an on-line estimation method of the influent ionic concentration is researched based on time series analysis. Finally, the process index prediction model based on SVM is estabilished and an optimization control strategy for cobalt removal process combining the preset model based on case-base reasonning and SVM-based compensating model is presented. In addition, the optimization control system is developed based on the proposed methods mentioned above. The major innovation research achievements include:
     (1) The data preprocess technique of process data was proposed. On the basis of analysis of the main source of abnormal data, the detection method of abnormal data is studied by using the local average distance and estimation of technological situation parameter. Aimed at the problem of the missing data caused by lossing data and abnormal data, the imputation method was proposed based on case-based reasoning. The verified results of on-site industrial production data showed that the proposed data preprocess method can effectively improve the process data quality and provide the condiction for modeling and optimization control of cobalt removal process based on data-driven.
     (2) An on-line estimation method of the influent iconic concentration was proposed for the cobalt removal process based on the time series analysis. Using wavelet decomposition, the time series of ionic concentration were decomposed into multiple subsequences and these subsequences were reconstructed into each subspace in phase space. Then, the support vector machine (SVM) model was built in each subspace. Finally, the outputs of each subsequence model were synthesized as the result of on-line estimation model for the influent iconic concentration in the cobalt removal process. The parameters in SVM models were optimized by using a chaotic particle swarm (PSO) algorithm. The verified results of the industrial production data showed that the samples with relative error less than 10% in the proposed model is up to 97.5%. It also indicated that the on-line estimation precision met the technological requirement of practical industrial production. The proposed model provides reliable information for the optimization control of cobalt removal process.
     (3) A prediction model of technology index for cobalt removal process is built based on fuzzy c-means (FCM) clustering and fuzzy SVM. According to characteristics of the non-linearity and large-scale production data of cobalt removal process, the weight FCM clustering algorithm was used to separate the whole training data set into several clusters. Then, each cluster subset was trained by fuzzy SVM respectively and obtains its corresponding sub-model. These fuzzy sub-models use a hybrid fuzzy membership, in accordance with the different effect of the sample in different periods and in different sample space. Finally, a weighted integrated model was formed with these outputs of sub-models. A hierarchical PSO method is used in feature attributes selection and weight vector optimization. In addition, a correction method is used to improve the model precision. The experimental results of industrial data demonstrated the effectiveness of the proposed prediction method.
     (4) An optimization control strategy of zinc powder addition amount is studied, which integrates the optimal preset model based on case-based reasonning with the compensation model based on support vector machine. Using the ionic concentration information provided by on-line estimation model and the influent solution flow rate as input variables, the optimal preset model based on case-based reasonning determines the preset value of zinc powder addition amount, which effectively overcomes the influences of the fluctuations of ionic concentration and the influent solution flow rate. Then, according to the deviation between the expected set-point value and the feedback prediction value of the effluent ionic concentration, the compensation model of zinc powder addition amount is proposed based on SVM. The experimental validation results showed that the proposed optimization control strategy can effectively reduce the zinc powder addition amount by 6.48% in average.
     (5) An optimization control system for the cobalt removal process has been developed. The data communication between the developed system and the distributed control system (DCS) is realized with OPC technology. It realized the functions including the on-line estimation of the influent iconic concentration, process technological index prediction, operation optimization of the zinc powder adding, as well as the functions of process monitoring, data inquiry and process report analysis and so on. The practical running results showed the effectiveness and feasibility of the developed system.
引文
[1].梅光贵,王德润,周敬元,等.湿法炼锌学,长沙:中南大学出版社,2004.
    [2]. B(?)ckman O,(?)stvold T. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes, Hydrometallurgy,2000,54(2-3):65-78.
    [3]. Nasi J. Statistical analysis of cobalt removal from zinc electrolyte using the arsenic-activated process, Hydrometallurgy,2004,73(1-2):123-132.
    [4].刘金山,王永慧.奥托昆普科科拉锌厂净液工艺,有色冶炼,2000,29(5):43-44+47.
    [5].刘云霞.意大利电锌厂简介,云南冶金,1994,1:48-52.
    [6]. Singh V. Technological innovation in the zinc electrolyte purification process of a hydrometallurgical zinc plant through reduction in zinc dust consumption, Hydrometallurgy,1996,40(1-2):247-262.
    [7].周新海.株冶锌Ⅱ系统净化工序的技术改造,湖南有色金属,2008,24(6):19-22.
    [8].孔凡永,张全胜,刘斌.湿法炼锌焙砂输送和锌粉下料系统的技术改造,中国有色冶金,2008,2:27-29.
    [9].王雅琳.智能集成建模理论及其在有色冶炼过程优化控制中的应用研究:[博士学位论文],长沙:中南大学,2001.
    [10]. Heinzle E, Dunn I J, Ryhiner G B. Modeling and control for anaerobic wastewater treatment, Advances in biochemical engineering, biotechnology, 1993,48:79-114.
    [11].何仁初,罗雄麟.考虑降液管影响的多元精馏塔动态机理建模Ⅰ:动态机理模型的建立,石油学报(石油加工),2007,23(3):58-62.
    [12].陈俊东,张彩军,冯聚和.转炉静态机理模型与节能降耗,河北理工学院学报,2007,29(1):32-35.
    [13]. Yang C H, Deconinck G, Gui W H. An optimal power-dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity. IEEE Transactions on Neural networks,2002,13(1): 229-236.
    [14]. Kittisupakorn P, Thitiyasook P, Hussain M A, et al. Neural network based model predictive control for a steel pickling process, Journal of Process Control, 2009,19(4):579-590.
    [15]. Kuroda C, Kim J Y. Neural network modeling of temperature behavior in an exothermic polymerization process, Neurocomputing,2002,43(1-4):77-89.
    [16].王雅琳,桂卫华,阳春华.自适应监督式分布神经网络及其工业应用,控制与决策,2001,16(5):549-552.
    [17]. Wang J L, Yu T, Jin C Y. On-line Estimation of Biomass in Fermentation Process Using Support Vector Machine, Chinese Journal of Chemical Engineering,2006,14(3):383-388.
    [18]. Vapnik V N. An overview of statistical learning theory. IEEE Trans Neural Networks,1999,10(5):988-999.
    [19]. Martinez-de-Pison F J, Barreto C, Pernia A, et al. Modelling of an elastomer profile extrusion process using support vector machines (SVM), Journal of Materials Processing Technology,2008,197(1-3):161-169.
    [20]. Xi X C, Poo A N, Chou S K. Support vector regression model predictive control on a HVAC plant, Control Engineering Practice,2007,15(8):897-908.
    [21].刘毅,王海清.采用最小二乘支持向量机的青霉素发酵过程建模研究,生物工程学报,2006,22(1):144-149.
    [22].宋海鹰,桂卫华,阳春华.模糊偏最小二乘支持向量机的应用研究,系统仿真学报,2008,20(5):1344-1347.
    [23].曾志强,高济.基于向量集约简的精简支持向量机,软件学报,2007,18(11):2719-2727.
    [24]. Ju W, Shan J, Yan C H, et al. Discrimination of disease-related non-synonymous single nucleotide polymorphisms using multi-scale RBF kernel fuzzy support vector machine, Pattern Recognition Letters,2009,30(4): 391-396.
    [25]. Karama A, Genovesi A, Dochain D. Hybrid modelling of anaerobic wastewater treatment processes, Water Science and Technology,2001,43(1):43-50.
    [26]. Lee D S, Vanrolleghem P, Park J M. Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant, Journal of Biotechnology,2005, 115(3):317-328.
    [27].许光,俞欢军,陶少辉,等.与机理杂交的支持向量机为发酵过程建模,化工学报,2005,56(4):653-658.
    [28]. Aguiar H C, Filho R M. Neural network and hybrid model:a discussion about different modeling techniques to predict pulping degree with industrial data. Chemical Engineering Science,2001,56(2):565-570.
    [29]. Abbod M F, Zhu Q, Linkens D A, et al. Hybrid models for aluminium alloy properties prediction, Control Engineering Practice,2006,14(5):537-546.
    [30]. Ng C W, Hussain M A.Hybrid neural network-prior knowledge model in temperature control of a semi-batch polymerization process, Chemical Engineering and Processing,2004,43(4):559-570.
    [31].罗娜,李南,钱锋.支持向量机与机理模型相结合的混合建模方法及其在聚酯生产过程的应用,聚酯工业,2007,20(2):12-15.
    [32].王雅琳,桂卫华,阳春华.基于有限信息的铜吹炼动态过程智能集成建模.控制理论与应用,2009,26(8):860-866.
    [33].阳春华,谢明,桂卫华.铜闪速熔炼过程冰铜品位预测模型的研究及应用.信息与控制,2008,37(1):28-33.
    [34]. WeiHua Gui, Yalin Wang, Chunhua Yang. Composition-prediction-model-based Intelligent Optimization for Lead-Zinc Sintering Blending Process. Journal of Measurement and Control,2007,40(6):176-181.
    [35].阳春华,沈德耀,吴敏.焦炉配煤专家系统的定性定量综合设计方法.自动化学报,2000,26(2):226-232.
    [36].徐用懋,杨尔辅.石油化工流程模拟、先进控制与过程优化技术的现状与展望,工业控制计算机,2001,14(9):21-27.
    [37].黄秀民,曹王剑.湿法炼锌过程检测难点及应用探讨,自动化仪表,2000,21(5):22-24.
    [38].柳玉英,王平.分光光度法测定镍的研究进展,冶金分析,2009,29(1):44-51.
    [39].梁志芳,魏利滨.极谱吸附催化波法连续测定微量铅镉的方法,金属矿山,2003,3:33-34,39.
    [40].朱晓青,易英敏.湿法冶炼过程的在线滴定分析,矿冶,1996,5(4):85-89.
    [41].刘潭江.锌湿法冶炼在线分析中应用OTI95自动滴定仪测定钻,湖南冶金,1998,6:47-48.
    [42].陈建国.锌净化过程在线检测与控制,株冶科技,1997,25(1):68-70.
    [43].任凤莲,王磊,李竹英.一种智能型钴自动分析仪的研制,分析测试技术与仪器,2002,8(3):189-192.
    [44]. Tham M T, Morris A J, Montague G A. Soft-sensors for process estimation and inferential control, Joural of Process Control,1991,1(1):3-14.
    [45].俞金寿.软测量技术及其应用,自动化仪表,2008,29(1):1-76.
    [46]. Gonzalez G D. Soft sensors for processing plants, Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, Honolulu, HI, USA.1999,1:59-69.
    [47].齐亮,金宝舵,王树博,等.用于直接甲醇燃料电池系统甲醇浓度控制的软测量,清华大学学报(自然科学版),2008,48(12):2114-2117.
    [48].马庆春,左信,许峰.催化裂化装置主分馏塔软测量技术应用与研究,石油化工自动化,2008,1:55-58.
    [49].贾文君,柴天佑.稀土串级萃取分离过程元素组分含量的多模型软测量,控制理论与应用,2007,24(4):569-573.
    [50].陈雷,徐文艳,王豪.基于软测量技术的C5石油树脂粘度的在线检测,化工自动化及仪表,2008,35(6):47-50.
    [51].叶涛,朱学峰,李向阳,等.基于改进k-最近邻回归算法的软测量建模,自动化学报,2007,33(9):996-999.
    [52].颜学峰.优化岭参数的非线性岭回归及4-CBA含量软测量,智能系统学报,2006,1(1):74-78.
    [53].杨飚,张曾科.基于稳健关联向量回归的黑液波美度软测量,清华大学学报(自然科学版),2007,47(S2):1840-1843.
    [54]. Wang D, Srinivasan R, Liu J, et al. Data-driven Soft Sensor Approach for Quality Prediction in a Refinery Process, IEEE International Conference on Industrial Informatics,2006:230-235.
    [55]. Shakil M, Elshafei M, Habib M A, et al. Soft sensor for NOx and O2 using dynamic neural networks, Computers & Electrical Engineering,2009,35(4): 578-586.
    [56]. Bo C M, Li J, Sun C Y, et al. The application of neural network soft sensor technology to an advanced control system of distillation operation, Proceedings of the International Joint Conference on Neural Networks,2003,2:1054-1058.
    [57]. Gonzaga J, Meleiro L, Kiang C, et al. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process, Computers & Chemical Engineering,2009,33(1):43-49.
    [58].吕梦雅,王岩,唐勇.动态流量软测量建模方法研究,哈尔滨工业大学学报,2009,41(1):242-244.
    [59].王学武,顾幸生,刘卓倩,等.基于PSO-BP神经网络的催化裂化C3含量软测量模型,系统仿真学报,2009,21(4):973-976.
    [60]. Yan W W, Shao H H, Wang X F. Soft sensing modeling based on support vector machine and Bayesian model selection, Computers & Chemical Engineering, 2004,28(8):1489-1498.
    [61]. Huang Z, Chen H C, Hsu C J, Chen W H, et al. Credit rating analysis with support vector machines and neural networks:a market comparative study, Decision Support Systems,2004,37(4):543-558.
    [62].桂卫华,李勇刚,阳春华,等.基于改进聚类算法的分布式SVM及其应用,控制与决策,2004,19(8):852-856.
    [63].耿增显,柴天佑.基于LS-SVM的浮选过程工艺技术指标软测量,系统仿真学报,2008,20(23):6321-6324.
    [64].周开军,阳春华,牟学民,等.基于图像特征提取的浮选关键参数智能预测算法,控制与决策,2009,24(9):1300-1305.
    [65]. Liu G H, Zhou D W, Xu H X, et al. Model optimization of SVM for a fermentation soft sensor, Expert Systems with Applications,2010,37(4): 2708-2713.
    [66].阎江峰,王吉坤,谢刚,等.亚硫酸钠对硫酸锌溶液中除钴的影响,稀有金属,2006,30(s1):30-32.
    [67]. Dreher T M, Nelson A, Demopoulos G P, et al. the kinetics of cobalt removal by cementation from an industrial zinc electrolyte in the presence of Cu, Cd, Pb, Sb and Sn additives, Hydrometallurgy,2001,60(2):105-116.
    [68]. Polcaro A M, Palmas S, Dernini S. Kinetics of Cobalt Cementation on Zinc Powder, Industrial & Engineering Chemistry Research,2005,34(9): 3090-3095.
    [69]. Van der Pas V, Dreisinger D B. A fundamental study of cobalt cementation by zinc dust in the presence of copper and antimony additives, Hydrometallurgy, 1996,43(1-3):187-205.
    [70]. Dib A, Makhloufi L. Mass transfer correlation of simultaneous removal by cementation of nickel and cobalt from sulphate industrial solution containing copper (Part II):Onto zinc powder, Chemical Engineering Journal,2006,123 (1-2):53-58.
    [71]. Raghavan R, Mohanan P. K, Verma S K. Modified zinc sulphate solution purification technique to obtain low levels of cobalt for the zinc electrowinning process, Hydrometallurgy,1999,51(2):187-206.
    [72].谢刚,张义忠,曾桂生,等.硫酸锌溶液中锌粉除钴的机制分析,中国稀土学报,2008,26(S):46-49.
    [73].徐承坤,张蕴珊,梁英教.硫酸锌溶液中锌粉净化除钴的机理,东北工学院 学报,1987,50(1):29-35.
    [74]. Stole-Hansen K, Wregget D A, Gowanlock D, et al. Model based analysis and control of a cementation process, Computers and Chemical Engineering,1997, 21(S):1099-1103.
    [75].王越胜,余梦迪,袁季源.锌净化过程中黄药除钴的专家控制系统,矿冶工程,1997,17(6):57-59.
    [76].郝卫东,桂卫华,吴敏.湿法炼锌净化过程的数学模型和优化控制,北京科技大学学报,1996,18(4):370-373.
    [77].马进,陈利春,秦永宏.锌粉置换除钴的研究及运用,有色冶炼,2002,l:30-32.
    [78].凌玲.湿法炼锌生产中PH值的测量及自动控制,计算技术与自动化,2001,20(3):91-94.
    [79].杨雄.净液工序锌粉连续加料自动计量,冶金自动化,2007,31(2):65-67.
    [80].邱竹贤,徐家振.冶金学(下卷:有色金属冶金),沈阳:东北大学出版社,2001.
    [81]. V Bockman O, Ostvold T. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes, Hydrometallurgy,2000,54(2-3):65-78.
    [82].陈敬阳.锌湿法冶炼中高钴矿的处理,材料研究与应用,2007,1(1):69-71.
    [83].虢振强.Pb-Sb-Zn合金锌粉在硫酸锌溶液净化中的应用研究,湖南有色金属,2006,22(2):19-21.
    [84].刘中清,唐谟堂.硫酸锌溶液低温锑盐除钻研究,湿法冶金,1994,4:22-27.
    [85].秦念华,张胜.中温净化法在湿法炼锌中的应用,有色金属(冶炼部分),1994,1:4-5.
    [86].张秋芳,张宇光,郭亚会.硫酸锌溶液净化除钴锌粉粒度对单耗的影响.有色冶炼,1999,28(6):30-31.
    [87].李志强.逆锑深度净化工艺中添加CuSO4的除钴效果研究,甘肃冶金,2003,25(S1):87-90.
    [88].王惠文.偏最小二乘回归方法及其应用,北京:国防工业出版社,1999.
    [89]. Wu X T, Ye Y, Subramanian K R. Interactive gene interaction analysis using graphical gaussian models, The 3rd ACM SIGKDD Workshop on Data Mining in Bioinformatics,2003,63-69.
    [90]. Ben-Gal I. Outlier Detection, In:Maimon O. and Rockach L. (Eds.) Data Mining and Knowledge Discovery Handbook:A Complete Guide for Practitioners and Researchers, Kluwer Academic Publishers,2005.
    [91]. Adnan R, Mohamad M N, Setan H. Multiple Outliers Detection Procedures in Linear Regression. Matematika,2003,19(1):29-45.
    [92]. Jin W, Tung A K H, Han j W. Mining top-n local outliers in large databases, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining,2001,293-298.
    [93]. Jiang S Y, An Q B. Clustering-Based Outlier Detection Method, Proceedings of the fifth International Conference on Fuzzy Systems and Knowledge Discovery, 2008,429-433.
    [94]. Hautamaki V, Karkkainen I, Franti P. Outlier detection using k-nearest neighbour graph, Proceedings of the 17th International Conference on Pattern Recognition,2004,3:430-433.
    [95].王卓,苑明哲,王宏,等.水泥熟料质量指标的软测量建模研究,化工自动化及仪表,2006,33(6):53-54.
    [96]. Angiulli F, Basta S, Pizzuti C. Detection and prediction of distance-based outliers, Proceedings of the 2005 ACM symposium on Applied computing, 2005,537-542.
    [97]. Angiulli F, Basta S, Pizzuti C. Distance-based detection and prediction of outliers, IEEE Transactions on Knowledge and Data Engineering,2006,18(1): 145-160.
    [98]. Knorr E M, Ng R T. Algorithms for mining distance-based outliers in large datasets, Proceedings of the 24rd International Conference on Very Large Data Bases,1998,392-403.
    [99]. Knorr E M, Ng R T, Tucakov V. Distance-based outliers:algorithms and applications, International Journal on Very Large Data Bases,2000,8(3-4): 237-253.
    [100].Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets. Proceedings of the 2000 ACM SIGMOD Int. Conf. on Management of Data, Dallas, Texas,2000,427-438.
    [101]. Ren D M, Wang B Y, Perrizo W. RDF:a density-based outlier detection method using vertical data representation, Proceedings of the fourth IEEE International Conference on Data Mining,2004,503-506.
    [102]. Breunig M M, Kriegel H P, Ng R T, et al. LOF:identifying density-based local outliers, Proceedings of the 2000 ACM SIGMOD international conference on Management of data, Dallas, Texas, United States,2000,93-104.
    [103].杨风召,朱扬勇,施伯乐.IncLOF:动态环境下局部异常的增量挖掘算法,计算机研究与发展,2004,41(3):477-484.
    [104]. Jiang M F, Tseng S S, Su C M. Two-phase clustering process for outliers detection, Pattern Recognition Letters,2001,22(6-7):691-700.
    [105].Papadimitriou S, Kitagawa H, Gibbons P B, et al. LOCI:fast outlier detection using the local correlation integral,2003. Proceedings of 19th International Conference on Data Engineering,2003,315-326.
    [106].Kolodner J L. An introduction to case-based reasoning, artificial intelligence review,1992,6(1):3-34.
    [107]. Nunez H, Sanchez-Marre M, Cortes U, et al. A comparative study on the use of similarity measures in case-based reasoning to improve the classification of environmental system situations, environmental modelling & software,2004, 19(9):809-819.
    [108]. Ramirez C, Cooley R. A theory of the acquisition of episodic memory, ECML'97:Case-Based Reasoning Workshop:Beyond Classification of Feature Vectors, Prague,1997,48-56.
    [109]. Oh K J, Kim T Y. Financial market monitoring by case-based reasoning, Expert Systems with Applications,2007,32(3):789-800.
    [110]. Hsu C C, Ho C S. A new hybrid case-based architecture for medical diagnosis, information sciences,2004,166 (1-4):231-247.
    [111]. Aamodt A, Plaza E. Case-based reasoning:fundamental issue, methodological variation, and system approaches, Al Communications,1994,7(1):39-59.
    [112].谢红薇,李建伟.基于本体的案例推理模型研究,计算机应用研究,2009,26(4):1422-1424,1431.
    [113].王玉,邢渊,阮雪榆.基于神经网络和遗传算法的事例最近邻法检索模型,高技术通讯,2002,5:76-81.
    [114]. Jarmulak J, Craw S, Rowe R. Self-optimising CBR retrieval, Proceedings of 12th IEEE International Conference on Tools with Artificial Intelligence,2000, 376-383.
    [115].Zhu Hongqiu, Yang Chunhua, Gui Weihua. Prediction model for permeability index by integrating case-based reasoning with adaptive particle swarm optimization, High Technology Letters,2009,15(3):267-271.
    [116].Baraldi A N, Enders C K. An introduction to modern missing data analyses, Journal of School Psychology,2010,48(l):5-37.
    [117].Troyanskaya O, Cantor M, Sherlock G, et al. missing value estimaton methods for DNA microarrays, BIOINFORMATICS,2001,17(6):520-525.
    [118]. Pelckmans K, De Brabanter J, Suykens J A K, et al. Handling missing values in support vector machine classifiers, Neural Networks,2005,18(5-6):684-692.
    [119].Jagannathan G, Wright R N. Privacy-preserving imputation of missing data, Data & Knowledge Engineering,2008,65(1):40-56.
    [120].Prabhu A V, Edgar T F, Good R. Missing data estimation for run-to-run EWMA-controlled processes, Computers & Chemical Engineering,2009, 33(11):1861-1869.
    [121].贺国光,马寿峰,李宇.基于小波分解与重构的时间序列预测法,自动化学报,2002,28(6):1012-1014.
    [122]. Luk B L, Liu K P, Tong F, Man K F. Impact-acoustics inspection of tile-wall bonding integrity via wavelet transform and hidden Markov models, Journal of Sound and Vibration,2010,329(10):1954-1967.
    [123].Mallat S G A theory for multiresolution signal decomposition:the wavelet representation, IEEE transactions on pattern analysis and machine intelligence, 1989,11(7):674-693.
    [124].Ingrid Daubechies. Orthonormal bases of compactly supported wavelets. Communication on Pure and Applied Mathematics,1988,41(11):909-996.
    [125].徐科,徐金梧,班晓娟.基于小波分解的某些非平稳时间序列预测方法.电子学报,2001,29(4):566-568.
    [126]. Chua K S. Efficient computations for large least square support vector machine classifiers, Pattern Recognition Letters,2003,24(1-3):75-80.
    [127]. Suykens J A K, Vandewalle J. Least squares support vector machine classifiers, Neural Processing Letters,1999,9 (3):293-300.
    [128]. Suykens J A K, Vandewalle J, Moor B D. Optimal control by least squares support vector machines, Neural networks,2001,14(1):23-25.
    [129]. Lin S W, Ying K C, Chen S C, et al. Particle swarm optimization for parameter determination and feature selection of support vector machines, Expert Systems with Applications,2008,35(4):1817-1824.
    [130].林勇,刘世荣,李崇巍,等.小波变换在岷江上游杂古脑流域径流时间序列分析中的应用,应用生态学报,2005,16(9):1645-1649.
    [131]. Zhang C S, Sun J G. An alternate two phases particle swarm optimization algorithm for flow shop scheduling problem, Expert Systems with Applications, 2009,36(3):5162-5167.
    [132]. Shi Y, Eberhart RC.A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May,1998, 69-73.
    [133]. Eberhart R C, Kennedy J. A new optimizer using particle swarm theory, proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan,1995,39-43.
    [134]. Yang Chunhua, Hongqiu Zhu, Weihua Gui, Yonggang Li. Improved-PSO-based optimal scheduling for rectifier power system. Proceedings of the 17th International Federation of Automatic Control (IFAC) World Congress, Seoul, Korea, July,2008:6078-6083.
    [135].Gungor Z, Unler A. K-harmonic means data clustering with simulated annealing heuristic, Applied Mathematics and Computation,2007,184(2): 199-209.
    [136].李兵,蒋尉孙.混沌优化方法及其应用,控制理论与应用,1997,14(4)613-615.
    [137]. Acharjee P, Goswami S K. Chaotic particle swarm optimization based robust load flow, International Journal of Electrical Power & Energy Systems,2010, 32(2):141-146.
    [138].王文川,程春田,徐冬梅.基于混沌遗传算法的水电站优化调度模型及应用,水力发电学报,2007,26(6):7-11.
    [139].王宝华,杨成梧,张强.电力系统分岔与混沌研究综述,电工技术学报,2005,20(7):1-10.
    [140].吕晓明,黄考利,连光耀.基于混沌遗传算法的测试选择优化问题研究,弹箭与制导学报,2009,29(3):265-268.
    [141].Chtioui Y, Bertrand D, Barba D, Dattee Y. Application of fuzzy C-Means clustering for seed discrimination by artificial vision, Chemometrics and Intelligent Laboratory Systems,1997,38(1):75-87.
    [142]. Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy System,1995,3(3):370-379.
    [143]. Zhang X G Using class-center vectors to build support vector machines, Proceedings of the IEEE Signal Processing Society Workshop,1999, IX:3-11.
    [144]. Zhang Y, Chi Z X, Liu X D, et al. A novel fuzzy compensation multi-class support vector machines. Applied Intelligence,2007,27(1):21-28.
    [145].Shieh M D, Yang C C. Classification model for product form design using fuzzy support vector machines, Computers & Industrial Engineering,2008, 55(1):150-164.
    [146].Khemchandani R, Jayadeva, Chandra S. Regularized least squares fuzzy support vector regression for financial time series forecasting, Expert Systems with Applications,2009,36(1):132-138.
    [147]. Lin C F, Wang S D. Fuzzy support vector machines, IEEE Transactions on Neural Networks,2002,13(2):464-471.
    [148].安金龙,王正欧,马振平.基于密度法的模糊支持向量机,天津大学学报,2004,37(6):544-548.
    [149].张翔,肖小玲,徐光祐.模糊支持向量机中隶属度的确定与分析,中国图象图形学报,2006,11(8):1188-1192.
    [150]. Hu G S, Zhu F F, Ren Z. Power quality disturbance identification using wavelet packet energy entropy and weighted support vector machines, Expert Systems with Applications,2008,35(1-2):143-149.
    [151].董华,杨世元,吴德会.基于模糊支持向量机的小批量生产质量智能预测方法,系统工程理论与实践,2007,3:98-104.
    [152]. Yang C H, Jin L C, Chuang L Y. Fuzzy support vector machines for adaptive Morse code recognition, Medical Engineering & Physics,2006,28(9):925-931.
    [153]. Kennedy J, Eberhart RC.A discrete binary version of the particle swarm algorithm. Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, Piscataway,1997,4104-4109.
    [154].Rapaic M R, Kanovic Z, Jelicic Z D. Discrete particle swarm optimization algorithm for solving optimal sensor deployment problem, Journal of Automatic Control,2008,18(1):9-14.
    [155]. Yeh J Y, Fu J C. A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI, Expert Systems with Applications,2008, 34(2):1285-1295.
    [156].肖立中,邵志清,马汉华,等.网络入侵检测中的自动决定聚类数算法,软件学报,2008,19(8):2140-2148
    [157]. Yan W Y, Shao H H, Wang X F. Soft sensing modeling based on support vector machine and Bayesian model selection, Computers & Chemical Engineering, 2004,28(8):1489-1498
    [158].俞金寿.软测量技术在石油化工中的应用,石油化工,2000,29(3):221-226
    [159].薄翠梅,李俊,张湜,等.基于软测量技术的先进控制在精馏塔上的应用,化工学报,2004,55(2):331-334.
    [160].杨辉,柴天佑.稀土萃取分离过程的优化设定控制,控制与决策,2005,20(4):398-402.
    [161].罗荣富,邵惠鹤,王林,等.丙烯精馏塔的非线性推断控制系统,化工自动化及仪表,1992,9(5):5-9.
    [162].吴凯,何小荣,陈丙珍.DMS中人工神经网络的在线训练法.化工学报,2001,52(2):1068-1071.
    [163]. Smits G F, Jordaan E M. Improved SVM Regression Using Mixture of Kernels, Proceedings of the International Joint Conference on Neural Networks,2002,3: 2785-2790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700