用户名: 密码: 验证码:
改性高分子药剂对铝硅矿物浮选作用机理及其结构—性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文通过浮选实验、电位测量、红外光谱测定、吸附量测定、矿物晶体量子化学计算、药剂与矿物作用量化计算,研究了一水硬铝石、高岭石、叶蜡石和伊利石的表面性质和可浮性以及它们之间的差异;合成了几组新型高分子浮选调整剂,考察了药剂对四种矿物可浮性的影响,研究了药剂的作用机理,探讨了药剂的结构一性能关系。研究表明:
     (1)一水硬铝石粉碎破裂时,表面断裂的是铝—氧键,亲水性较好,解理面对溶液中H~+和OH~-离子的选择性吸附,使矿物表面的电位随介质pH的升高而负移,零电点在pH6.0左右;三种脉石矿物为层状铝硅酸盐,粉碎时出现两种性质不同的解理面,{010}端面断裂铝一氧键和硅一氧键,荷电机理同一水硬铝石,亲水性较好。而层面断裂键则与矿物的晶体结构有关。高岭石层面断裂的是氢键,因晶格阳离子的类质同象替换,该面带有永久的负电荷,叶蜡石断裂的是分子键,疏水性较好,伊利石既有离子键也有分子键断裂,亲水性较好;而且高岭石有不同的两个层面,{001}和{00-1}面,其化学组成不同,荷电性质不同,对十二胺的吸附能力不同,是影响其浮选的一个重要因素。
     (2)通过对工业淀粉进行氧化和醚化改性,制得了羧甲基淀粉、氧肟酸淀粉、阳离子淀粉和双醛淀粉。对铝土矿四种主要矿物,一水硬铝石、高岭石、叶蜡石和伊利石的浮选结果表明,变性淀粉均对一水硬铝石有抑制作用,在酸性条件下,几种药剂对一水硬铝石抑制作用大小的顺序为氧肟酸淀粉>双醛淀粉>羧甲基淀粉>阳离子淀粉>原淀粉,而且氧肟酸淀粉和羧甲基淀粉对高岭石有活化作用,同时不影响叶蜡石和伊利石的回收率,是一种具有潜力和应用前景的铝土矿反浮选一水硬铝石抑制剂及高岭石活化剂。
     (3)对丙烯酰胺和丙烯酸甲酯的共聚物肟化制得氧肟酸聚丙烯酰胺,将它同非离子聚丙烯酰胺、阴离子聚丙烯酰胺、阳离子聚丙烯酰胺和两性聚丙烯酰胺分别应用于四种矿物的单矿物浮选试验,结果显示,改性聚丙烯酰胺对一水硬铝石、高岭石和伊利石均具有活化作用,其中,药剂对高岭石的活化最强,使它的回收率在整个pH值范围达到80%左右,在一定pH条件下超过一水硬铝石的回收率,解决了高岭石难浮选的问题。在pH=4左右,阴离子聚丙烯酰胺对一水硬铝石表现出优异的抑制性,使一水硬铝石与高岭石的回收率相差近60%。聚丙烯酰胺的应用强化了高岭石的浮选,对铝土矿反浮选具有积极作用。
     (4)借助矿物表面动电位测量、红外光谱测定、药剂与矿物表面作用的计算机模拟和量化计算以及药剂在矿物表面吸附量的测量,研究了两个系列高分子药剂与
    
    矿物表面的作用机理。
     不同淀粉药剂在矿物表面表现不同作用,原淀粉主要是氢键的作用,阳离子淀
    粉是氢键和静电力(与荷负电矿物表面)的共同作用,梭甲基淀粉、轻肪酸淀粉和
    双醛淀粉离子性药剂与矿物间的作用除了氢键、静电力外,更重要的是与矿物表面
    金属离子间产生的化学作用,使药剂能牢固地吸附在一水硬铝石矿物表面,增加矿
    物表面的亲水性,同时,淀粉支链结构的存在,使它能够掩盖吸附的捕收剂,达到
    抑制一水硬铝石的目的。几种药剂中,能够与矿物表面金属离子发生化学键合的变
    性淀粉,特别是对铝离子具有鳌合作用的轻肪酸淀粉吸附能力和抑制作用更强。
     聚丙烯酞胺类化合物在矿物表面的吸附能以及吸附量均显示出药剂与矿物间
    存在的强作用,作用方式与淀粉类药剂相似:阴离子聚丙烯酚胺、轻肠酸聚丙烯酞
    胺主要靠化学作用,阳离子聚丙烯酞胺借助静电力和氢键,非离子型的聚丙烯酸胺
    则主要是氢键作用,两性聚丙烯酞胺同时具有阴离子和阳离子聚丙烯酞胺药剂的作
    用特点。由于分子的直链结构,聚丙烯酸胺药剂易与捕收剂十二胺形成表面活性更
    高的高分子捕收剂,同时由于聚丙烯酞胺(除轻肪酸聚丙烯酞胺)具有较高的分子
    量,对高岭石显示很好的絮凝作用,增加了捕收剂的吸附密度,活化了高岭石的浮
    选。
     (5)通过对高分子药剂基团电负性、亲水一疏水平衡常数和结构参数量化计算
    以及高分子链结构和分子量对药剂浮选性能的探讨,研究了有机高分子药剂的结构
    一性能关系。结果表明:
     变性淀粉分子的基团电负性介大小顺序为:醛基>氧肪酸基团>梭酸基团>季
    胺基>轻基;药剂的亲水性依氧肪酸淀粉、阴离子淀顺序降低;淀粉的化学改性增
    加了键合原子的净电荷,提高了药剂给予电子的能力,提高了药剂的活性。轻肪酸
    淀粉的浮选活性指数i,较大,基团电负性介较负,最高占据轨道与最低空轨道能量
    差△E最小,具有较高的亲水性、较强的与矿物表面金属离子作用的能力,其抑制
    一水硬铝石的能力较强,双醛淀粉和梭甲基淀粉次之,而原淀粉的i,最小,介负值
    较小,水溶性和与矿物作用能力均较弱,抑制一水硬铝石浮选的性能较差。
     聚丙烯酞胺药剂中,轻肪酸聚丙烯酞胺离子的△E最小,基团电负性最大;其
    次是阴离子聚丙烯酞胺、两性离子聚丙烯酞胺和阳离子聚丙烯酞胺,非离子聚丙烯
    酞胺的△E最大,给出电子能力最低。对于阴离子聚丙烯酞胺、两性离子聚丙烯酞
    胺、阳离子聚丙烯酞胺和非离子聚丙烯酞胺,虽然它们药剂基团电负性、基团大小
    不同,但它们的
The surface properties and flotation behavior of minerals, such as diaspore, kaolinite, pyrophyllite and illite, were investigated by flotation tests, the measurements of zeta potential, adsorption and the infrared spectrumthe, as well as the quantum chemistry calculations of mineral crystals and interaction between minerals and reagents. Several kinds of new high molecular modifiers were synthesized to investigate the effect of these reagents on the flotation of four minerals. Also the reaction mechanism and the structure -performance relationship of the reagents were studied. It has been shown that:
    (1) The broken surface of diaspore exhibits a good hydrophilic due to the fracture of AI-O bond. The C -potential of mineral surface depends on the selective adsorption of H+ and OH" on cleavage plane, which decreases with the increase of the pH value of media. The isoelectric point is around pH 6.0.
    Kaolinite, pyrophyllite and illite obtain two kinds of broken surfaces with great difference in properties for their sandwich structure when crushed. Built up by the fracture of Al-O bond and Si-O bond, their {010} surfaces are hydrophilic, which has similar charging mechanism to that of diaspore. Which kind of bonds breaks between layers is determined by the type of mineral crystal structure. As to kaolinite, it is hydrogen bond that breaks, which provides the broken surface with permanent negative charge because of the isomorphic exchange of lattice ion. In the case of pyrophyllite, molecular bond breaks. For illite, both ionic bond and molecular bond break. Moreover, the {001} and {00-1} surfaces of kaolinite, with different chemical constitutions and different charging properties, have different adsorption abilities to dodecyl amine (DDA), which produces impact factor of kaolinite flotation.
    (2) By oxidation and etherification of industrial starch, carboxymethyl starch, hydroxamic acid starch, cationic starch and dialdehyde starch are prepared. The flotation tests showed that all modified starches have evident depressing effects on diaspore. In acid pulp, the depressing abilities of reagents on diaspore are in the order of hydroxamic acid starch > dialdehyde starch > carboxymethyl starch > cationic starch> primary starch. In addition, hydroxamic acid starch and carboxymethyl starch can activate kaolinite without influence on the recoveries of pyrophyllite and illite, so the two
    IV
    
    
    reagents have great potential and prospect to be the depressant of diaspore and the activator of kaolinite in bauxite reverse flotation.
    (3) By oximation of the copolymer of acrylamide and methyl acrylate, hydroxamic acid polyacrylamide is synthesized. The hydroxamic acid polyacrylamide, nonionic, anionic, cationic and amphoteric ones examined can activate the flotation of diaspore and illite, especially of kaolinite. Being above 80% in wide pH range, the recovery of kaolinite is even higher than that of diaspore at specific pH. At pH=4 about, anionic polyacrylamide exhibits an excellent depressing ability on diaspore, where the recovery of diaspore is 60% lower than that of kaolinite. The application of polyacrylamide greatly reinforces the flotation of kaolinite and shows positive action on bauxite reverse flotation.
    (4) Each starch reagent has its own mode of action on mineral surface, such as primary starch mainly by hydrogen bond, cationic starch by the co-action of hydrogen bond and electrostatic force (for minerals with negative charge on its surface), while carboxymethyl starch, hydroxamic acid starch and dialdehyde starch principally by chemical force accompanied with hydrogen bond and electrostatic force in part. Such
    *: chemical forces ensure the close adsorption of reagent on diaspore surface and enforces
    the hydrophilic of mineral surface. Also the branched chain enable the starch to cover the collector adsorbed on mineral surface, so as to depress diaspore furthermore. Among reagents examined, the modified starch that can interact with metallic ion on mineral surface by chemical
引文
[1] 毕诗文 编著.铝土矿的拜尔法溶出[M].北京:冶金工业出版社,1997
    [2] 杨重愚 主编.氧化铝生产工艺学[M].北京:冶金工业出版社,1993,10
    [3] 李章存.铝的能耗分析[J].轻金属,1998,(5):3-5
    [4] 马朝建,赵岗.用我国中低品位—水硬铝石矿生产氧化铝的新方法[J].轻金属,1998,(12):7-10
    [5] 陶英君,杨玉华.我国氧化铝工业现状与发展建议—第三次全国工业普查资料分析[J].轻金属.1998,(7):3—9
    [6] 王恩孚,马朝建,陆钦芳,等.选矿.拜尔法处理中国高硅铝土矿生产氧化铝的探讨[J].轻金属.1996,(7):3-6
    [7] 杨彩云.中低品位铝土矿选冶工艺研究[J].矿产综合利用.1989,(6):6—11
    [8] 刘振中,赵万来.对铝土矿选矿可能性的看法[J].有色金属(选矿部分).1984,(2):47—53
    [9] 谢岷.铝土矿选矿试验研究[J].有色金属(选矿部分).1995,(6):12—16
    [10] 贺飞丽.采用重选-浮选流程提高铝硅比的试验研究[J].有色金属(选矿部分).1995,(5):8—10
    [11] 方启学,黄国智,葛长礼,等.我国铝土矿资源特征及其面临的问题与对策[J].轻金属,2000,(10):8—11
    [12] 曲正.铝土矿铝硅比与拜耳法生产能耗的关系[J].轻金属,1998,(11):20-23
    [13] 国家九五科技攻关项目(96-122-01-02)河南铝土矿工艺矿物学研究报告[R].北京矿冶研究总院,1999,10
    [14] 罗琳,何伯泉.高硅铝土矿焙烧预脱硅研究现状评述[J].金属矿山,1999,(1):31-35
    [15] 罗琳.—水硬铝石型铝土矿化学脱硅与综合利用研究[D].长沙:中南工业大学,1999
    [16] 马跃如,罗琳.铝土矿的化学选矿[J].中国锰业,1999,17(2):10-13
    [17] Vasan S S, Modak J M, Natarajan K A. Some recent advances in the bioprocessing of bauxite[J]. International Journal of Mineral Processing. 2001, 62:173-186
    [18] 等.高硅铝土矿微生物脱硅法轻金属[J],1992,(3):12-14
    [19] Grondeva V I等.铝土矿的微生物选矿[J].国外金属矿选矿,1989,(11):16-19
    
    
    [20] 李聆值.采用生物技术提高铝土矿质量[J].中国有色金属学报,1998,18(增刊2):361-364
    [21] 刘逸超,杨彩云,程学忠.水云母——水硬铝石型铝土矿浮选试验[J].有色金属.1984,(1):11—13
    [22] 杨诚.铝矾土工业选矿试验[J].有色金属(选矿部分),1982,(6):1—5
    [23] 关明九.我国冶金级—水硬铝石—高岭石型(或水云母型)铝土矿的选矿研究概况[J].矿产综合利用,1989,(4):13-18
    [24] 温英,甘怀俊,王巧华.阳泉铝矾土富铝除铁的研究[J].中国锰业,1995,(6):26-29
    [25] 梁爱珍.腐殖酸铵在铝土矿浮选中的应用[J].轻金属,1982,(6):1-4
    [26] 铝土矿选矿-拜尔法生产氧化铝新工艺总报告[R].中国长城铝业公司,北京矿冶研究总院,中南工业大学,郑州轻金属研究院,沈阳铝镁设计研究院,中国有色金属工业技术开发交流中心,1999,10
    [27] 铝土矿选矿脱硅工业试验[R].中国长城铝业公司,北京矿冶研究总院,中南工业大学,郑州轻金属研究院,沈阳铝镁设计研究院,中国有色金属工业技术开发交流中心,1999,10
    [28] 铝土矿选矿—拜尔法生产氧化铝新工艺工业试验技术经济论证报告[R].沈阳铝镁设计研究院,1999,10
    [29] 铝土矿浮选脱硅药剂研究与工业试验研究报告[R].中南工业大学,北京矿冶研究总院,沈阳铝镁设计研究院,郑州轻金属研究院,中国长城铝业公司,1999,10
    [30] 铝土矿选精矿拜耳法全流程工业试验[R].郑州轻金属研究院,中国长城铝业公司,沈阳铝镁设计研究院,中南工业大学,北京矿冶研究总院,中国有色金属工业技术开发交流中心,1999,10
    [31] Sillag Z S C.Enrichent of bauxites by selective agglomeration [J]. Trav. ICSOBA, 1976, 13: 281-184
    [32] Sasaki Hiroshi. Silica remove from alumina-containing ore[P]. JP 07 47, 301.21 Feb. 1995
    [33] 刘广义,卢毅屏,冯其明.阳离子捕收剂反浮选—水硬铝石型铝土矿研究[J].矿产保护与利用,2001,(2):38-42
    [34] 沈阳铝镁设计研究院.铝土矿选矿试验研究[R],1982
    [35] 胡岳华.—水硬铝石型铝土矿脱硅浮选的基础与技术[R].中国长城铝业公司技术创新院士行报告文集,2000,12:85-93
    [36] 胡岳华,刘晓文,邱冠周,等.—水硬铝石性铝土矿铝硅浮选分离溶液化学Ⅰ
    
    -晶体结构与可浮性[J].矿冶工程.2000,20(2):11-14
    [37] 印万忠,韩跃新,魏新超,等.—水硬铝石和高岭石可浮性的晶体化学分析[J].金属矿山.2001,(6):29-33
    [38] 崔吉让,方启学,黄国智.—水硬铝石与高岭石的晶体结构和表面性质[J].有色金属.1999,51(4):25-29
    [39] 贾木欣,孙传尧.几种硅酸盐矿物晶体化学与浮选表面特性研究[J].矿产保护与利用.2001,(5):25-29
    [40] 印万忠,孙传尧.硅酸盐可浮性研究及晶体化学分析[J].有色金属(选矿部分),1998,(3):1—4
    [41] 孙传尧,印万忠.关于硅酸盐矿物的可浮性与其晶体结构及表面特性关系的研究[J].矿冶.1998,7(3):22-28
    [42] 曹学锋,胡岳华,蒋玉仁,等.新型捕收剂N-十二烷基-1,3-丙二胺浮选铝硅酸盐类矿物的机理研究[J].中国有色金属学报,2001,(4):693-696
    [43] 蒋昊,胡岳华,覃文庆,等.直链烷基胺浮选铝硅矿物及其机理研究[J].中国有色金属学报,2001,(4):688-692
    [44] 李海普,胡岳华,蒋玉仁,等.变性淀粉在铝硅矿物浮选分离中的作用机理研究[J].中国有色金属学报,2001,(4):697-701
    [45] 李海普,蒋玉仁,曹学锋,等.变性淀粉的合成及其性能[J].矿冶工程,2001,(4):29-32
    [46] Hu Yue-hua, Li Hai-pu, Jiang Yu-ren, et al. Effect of hydroxamic acid starch on reverse flotation desilicate from diasporic bauxite[J]. The Chinese Journal of Nonferrous Metals, 2002, (5): 974-978
    [47] 骆兆军,胡岳华,王毓华,等.铝土矿反浮选体系分散与凝聚理论[J].中国有色金属学报,2001,(4):680-683
    [48] Efra(?)m Mendelovici, Rafael Villalba, Amaya Sagarzazu. Selective destruction and differentiation of clay minerals from natural diaspore admixture by mortar grinding[J]. International Joumal of Mineral Processing, 1983, 11: 131-138
    [49] 铝土矿选矿磨矿工艺研究与工业试验[R].沈阳铝镁设计研究院,北京矿冶研究总院,中国长城铝业公司,中南工业大学,中洲铝厂,1999,
    [50] 吴国亮,黄国智,方启学,等.选别铝土矿合理磨矿工艺流程的研究[J].有色金属(选矿部分),2000,(5):1-4
    [51] 王淀佐.浮选剂作用原理与应用[M].北京:冶金工业出版社,1994,5
    [52] 邱冠周,胡岳华,王淀佐 编著.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993
    
    
    [53] 王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988
    [54] 胡岳华,邱冠周,王淀佐.大分子浮选剂的作用原理与应用[J].国外金属矿选矿.1993,(12):29-51
    [55] 氢键在提高分选效率的药剂吸附中的作用[J].国外金属矿选矿.2001,(6):36-39
    [56] [苏]MA.爱格列斯著.浮选调整剂[M].北京:冶金工业出版社,1982
    [57] 王淀佐,林强,蒋玉仁 著.选矿与冶金药剂分子设计[M].长沙:中南工业大学出版社,1996,12
    [58] 天然多糖与某些硫化矿物作用的表面化学研究[J].国外金属矿选矿.2001,(4):36-39
    [59] Bulatovic S M. Use of organic polymers in the flotation of polymetallic ores: A Review[J]. Mineral Engineering. 1999, 12(4): 341-354
    [60] Pugh R J. Macromolecular organic depressants in sulphide flotation-A Review, 1. Principles, types and applications[J]. International Journal of Mineral Processing, 1989, 25:101-130
    [61] Pugh R J. Macromolecular organic depressants in sulphide flotation-A Reveew, 2. Theoretical analysis of the forces involved in the depressant action[J]. International Journal of Mineral Processing, 1989, 25:131-146
    [62] 多糖—用于硫化矿物优先浮选天然无毒调整剂.国外金属矿选矿[J].1994,(10):21-27
    [63] Path P K, Subramanian S. Studies on adsorption of guar gum onto biotite mica[J]. Mineral Engineering, 1994, 10(12): 1405-1420
    [64] 张力田 编著.变性淀粉[M].广州:华南理工大学出版社,1992,8
    [65] Peres A E C, Correa M I. Depression of iron oxides with com starches [J]. Mineral Engineering. 1996, 9(12): 1227-1234
    [66] Hanumantha R K, Nayak A, Mahapatra S N, et al. Selective flocculation for the recovery of iron in Kudermukh tailing [J]. Min. Ehg.. 1985, 232:364-371
    [67] Weissenbom P K. Behaviour of amylopectin and amylose components of starch in the selective flocculation of ultrafine of iron ore[J]. Intemational Joumal of Mineral Processing. 1996, 47:197-211
    [68] Pinto C L L, Araujo A C D, Peres A E C. The effect of starch, amylose and amylopectin on the depression of oxi-minerals[J]. Mineral Engineering. 1992, 5(3-5): 469-478
    [69] 淀粉及其与pb~(2+)对硅酸盐矿物抑制和协同抑制作用的晶体化学分析[J].矿
    
    冶.1999,8(1):19-24
    [70] Rath R K, Subramanian S. Adsorption, electrokinetic and differential flotation studies on sphalerite and galena using dextrin[J]. International Journal of Mineral Processing.1999, 57:265-283
    [71] Rhodes M K. The effect of physcial variables of carbonxymethyl cellulose reagents on the depression of magnesia-bearing minerals in Westen Australia nickel sulphide ore developments in mineral processing[C]. 13th International Mineral Processing Congress. Warsaw, 1982:346-366
    [72] Mashanyare H S. The problem of talc and other gangue minerals in the flotation of nickel and copper sulphides[D]. Master Thesis, University of Zimbabwe, Harare, 1982
    [73] Laskowski J S, Liu Qi, Bolin N J. Polysaccharides in flotation of sulphides. Part1.Adsorption of polysaccharides onto mineral surfaces [J]. International Journal of Mineral Processing, 1991, 33:223-234
    [74] Liu Qi, Laskowski J S. The role of metal hydroxides at mineral surfaces in dextrin adsorption , Ⅱ.Chalcopyrite-galera separations in the presence of destrin[J]. International Journal of Mineral Processing, 1989, 27:147-155
    [75] Liu Qi, Zhang Yahui, Laskowski J S. The adsorption of polacrylamide onto mineral surface: An acid/base interaction[J]. International Journal of Mineral Processing, 2000, 60:229-245
    [76] Nagaraj D R, Rothenberg A S, Lipp D W, et al. Low molecular weight polyacrylamide-based polymers as modifiers in phosphate benefaction [J]. International Journal of Mineral Processing, 1987, 20:291-308
    [77] Gebhardt J E, Marabini A M, Nocentini M, et al. Interaction of poly (amido-amine)-type polymers with chyalcocite[J]. International Jouenal of MIneral Processing, 1986, 18:179-189
    [78] Boulton A, Fornasiero D, Ralston J. Selective depression of pyrite with polyacrylamide polymers[J]. International Journal of Mineral Processing, 2001, 61: 13-22
    [79] Shortridge P G, Harris P J, Bradshaw D J, et al. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc[J]. International Journal of Mineral Processing, 2000, 59:215-224
    [80] 郑淳之 主编.水处理剂和工业循环冷却水系统分析方法[M].北京:化学工业出版社,2000
    
    
    [81] 郑昌戈,姚笑红,何艳辉,等.双醛淀粉的合成及其氧化度的测定[J].湘潭大学自然科学学报,1996,18(1):71-73
    [82] 刘光全.聚合物在粘土及钻井液固体颗粒表面的吸附[J].油气田环境保护.1999,9(3):38-41
    [83] 张瑾,张书香,李春生,等.紫外分光光度法测定聚丙烯酰胺中丙烯酰胺的残留量[J].化学世界.1999,(12):652-655
    [84] 叶美玲,韩冬,施良和,等.凝胶色谱法定量分析污水中聚丙烯酰胺[J].色谱.1995,13(1):16-20
    [85] 聂小斌,刘娟,陈权生.油田水中聚丙烯酰胺的凝胶色谱法分析[J].大庆石油地质与开发.1997,16(3):49-52
    [86] 王萍.聚丙烯酰胺与丙烯酰胺分析方法的进展[J].纯碱工业.1994,(1):19-24
    [87] 胡俊明,毛维友,何勤功.碘-淀粉比色法测定微量聚丙烯酰胺[J].石油化工.1983,12(7):430-434
    [88] 季鸿渐,杨连军,汪炳武.抄纸白水中微量丙烯酰胺-丙烯酸共聚物的分光光度测定[J].分析化学.1985,13(1):79-80
    [89] 汪炳武,邓军,王萍,等.溴氧化-分光光度法测定小苏打中微量丙烯酰胺的研究[J].纯碱工业.1984,(6):2-6
    [90] 徐德恒,张秀敏,胡金生.GPC法测定聚丙烯酰胺水溶液中的残留单体量及聚合物量[J].石油化工.1982,11(1):24-26
    [91] 孔柏岭.聚丙烯酰胺浓度测量方法综述[J].油田化学.1996,13(3):284-288
    [92] 南玉明,程杰成,郑海洋,等.水解--分光光度法测定微量聚丙烯酰胺[J].石油化工.1995,24(11):805-807
    [93] 王濮,潘兆鲁,翁玲宝,等.系统矿物学(上)[M].北京:地质出版社,1982,6
    [94] 张国范.铝土矿浮选脱硅基础理论及工艺研究[D].长沙:中南大学博士学位论文,2002
    [95] 王濮,潘兆鲁,翁玲宝,等.系统矿物学(中)[M].北京:地质出版社,1982,6
    [96] 孙传尧,印万忠 著.硅酸盐矿物浮选原理[M].北京:科学出版社,2001,4
    [97] Rand B, Melton I E Particle interactions in aqueous kaolinite suspensions[J]. Journal of Colloid and Interface Science, 1977, 60(2): 308-320
    [98] Brady P V, Cygan R T, Nagy K L. Molecular controls on kaolinite surface charge[J]. Journal of Colloid and Interface Science, 1997, 183:356-364
    [99] Wieland E, Stumm W. Dissolution kinetics of kaolinite in acidic [J]. Geochimica
    
    et Cosmochimica Acta, 1992, 56:3339-3355
    [100] 梁世懿,成本诚 著.高等有机化学[M].北京:高等教育出版社,1993
    [101] 张镜吾,程发,李东立,等.溶剂种类及组成对纤维素羧甲基化反应的影响[J].高分子学报,1994,(3):359-363
    [102] 程发,李桂凤,李东立,等.溶剂种类和组成对羧甲基纤维素取代基沿分子链分布的影响[J].高分子学报,1996,(5):539-543
    [103] WU Zong-wen, CUI Guo-shi, WANG Bing-zheng. The properties and application of high Ds carboxymethyl starch [J]. Zheng Zhou Liang Shi Xue Yuan Xue bao, 1997, 18(3): 81-85
    [104] ZHANG Jing-wu, LI Dong-li, SHI Yu-quan. Study on the effect of alkaliation on the carboxymethlation of starch [J]. Tian Jin Da Xue Xue bao , 1993, (1):124-131
    [105] 陈洁,宋启泽 编著.有机波谱分析[M].北京:北京理工大学出版社,1997,4
    [106] Pardip.螯合剂在选矿中的应用[J].国外金属矿选矿.1990,(4):16-28
    [107] 高颖剑,林江顺.国内外羟肟酸的合成及其在浮选中的应用[J].国外金属矿选矿.1997,(6):54-58
    [108] 索马苏达兰 P 等.矿物选择性浮选螯合剂[J].国外金属矿选矿.1994,(2):34-42
    [109] Marabini A等.用作捕收剂的螯合剂及其吸附机理[J].国外金属矿选矿.46-52
    [110] 胡显智.羟(氧)肟酸(盐)及其与铜矿物吸附体系的量子化学研究[J].有色金属.1997,49(4):24-28
    [111] 王正舜.氧肟酸系列浮选捕收剂的推广应用[J].矿山,1992,8(2,3):40-42
    [112] Iskander G M, Kapfenstein H M, David T P, et al. Synthesis and copolymerization of methacryloyl hydroxamic acids[J]. Journal of Applied Polymer Science, 2000, 78:751-758
    [113] Moustafa A B, Faizalla A. Synthesis and characterization of highly porous poly(methacrylic-co-triethylene glycol dimethacrylate) by suspension polymerization[J]. Jounral of Applied Polymer Science, 1999, 73:149-159
    [114] Pande C S, Mehta I K,Ambasta B K, et al. Preparation of poly(4-vinylpyrrolidone)-g-poly(N-hydroxyacrylamide) and study of its metal binding properties[J]. Journal of Applied Polymer Science, 2000, 77:475-783
    [115] 胡岳华,蒋玉仁,李海普,等.—水硬铝石型铝土矿反浮选脱硅新药剂[P].申请号:011068876,2001
    
    
    [116] 刘小辉.阳离子淀粉的制造方法和应用[J].辽宁化工,1989,(5):3-8
    [117] 毛逢银,杨锦宗.羧甲基淀粉的合成及应用进展[J].精细化工,1994,11(5):53-57
    [118] 陈良远,陈军,潘宇虹.阴离子醚化剂的一步合成方法[J].化学与粘合,1994,(4):211-214
    [119] 崔元臣,王新海,周大鹏,等.高取代度季胺型阴离子化玉米淀粉的制备[J].河南大学学报(自然科学版),2000,30(3):40-42
    [120] 张永华.微波干法制备高取代度羧甲基淀粉[J].化学世界,2000,(7):360-362
    [121] 张镜吾.变性淀粉的制造、性质及应用[J].精细化工,1992,9(1):5-11
    [122] 朱苓.氧化淀粉的生产与应用[J].现代化工,1998,(4):41-42
    [123] 陈前火,魏健美,朱则善.高碘酸钠氧化淀粉制备双醛淀粉的研究[J].福建化工,1997,(3):9-12
    [124] 肖超渤,胡运华 编著.高分子化学[M].武汉:武汉大学出版社,1998,12
    [125] 杨频,高孝恢.性能-结构-化学键[M].北京:高等教育出版社,1987
    [126] 俞庆森,朱龙观.分子设计导论[M].北京:高等教育出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700