用户名: 密码: 验证码:
铜录山铜矿浮选基础研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜录山铜矿是一种复杂的铜矿,含有硫化铜矿如黄铜矿和氧化铜矿如孔雀石。本研究通过浮选实验、吸附量测定、红外光谱分析、电化学测试、浮选溶液化学计算以及分子动力学模拟,考察了黄铜矿、孔雀石和黄铁矿在不同捕收剂和调整剂体系中的浮选行为及作用机理。
     浮选实验结果表明,用丁黄药、硫脲及双硫腙作捕收剂,在较宽pH范围内,即使在高pH条件下,用氢氧化钠和石灰作调整剂,黄铜矿均呈现好的可浮性。用丁黄药作捕收剂,在酸性和中性介质中,黄铁矿呈现一定的可浮性;在碱性介质中,可浮性急剧下降。用硫脲和双硫腙作捕收剂,黄铁矿的可浮性很差,这表明,硫脲和双硫腙的选择性比丁黄药好。铜离子存在时,用丁黄药、硫脲及双硫腙作捕收剂,黄铁矿的浮选受到活化,因此,在铜硫分离时,由于铜矿物溶解的铜离子的活化作用,使得黄铜矿和黄铁矿的浮选分离非常困难。但是,在高石灰用量条件下,铜离子对黄铁矿浮选的活化作用受到抑制。黄铜矿和黄铁矿的浮选行为还与矿浆电位有关。用丁黄药作捕收剂时,黄铜矿最佳浮选电位区间为-0.1~0.6 V,黄铁矿的最佳浮选电位范围为0.1~0.3V。
     丁黄药、硫脲和双硫腙在黄铜矿表面的吸附可以发生在较宽pH范围,此范围对应于黄铜矿浮选pH范围。随着捕收剂浓度的增加,吸附量及黄铜矿的浮选回收率都在增大。Zeta电位测定表明,捕收剂的加入均使黄铜矿和黄铁矿表面ζ-电位更负,表明黄药和硫脲在这两种矿物表面均发生了吸附。通过红外光谱分析发现,黄铜矿表面有硫脲和双硫腙的捕收剂盐存在,而丁黄药的吸附可能包含捕收剂盐和双黄药的吸附。对于黄铁矿来说,在较宽pH范围和实验浓度内,丁黄药、硫脲和双硫腙在黄铁矿表面的吸附量远远低于在黄铜矿表面的吸附量。红外光谱表明,黄药在黄铁矿表面发生物理吸附并生成了双黄药,硫脲和双硫腙在黄铁矿表面发生分子吸附。
     循环伏安曲线研究几种捕收剂与黄铜矿的作用结果表明,丁黄药和硫氮捕收剂与黄铜矿的作用主要是形成二硫化物,而硫脲与黄铜矿表面的作用主要形成捕收剂盐。
     腐蚀电化学研究表明,随着黄药浓度的增加,腐蚀电位和腐蚀电流的减小,黄铁矿电极的极化阻抗逐渐增大,这表明黄铁矿表面有氧化产物生成。不同黄药浓度下黄铁矿的EIS图谱表明,随着黄药浓度的增大,容抗弧半径增大,黄铁矿表面捕收剂薄膜逐渐变厚,传导电阻增大,减弱了黄铁矿的溶解。这表明黄药在黄铁矿表面的吸附经历几个步骤,如黄药离子的吸附,双黄药的生成以及双黄药薄膜的变厚,这些变化都与极化电位有关。在极化初期,电位为120mV时,黄药氧化逐步增强,捕收剂薄膜逐渐加厚,传递电阻增大,导致黄铁矿表面疏水,属于薄膜生长控制阶段。当极化电位增加到320mV以后,容抗弧半径显著减小,此时薄膜脱落,黄铁矿开始阳极溶解。这个区间为黄铁矿浮选电位区间。
     黄铁矿在不同浓度NaOH和石灰介质中的极化曲线和EIS图谱表明,随着体系中NaOH浓度的增高,体系的腐蚀电位逐步负移,腐蚀电流密度也逐步降低,容抗弧半径增大。这表明黄铁矿表面有氢氧化铁沉淀物生成,导致在高pH值条件下黄铁矿受到抑制。在石灰介质中,黄铁矿表面的电阻大约为11800Ω,远远高于黄铁矿在NaOH介质中的电阻(8500Ω),这意味着在石灰介质中黄铁矿发生强烈的氧化。氢氧化铁和硫酸钙沉淀物的生成使得黄铁矿表面亲水,抑制了黄铁矿表面其它电化学反应的发生。这意味着石灰对黄铁矿的抑制作用大于NaOH。
     黄药存在时,黄铁矿腐蚀电流略有降低,黄药对黄铁矿的腐蚀有抑制作用。黄药在NaOH体系中还可以保持对黄铁矿一定的捕收能力,捕收剂作用前后电化学腐蚀参数几乎没有变化。石灰作调整剂时,不论加与不加捕收剂,黄铁矿电极的容抗弧半径变化不明显,这表明不论捕收剂存在与否,黄铁矿表面的氧化产物几乎相同,黄铁矿的腐蚀能力没有受到抑制,因此,在石灰体系中,捕收剂对黄铁矿的捕收能力明显降低。对于黄铜矿,无论用NaOH还是石灰作调整剂,丁黄药在其表面均可发生氧化生成疏水产物,黄铜矿仍具有较高可浮性。
     分子动力学模拟计算表明,丁黄药的最高占据轨道(HOMO)主要是C-S-S基团,这表明功能基团C-S-S强烈影响分子的氧化还原电位。黄药的HOMO为-3.4eV。黄铁矿的导带低,为-3.5eV。与黄铁矿作用后,黄药的硫原子电子云密度降低,电子将由黄药向黄铁矿表面转移,黄药分子失去一个电子变成双黄药。黄铜矿与黄药作用过程中,则是由表面氧化的CU~(2+)与黄药反应生成捕收剂盐。
     孔雀石浮选实验结果表明,脂肪酸类捕收剂对孔雀石的捕收能力强于羟肟酸类捕收剂。不硫化时,用油酸钠作捕收剂,孔雀石的浮鸦厥章蚀锏?0%以上。当使用黄药类捕收剂时,孔雀石需要预先硫化,硫化时间及硫化钠的浓度对孔雀石浮选有影响。最佳硫化pH范围是7~9,这时溶液中HS~-占主导。当羟肟酸和黄药类捕收剂混合使用时,孔雀石的浮选回收率增大。红外光谱分析表明丁黄药、油酸钠和新型脂肪酸在孔雀石表面发生了吸附。
     铜录山铜矿矿石浮选试验表明,最佳药剂制度是石灰作pH调整剂,两种或三种巯基类捕收剂混合使用,铜精矿的品位和回收率均有提高,混合捕收剂用于易选及难选氧化铜矿的浮选,均比单一捕收剂回收率高。
Copper ore in Tonglushan is a mixtured type containing sulphide minerals like chalcopyrite and oxide minerals like malachite.In this thesis,flotation behavior and mechanism of chalcopyrite,malachite and pyrite in the presence of different collectors and modifiers have been studied based on flotation tests,adsorption measurements,FTIR analysis, electrochemical measurements,solution chemistry calculation and molecular dynamic simulation.
     Flotation results showed that chalcopyrite exhibited very good flotation response in wider pH range by using butyl xanthate, dithiothiourea and dithiosonite as collectors and remained good floatable even in high pH medium modified by sodium hydroxide or lime.Pyrite exhibited certain floatability in acidic and neutral pH region using butyl xanthate as a collector with descending sharply in alkaline medium.The floatabiltiy of pyrite is very poor when dithiothiourea and dithiosonite used as collectors,indicated that the selectivity of these two collectors is better than butyl xanthate.In the presence of copper ion,the flotation of pyrite can be activated by using butyl xanthate,dithiothiourea and dithiosonite as collectors,which is the main reason that it is very difficult for flotation separation of chalcopyrite from pyrite in copper-sulphur ore due to the activation of copper ion from the dissolution of copper minerals.However,the activation flotation of pyrite by copper ion can be sharply depressed by addition of high dosage lime,which is the case in Tonglushan mine.And the flotation behavior of chalcopyrite and pyrite is also related the pulp potential.The best flotation potential range is -0.1~0.6 V for chalcopyrite and 0.1~0.3V for pyrite by using butyl xanthate as a collector.
     The adsorption of butyl xanthate,dithiothiourea and dithiosonite on chalcopyrite can take place in wider pH region corresponding to their flotation pH range.With the increase of collector concentration,the adsorption and hence flotation recovery of chalcopyrite increased.The adsorptoion of butyl xanthate on chalcopyrite may be mainly of physical adsorption of dixanthogen.Zeat potential measurements showed that the addition of xanthate and dithiosonite make the zeta potential of chalcopyrite and pyrite more negative indicated the adsorption of the collector on those two minerals.The formation of collector salts for dithiothiourea and dithiosonite have been observed on chalcopyrite by FTIR.The adsorption of butyl xanthate,dithiothiourea and dithiosonite on pyrite has reached to some values but lower than that on chalcopyrite in the wider pH range and tested concentration.The physical adsorption has been revealed by FTIR to show the formation of dixanthogen for xanthate and molecular adsorption for dithiothiourea or dithiosonite on pyrite accounting for their weak collecting ability for pyrite.
     Cyclic voltamnogram measurements for collector-chalcopyrite system showed that the disulfide may be the main products of xanthate and dithiocarbamate on chalcopyrite.The interaction of chalcopyrite with dithiourea or dithiosonite may be due to the formation of collector salts.
     Corrosive electrochemistry study demonstrated that with the increase of xanthate concentration,corrosive potential and corrosive current of pyrite electrode decreased gradually while polarization resistance increased.This indicated the formation of surface oxidation products.The capacitive reactance loop radius increased with the increase of xanthate concentration from the EIS of pyrite under different xanthate concentration,indicating that collector film on pyrite surface become thickening,increasing conduction resistance and weakening dissolution of pyrite.It suggested that the adsorption of xanthate on pyrite surface may undergo several steps such as the adsorption of xanthate ion,the formation of dixanthogen due to the oxidation of the adsorbed ion and the increase of dixanthogen film with the increase of xanthate concentration, which is dependent on polarization potential.In initial stage of polarization of pyrite electrode in xanthate solution at about 120 mV,the oxidation of xanthate was gradually increased and collector film on pyrite surface become thickening.It increased the conduction resistance and the growth of collector film is the controlled step resulting in pyrite surface hydrophobic.When the polarization potential increased above 320 mV, capacitive reactance loop radius decreased obviously,at where the collector film fell off and the anodic dissolution of pyrite occurred.It accounted for the flotation potential range of pyrite.
     The polarization curves and EIS of pyrite under different concentration of NaOH and lime media showed that its corrosive potentials moved towards negatively and corrosive current density decreased with the increase of NaOH and lime concentration.The capacitance loop radius increased with the increase of NaOH and lime concentration.This indicated the formation of hydroxyl iron precipitate on the pyrite surface accounting for the depression of pyrite in high pH media.The electrode surface resistance about 11800Ωin lime medium is much higher than that about 8500Ωin NaOH solution,demonstrated that pyrite surface is strongly oxidized in lime medium.The formation of hydroxyl iron and calcium sulphate precipitates made pyrite surface very hydrophilic and inhibited other electrochemistry reaction on pyrite like collector giving rise to depression of pyrite.The depression effect of lime on pyrite may be stronger than that of NaOH.
     In the presence of xanthate,corrosive current decreased slightly. Xanthate showed certain inhibiting corrosive function,i.e.adsorption on pyrite even at high pH media.Hence,xanthate still showed some collecting ability on FeS_2 at pH 12 modified by NaOH.However,the corrosive electrochemistry parameters do not change whether adding collector or not at pH12 modified by lime,the radius of capacitive reactance loops changed little in the presence xanthate,indicated that at pH 12 modified by lime,the oxidation products on pyrite surface may be almost same whether absence or presence of collectors.It demonstrated that xanthate exhibited very weak inhibiting corrosion action and hence very weak collecting ability on pyrite at high pH modified by lime.
     The quantum methods were employed to investigate the mechanism of reaction between mineral surfaces and collectors.Molecular dynamic simulation calculation showed that the HOMO orbitals of butyl xanthate mainly spread over three atoms of the C-S-S group.It indicates that the functionalization group of the C-S-S strongly affects the reduction potential and oxidation potential of molecule.The energy level of xanthate HOMO is -3.4eV.The bottom of conduction band(unoccupied band) of pyrite has a lower value(-3.5eV),which is lower than the HOMO of butyl xanthate(-3.4eV).It is therefore thermodynamically favorable for an electron to jump from the xanthate molecule to pyrite electrode.Xanthate molecule lost one electron become dixanthogen, which render pyrite hydrophobic.
     For malachite flotation,the collecting ability of fatty type collectors is stronger than that of hydroxamic acid.Without sulphurization,the flotation recovery of malachite can be above 90%by using sodium oleate. When thio-collector was used,sodium sulphide is required for malachite flotation.The concentration of sodium suphide and sulphurization time has some effects on thio-collector flotation of malachite.The best sulphuirzation pH range is 7~9 corresponding to the pH region with HS-as dominant species in solution.When mixed hydroxamic acid and thio-collector was used,the flotation recovery of malachite increased. FTIR spectra revealed that butyl xanthate,oleate and new type fatty acid are adsorbed on malachite.
     Finally,batch flotation tests for Tonglushan copper ore have been conducted.The best reagent schemes are lime as pH modifier and two or three thio-compounds as mixtured collectors.The grade and recovery of copper concentrate can be increased.
引文
[1]Bradford H.Method of saving floating materials in ore separation.U.S.patent,345951,1865
    [2]王淀佐.浮选剂的作用原理及应用,北京:冶金工业出版社,1982
    [3]Everson C.J.Process of concentrating ores.U.S.patent,348145,1866
    [4]王淀佐.浮选理论的新进展.北京:科学出版社,1992
    [5]胡为柏.浮选.北京:冶金工业出版社,1989
    [6]王淀佐,林强.选矿与冶金药剂分子设计.长沙:中国工业大学出版社,1996
    [7]王淀佐.中南矿冶学院学报,1983(增刊1):31-40
    [8]见百熙.浮选药剂.北京:冶金工业出版社,1981
    [9]王淀佐.矿物浮选和浮选剂.湖南:中南工业大学出版社,1986
    [10]朱建光.浮选药剂.北京:冶金工业出版社,1993
    [11]覃文庆.硫化矿物颗粒的电化学行为与电位调控浮选技术.北京:高等教育出版社,2001
    [12]Hanson J.S,Fuerstenau D.W.The electrochemical and flotation behavior of chalcocite and mixed oxide/sulfide ores.IJMP,1991,33:33-47
    [13]Yoon R.H,Woods.R.Eh-pH diagrams for stable and metastable phases in the copper-sulfur-water system.IJMP,1986,20:109-121
    [14]Heimals S,Richardson P.E.Electro-chemistry in Mineral and Metal processing[J].Electrochemistry Science.1988.170-182
    [15]顾帼华.硫化矿磨矿—浮选体系中的氧化—还原反应与原生电位浮选:[博士学位论文].长沙:中南工业大学,1998
    [16]罗再文.提高洞子沟银铜(金)矿银铜金回收率的研究.有色金属(选矿部分)1997,(2):16
    [17]Fornasiero D,Fullston D,Li C,Ralston J.International Journal of mineral Processing.2001,61(2):109
    [18]Kuzinc Z.P,Maksimov N.G,Samojlov V.G.Kolloidnyi.zhurnal,1999,61(3):397
    [19]Lin H.K,Say W.C.Journal of Applied Electrochemistry,1999,29(8):987
    [20]Mimitrijevic M,Antonijevic M.M.Minerals Engineering,1999,12(2):165
    [21]Weisener C,Gerson A.Minerals Engineering.2000,13(11):1329
    [22]Boulton A,Fornasiero D.Ralston J.International Journal of Mineral Processing.2001,61(1):13
    [23]Sirkeci A.A.Minerals Engineering.2000,13(9):1037
    [24]Santhiya D.Minerals Engineering.2000,13(7):747
    [25]胡岳华,冯其明.矿物资源加工技术与设备.北京:科学技术出版社,2006.239-241
    [26]孙水裕.硫化矿物无捕收剂浮选基本规律及分离方案的设计.有色金属(选矿部分),1992,(6):4
    [27]黄开国.石灰在铜硫矿石无捕收剂浮选中的作用.有色金属(选矿部分),1993,(2):7
    [28]杨松荣.斑岩铜矿混合浮选流程结构的探讨.有色金属(选矿部分),1991,(3):2
    [29]张天军.铜硫矿选矿试验研究及生产实践.有色金属(选矿部分),1996,(4):5
    [30]赵树智.提高低品位含金多金属矿选别指标和综合回收铜、硫的生产实践.金属矿山,1994,(3):48
    [31]S·M·布鲁特维克.斑岩铜—金矿和难处理含金硫化矿中金的浮选研究.国外金属选矿,1998,35(1):19
    [32]邱允武.黄铜矿与易浮磁黄铁矿浮选分离的研究.有色金属(选矿部分),1991,(6):5
    [33]王淀佐.无捕收剂浮选在硫化矿石分离中的应用研究.有色金属(选矿部分),1992,(5):1
    [34]刘如金.调整磨浮工艺提高选铜指标.有色金属(选矿部分),1992,(4):9
    [35]宣道中.细粒复杂硫化矿新分选法工业实践.有色金属(选矿部分),1993,(3):2
    [36]朱建光.浮选药剂的进展.国外金属矿选矿,1988,35(3):14
    [37]汪修尧.含银难选复杂硫化矿的浮选分离研究.有色金属(选矿部分),1990,(6):1
    [38]黎性海.巴里硫化矿物浮选分离工艺研究.有色金属(选矿部分),1992,(2):1
    [39]黄开国.德兴铜矿无捕收剂浮选.有色金属(选矿部分),1994,(5):6
    [40]李柏淡.黄铜矿自诱导浮选新技术的应用研究.有色金属(选矿部分),1994.(2):1-5
    [41]孟克礼.优先浮选提高硫回收率的实践.有色金属(选矿部分),1995,(3):11-13
    [42]刘爱莲.复杂铜锌硫化矿的矿物浮选分离.有色金属(选矿部分),1995,(3):1-4
    [43]舒常陛.双黄药与黄药配合使用浮选自然铜矿石.有色金属(选矿部分),1990,(1):12-15
    [44]R.R.克里姆帕尔.硫化矿物浮选捕收剂实践评述[J].国外金属矿选矿,2001,38(9):2-7
    [45]李杰,钟宏,刘广义.硫化铜矿石浮选捕收剂的研究进展[J].铜业工程,2004(4):15-18
    [46]刘广义,戴塔根,钟宏.T-2K捕收剂优先浮选永平铜矿石的研究[J].矿冶工程[J],2003,23(3):22-24
    [47]刘广义,钟宏,王晖,等.T-2K捕收剂优先浮选硫化铜矿石的研究[J].金属矿山[J],2003,(1):31-33
    [48]刘广义,戴塔根,钟宏,等.Mac-10捕收剂优先浮选高硫含铜矿石新工艺[J].有色金属,2003,55(3):87-89,100
    [49]胡锦华.国外无氰浮选现状.国外金属矿选矿,1990(10):35-42
    [50]王淀佐.浮选剂的作用原理及应用.北京:冶金工业出版社,1982
    [51]胡岳华,冯其明.矿物资源加工技术与设备[M].科学出版社,2006,9
    [52]Taggart A.F.Handbook of Mineral Dressing:ores and industrial minerals.New York,1945
    [53]Gaudin,A.M.Flotation,2nd Edition,MC.Graw-Hill book company,INC,New York,1957,132(182):285
    [54]Sutherland,K.L,Wark,I.W.Principles of flotation,Melbourne,Australasian Institute of Mining and Metallurgy,INC,1955.119-122
    [55]Cook,M.A,Nixon,J.C,J.Phy.Chem.,1950,455
    [56]邱廷省,方夕辉,罗仙平.无机组合抑制剂对黄铁矿浮选行为及机理研究[J].南方冶金学院学报,2000,21(2):95-98
    [57]熊道陵,陈湘清,蒋玉仁.含钙物质对黄铜矿和黄铁矿浮选行为的影响[J].湖南有色金属,2004,20(6):8-10
    [58]冷文华,卢毅屏,冯其明.氧化铜浮选研究进展[J].江西有色金属,1999,6,13(2):15-18
    [59]孙昱.氧化铜复合药剂的研究:[硕士学位论文].昆明:昆明理工大学,2003,5:6
    [60]杜淑华.猫飞山难选氧化铜矿选矿试验研究:[硕士学位论文].昆明:昆明理工大学,2007,3:16
    [61]文丰.鳌合剂在浮选中的应用[J].有色金属(选矿部分),1980,4
    [62]程琼,库建刚,刘殿文.氧化铜矿浮选方法研究[J].矿产保护与利用,2005,10(5):34-35
    [63]Brittan M.I,Afr J.S.Inst.Min.Metal.[J].Vol.20,1969(70),278-279
    [64]张文彬.氧化铜矿浮选新理论—硫化反应的铵促进机理研究[J].报告一至四,1992.6
    [65]丁长云.混合捕收剂浮选天水舒家坝氧化铜矿研究[J].甘肃冶金,1997(1):11
    [66]赵祖乔.氧化铜矿的浮选研究与应用[J].云南冶金,2000(2):26-29
    [67]韦华祖.烷基含氧酸盐捕收剂浮选孔雀石的研究[J].有色金属,1988(1)
    [68]张文彬.氧化铜矿浮造研究与实践[M].中南工业大学出版社,1992,2:87-88
    [69]骆兆军等.难选氧化铜矿的多硫化钠硫化浮选研究[J].有色金属(选矿部分),1996,4:9-12
    [70]文书明.氧化对孔雀石表面黄药吸附层稳定性及可浮性的影响[J].有色金属(选矿部分),1997,6:17-20
    [71]吴熙群.硫化氧化铜矿选矿研究[J].有色金属(选矿部分),2000(6):19-23
    [72]程平宣.复杂硫化矿工艺研究评述[J].有色金属(选矿部分),1998(1):1-5
    [73]张闿.浮选药剂的组合使用[M].冶金工业出版社,1994(21):33-41
    [74]林强,王淀佐.二烃基次膦酸结构及其浮选细粒孔雀石和赤铁矿的关系研究[J].矿冶工程,1989,9(3):16-20
    [75]胡绍彬等.深度活化浮选汤丹氧化铜矿的研究及应用[J].云南冶金,1997(3):17-24
    [76]徐晓军.孔雀石结构和浮选方法[J].云南冶金,1990(1):12-15
    [77]向平,顾愚.用高效捕收剂Y89分选铜录山难选泥质氧化铜矿石的研究[J].广东有色金属学报,2000,10(2):100-103
    [78]汤雁斌.B-130在铜绿山矿难选氧化铜矿选矿中的应用[J].四川有色金属,2005(2):1-3
    [79]喻坚意,余天桂.“D2”药剂浮选氧化铜矿石的效果[J].矿产综合利用,1991(1):7-9
    [80]Prabh S,肖至培.氧化铜矿选矿研究[J].国外金属矿选矿,1989(5):14-22
    [81]徐晓军,刘邦瑞.有机螯合剂活化硅孔雀石浮选特性研究[J].昆明工学院学报,1993,18(3):36-41
    [82]罗新民,天松鹤,刘忠荣.难选氧化铜矿浮选工艺研究[J].湖南有色金属,2003,19(4),12-14
    [83]尚旭.微细粒难处理氧化铜矿物浮选机理探讨:[硕士学位论文].昆明:昆明理工大学,2007,5-7
    [84]张兆阳,顾敏洲.德兴铜矿孔雀石硫化法浮选试验研究[J].矿业快报,2001,12(24):4.
    [85]李志章,杨家文.氧化铜矿浮选捕收剂的研究与应用[J].昆明冶金高等专科学校学报,1996,6(2):77-78
    [86]Guy,P.J,Trahar,W.J.The effects of oxidation and mineral interaction on sulphide flotation.In:Flotation of Sulphide Mineral[J].Elsevier,1985,6:91-109
    [87]Buckley A.N,Riley K W.Self-induced floatability of sulphide minerals:examination of recent evidence for elemental sulfur as the hydrophobic entity[J].Surf Interface Anal,1991,17:655-659
    [88]Chander S,Pang J,Briceno.A.Proc.Inter.Symp.Electrochem.In Mineral and Metal Process[J].Pennington,1988.247-263
    [89]Hayes R.A,Price M.D,Ralston J.The collectorless flotation of sulfide minerals[J].Mineral Process,1987,2:203-234
    [90]Buckley,A.N,Woods,R.Relaxation of the lead-deficient sulfide surface layer on oxidized galena[J].Journal of Applied Electrochemistry,1996,26(9):899-907
    [91]Yekeler,Meftuni,Sonmez,et al.Effect of the hydrophobic fraction and particle size in the collectorless column flotation kinetics Colloids and Surfaces A[J].Physicochemical and Engineering,1997,121(1):9-13
    [92]Ekmekci Z,Demirel n.Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite[J]International Journal Mineral Process,1997,52:31-48
    [93]Chander S,Kar G,Fuerstenau D.W.The corrosion and wetting behaviour of copper in the presence of some thiol reagents[J].Corrosion Science, 1979, 19: 405-416
    [94] Hepel T, Pomianowski A. Diagrams of electrochemical equilibria of the system copper-potassium ethyl xanthate-water at 25C[J] International Journal Mineral Process, 1977, 4: 345-361
    [95] Johnson N. W, Munro P. D. Eh-pH measurements for problem solving in a zinc reverse flotation process[J]. Australas Inst Min Metall, 1988,239(3): 53-58
    [96] Garrels R. M, Christ C. L Solutions minerals and equilibria[J]. Harper Row, New York, 1965. 403-429
    [97] Vanghan D. J, CraigJ. R. Mineral chemistry of metal sulfides,London:Cambridge University Press, 1978. a:51~62; b:376-412
    [98] Peters, E. Leaching of sulphide[J]. Advances in Mineral Processing,1986, 445-462
    
    [99] 孙水裕.硫化矿电化学调控无捕收剂浮选:[博士学位论文].长沙,中南工业大学, 1990
    
    [100] Allison S. A, Goold L. A, Nicd M. J, et al. A determination of the products of reaction between various sulfide minerals and aqueous xanthate solution, and a correlation of the products with electrode rest potentials[J].Metallurgical Transactions, 1972, 3:2613-2618
    [101] Woods R. Chemisorption of thiols on metal and metal sulfide. In:Bockris J O' M, Conway B E and White R E, Eds. Modern Aspects of Electrochemistry, 1996, 29: 401-453
    
    [102] X. Cheng, I. Iwasaki. Pulp potential and its implications to sulfide flotation[J]. Mineral Processing and Extractive Metallurgy Review,1992, 11: 187-210
    
    [103] Richardson P. E, alker G. W. The flotation of chalcocite, bornite,chalcopyrite and pyrite in an electrochemical-flotation cell [J]. 15th International Mineral Processing Congress, Cannes, France,1985. 198-210
    
    [104]Ball B, Rickard R. S. The chemistry of pyrite flotation and depression.In: Flotation, A.M. Gaudin Memorial volume, M. C. Fuerstamau(eds.),AIME, Inc ,1976, 1: 458-484
    
    [105]Gardner J. R, Woods R. An electrochemical investigation of contact angle and of flotation in the presence of alky xanthate, II, Galena and pyrite surfaces[J].Aust. J. Chem, 1977, 30:981-991
    [106] Trahar W. J. The influence of pulp potential in sulphide flotation.In: Principles of Mineral Flotation, The Wark symposium. M. H. Jones and J. T. Woodcock (Eds), Australa. Inst. Min. Metall. Parkville,Victoria. Australia, 1984. 117-135
    [107] Fuerstenau M. C, Kuhn M. C, Elgillani D. A. The role of dixanthogen in xaomthate flotation of pyrite[J].Trans AIME, 1968, 241:437.
    [108]Hu Yuehua, Zhang Shunli, Qiu Guangzhou, et al. The mechanism of activation flotation of pyrite depressed by lime. J. Cent. South.Univ. Technol, 1995, 26(2):176-180
    [109]Wang Dianzuo. Development of flotation theory, Science Press,Beijing, China, 1992a. 79-143
    
    [110] JanetskiN. D, Woodburn S. I, Woods R. An electrochemical investigation of pyrite flotation and depress ion[J]. International Journal Mineral Process., 1977,4:227-239
    [111]Majima H, Takeda M. Electrochemistry studies of the xanthate-dixanthogen system on pyrite[J].Trans. AIME, 1968 , 241:431-436
    [112]Pozzo R. L, Iwasaki I. Effect of Pyrite and Pryyhotite on the Corrosive Wear of Grinding Media[J]. Minerals & Metallurgical Processing, 1987,4(2):166-171
    
    [113] Pozzo R. L, Malicsi A. S, Iwasaki. I. Pyrite-Pryyhotite-grinding media contact and its effect on flotation[J]. Minerals & Metallurgical Processing, 1988, 5(1):16-21
    
    [114] Nakazawa H, Iwasaki I. Galvanic contact between nickel arsenide and pyrrlotite and its effects on flotation[J]. International Mineral Process, 1986, 18:203-215
    
    [115] Kongolo J. M, DonatoM. D, Michot P, et al. Interaction between firely ground galena and pyrite with potassium amylxanthate in relation to flotation, 2. Influence of grinding media at natural pH[J].International Journal Mineral Process, 1990, 30:35-67
    [116] Leppinen J. O, Basilio C. I,Yoon R.H. In-situ FTIR study of ethyl xanthate adsorption on sulphide minerals under conditions of controlled potential[J]. International Journal Mineral Process,1989, 26:259-274
    [117]Leppinen J.O.FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals[J].International Journal Mineral Process,1990,30:245-263
    [118]Leppinen J.O,Basilio C.I,Yoon R H.FTIR study thiocarbamate adsorption on sulfide minerals[J].Colloids and Surfaces,1998,32:113-125
    [119]Mielezarski J.A,Yoon R.H.Spectroscopic studies of the structure of the adsorption layer of thionocarbamate[J].Coll Inter Sci,1989,131(2):423-432
    [120]Laajalehto K,Nowak P,Suoninen E.On the XPS and IR identification of the products of xanthate sorption at the surface of galena[J].International Journal Mineral Process,1993,37:123-147
    [121]Persson I,Persson P,Valli M,et al.Reaction on sulfide mineral surfaces in connection with xanthate flotation studied by diffuse reflectance FTIR spectroscopy,atomic absorption spectrophotometry and calorimetry,In:K.S.E.Forssberg(ed.).Flotation of Sulphide Mineral.Inter.J.Miner.Process,1991,33:67-81
    [122]张芹,胡岳华,顾帼华等.电化学浮选体系中乙黄药和磁黄铁矿相互作用的红外光谱研究,矿冶工程,2004,24(5):42-44.
    [123]Salvador P,Tafalla D.Reaction Mechanism at n-FeS_2/I interface [J].Journal of the Electrochemical Society,1991,132(6):1350-1356
    [124]Mishra K.Journal of the Electrochemical Society,1992,139(6):749-752
    [125]Richardson P.E,Yoon R.H,Y-Q Li.The Photoelectrochemistry of Pyrite and Galena[J].18th International Mineral Processing Congress,Sydney,1993.757-766
    [126]孙水裕,王淀佐,李柏淡.方铅矿自诱导浮选电化学和量子化学研究.有色金属,季刊,1993,45(2):31-37.
    [127]Hu Yuehua,Qiu Guanzhou,Sun Shuiyu,et al.Recent development in researches of electrochemistry of sulphide flotation at Central South University of Technology,Trans.Nonferrous Met.Soc.China,2000(10):1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700