用户名: 密码: 验证码:
复杂铜锌硫化矿浮选分离的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大厂铜坑矿区复杂铜锌硫化矿属于含砷较高的铜锌原生硫化矿,矿石总量为5152.33万t,Zn金属量和Cu金属量分别为212.72万t和8.46万t,为华锡集团重大资源接替基地,原矿矿物组成复杂,矿石主要呈浸染状产出,铜矿嵌布粒度细,铜锌分选难度大,另外矿石中存在的硫铁矿会影响锌精矿品质,为有效提高铜、锌精矿品位和回收率,寻求高效捕收剂和抑制剂具有重要的意义。本课题以这类矿石为研究对象,针对这两个关键点,进行铜锌硫化矿和锌铁硫化矿的有效分离和高效捕收的基础研究。论文的主要研究内容和创新如下:
     本文以矿石中主要硫化矿物:黄铜矿、闪锌矿、铁闪锌矿和黄铁矿为研究对象,通过药剂筛选发现,巯基苯骈噻唑和叔十二烷基硫醇分别对黄铜矿、铁/闪锌矿具有较强的捕收能力和选择性;二甲基二硫代氨基甲酸钠对铁/闪锌矿具有较强的抑制效果。
     据前线轨道能量匹配原则,巯基苯骈噻唑(MBT)对铜锌硫化矿物具有较好的选择性捕收能力;吸附能表明,MBT在黄铜矿(112)面的吸附可自发进行,其最稳定吸附构型为五元环外S原子和N原子共同吸附,并且S原子、N原子的3p轨道提供部分电子给Cu原子的3d轨道而形成正配键,MBT很难在闪锌矿(110)面发生吸附。红外光谱研究进一步表明,MBT在黄铜矿表面发生了较强的化学吸附。电化学测试发现,MBT在黄铜矿表面发生氧化还原反应,黄铜矿自身氧化受到阻止。
     通过红外光谱测试和紫外光谱分析发现,二甲基二硫代氨基甲酸钠(DMDC)可以将铜锌硫化矿物有效分离的原因为两个方面:①DMDC和丁黄药可以在黄铜矿表面发生共吸附,均为化学吸附,从而促进黄铜矿浮选;DMDC在闪锌矿和铁闪锌矿表面产生化学吸附,而丁黄药在两者表面发生物理吸附,由于DMDC的“水油度”大,使矿物表面亲水,从而使闪锌矿和铁闪锌矿可浮性下降。②DMDC可以络合矿浆体系中的Cu2+离子,生成络合物Cu(DMDC)2,从而阻止Cu2+离子对闪锌矿/铁闪锌矿的活化,达到有效抑制闪锌矿/铁闪锌矿的效果。XPS光电子能谱表明,与DMDC作用后,三种矿物表面各金属轨道结合能均发生化学位移,且为负值,这说明金属的价电子壳层中的电子云密度增加,即金属的空价键轨道获得电子或者与其它原子共用电子。DMDC在矿物晶面的吸附模拟研究和电子布局、态密度分析发现,DMDC与矿物表面作用时,其双键上S原子的3p轨道提供部分电子与金属原子的3d轨道而形成正配键。当DMDC和丁黄药同时存在时,两者更易在黄铜矿电极表面发生氧化。当DMDC与矿物作用后,在闪锌矿表面观察到了(DMDC)2的峰,闪锌矿电化学活性增加。
     药剂结构与性能关系表明,叔十二烷基硫醇(TDM)对铁/闪锌矿的捕收能力优于丁黄药和乙硫氮。红外光谱分析进一步表明,TDM在闪锌矿和铁闪锌矿表面均发生了化学吸附,这说明与丁黄药相比,TDM与铁/闪锌矿的作用更强。在酸性和中性条件下,TDM在闪锌矿、铁闪锌矿和黄铁矿表面的吸附量没有明显区别,当以饱和石灰水调浆时,在碱性条件下,TDM在黄铁矿表面的吸附量迅速降低,锌铁硫化矿物的分选效果最佳。TDM在矿物表面吸附构型的分子模拟表明,TDM在闪锌矿(110)面和黄铁矿(100)面的吸附均可自发进行,TDM与矿物作用以正配键作用为主。由电化学分析可得,调整剂石灰会导致黄铁矿表面过氧化,从而阻止了TDM在电极表面的氧化还原,而叔十二烷基硫醇在闪锌矿和铁闪锌矿表面的电化学行为未受到调整剂石灰的影响。
     针对大厂原矿Zn品位为3.54%,Cu品位为0.18%的复杂铜锌多金属原生硫化矿,采用全优先原则流程,对于优先选铜,采用丁黄药和二甲基二硫代氨基甲酸钠组合,或者巯基苯骈噻唑和硫酸锌、亚硫酸钠组合分别作为硫化铜矿捕收剂和硫化锌矿抑制剂;对于选铜尾矿中硫化锌的选别,采用叔十二烷基硫醇作为捕收剂,闭路实验结果表明:铜、锌精矿分别达到了“铜精矿质量标准”和“锌精矿质量标准”。在相同的药剂组合条件下,与全优先流程相比,采用等可浮—混浮分离流程,在保证对铜的高效捕收前提下,可有效降低铜精矿里锌金属的含量,并且药剂用量明显减少,磨矿压力减小,为本论文推荐采用的工艺流程。图118幅,表54个,参考文献164篇。
The complex polymetallic copper-zinc sulfide ore in Dachang, Tongkeng ore district, belongs to primary sulfide ore, the gross ore is5152.33wt and the amounts of Zn metal, Cu meltal are212.72wt and8.46wt, respectively. The ore is characterized by complex mineral composition and fine dissemination particle size. In order to improve the separation and comprehensive recovery of copper and zinc, the main sulfide minerals in the ore including chalcopyrite, sphalerite, marmatite and pyrite are chosen as the objects investigated.
     The results show that, the collectors named Mercapto Benzothiazole (MBT) and tert-dodecyl mercaptan (TDM) are more effective in collecting and selectiving for copper and zinc sulfide minerals, respectively. Meanwhile, N, N-Dimethyldi-Thiocarbamate (DMDC) is a promising depressant for the activated sphalerite and marmatite. The characteristics of interactions of Mercapto Benzothiazole, tert-dodecyl mercaptan and sodium salt of N, N-Dimethyldi-Thiocarbamate with chalcopyrite, sphalerite/marmatite and pyrite are tested, respectively. Additional analytical techniques (FTIR, UV spectrum, XPS and electrochemistry analysis) are employed in the current study to point out the mechanisms which are involved in the interaction of reagents with sulfide minerals. Meanwhile, the density functional theory is employed. Main conclusions and innovations of this dissertation are listed as follows:
     The results shown in FTIR spectra indicate that, MBT can adsorb on chalcopyrite surface chemically, while there are no characteristic peaks apperaed on the sphalerite and marmatite surfaces. The results of frontier obital energy show that, the reactions between MBT and sulfide minereals are, from high to low, chalcopyrte> marmatite> sphalerite, which further demonstrates MBT has a good selective floatation for Cu/Zn sulfide ores. The adsorption of MBT on chalcopyrite (112) surface is spontaneously, the3p orbits of S atom and N atom provide electrons to Cu atom to form positive coordinate bond, while MBT is hardly to adsorb on the sphalerite (110) surface. The electrochemistry results show that, after chalcopyrite electrode conditioned with MBT, the hydrophobic product of Cu(MBT)2formed on its surface, the self-oxidation of chalcopyrite is blocked, which result in the reduction of formation of Cu(OH)2and Fe(OH)3, thus the electrochemical electron transfer rate is accelerated.
     The interactions between DMDC and minerals/metal ions have been investigated by FTIR and UV spectrum, the reason for the effectively depress for sphalerite lies two aspects:①DMDC can adsorb on the mineral surfaces chemically. Butyl xanthate and DMDC can co-adsorb on the chalcopyrite surface, however, less butyl xanthate species adsorb on sphalerite and marmatite surfaces.②Compared with Zn2+, Fe2+, DMDC has a stronger capacity of complexing with Cu+and the product is Cu(DMDC)2, which indicates that DMDC, in flotation, is effective in preventing copper activation of sphalerite and marmatite, which in turn results in depression. After being conditioned with DMDC, shown in XPS, the displacements of binding energies of metal orbits on the three minerals are negative, which indicates that the electron clound density in electron shell increases, which means that the free valence orbitals obtain or share electrons with other atoms. There are lone electron pairs in S and N atoms of DMDC, which can react with metals probably. The frontier orbital analysis indicates that S aotm on double bond in DMDC is the active site for adsorption. The calculated results of electronic structure show that the3p orbit of S atom provides electrons to metal atoms to form positive coordinate bonds. When DMDC is putted into the electrochemical system, there is a new peak of (DMDC)2appeared on chalcopyrite electrode and sphalerite electrode respectively, while there is no change on marmatite electrode, which is attribute to the formation of hydroxy compounds. The results shown in electrochemical corrosion indicate that DMDC and butyl xanthate will be oxidized more easilier when they coexist in the electrochemical system.
     Compared with butyl xanthate, the tert-dodecyl mercaptan has a better collecting efficiency for sphalerite and marmatite, which can chemi-adsorb on the mineral surfaces. The results of density functional theory further show that the collecting capability is optimal for sphalerite and marmatite, comparing with diethyldithiocarbamate and butyl xanthate. When the pH of slurry is adjusted by saturated lime water, the adsorbance of tert-dodecyl mercaptan on pyrite sharply decreases in alkaline condition. The adsorptions of tert-dodecyl mercaptan on sphalerite (110) surface and pyrite (100) surface are spontaneously. The results of electrochemistry show that the lime can lead to the preoxidation of pyrite electrode, which prevents the oxido-reduction of tert-dodecyl mercaptan on pyrite surface. Lime can not affect the electrochemical reactions of tert-dodecyl mercaptan on sphalerite and marmatite surfaces.
     The grade of Cu and Zn is0.18%,3.53%respectively in Tongkeng. In priority procedure, when butyl xanthate is used as copper collector, the lime and DMDC are putted into the mill directely, or the MBT is chosen as the copper collector, ZnSO4and Na2SO3are as the depressants; for the collecting of zinc sulfide, the tert-dodecyl mercaptan is chosen as collector, the closed circuit results indicate that the flotation separation and collecting of copper and zinc are satisfied. Copper and zinc concentrate reach the "copper concentrate quality standards" and "zinc concerntrate quality standard", respectively. Compared with priority procedure, the iso-floatability process has obvious superiority in the separation of zinc sulfide from copper sulfide.
引文
[1]刘斯仁.我国铜、锌资源“走出去开发”战略研究[D].北京:对外经济贸易大学,2007:1-2
    [2]Chandra A P, Gerson A R. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite [J]. Advances in Colloid and Interface Science,2009,145(1-2):97-110
    [3]Klassen V I, Mokrousov V A. An introduction to the theory of flotation [M]. London: Butterworths,1963:241-242
    [4]Dixon D R. Photochemical reactions at the ZnS-H2O interface [J]. Transactions Society of Minerals Engineering,1975,258:81-88
    [5]Finkelstein N P. The activation of sulphide minerals for flotation:a review [J]. International Journal of Mineral Processing,1997,52(2-3):81-120
    [6]Laskowski J S, Liu Q, Zhan Y. Sphalerite activation:Flotation and electrokinetic studies [J]. Minerals Engineering,1997,10(8):787-802
    [7]Bessiere J, Chlihi K, Thiebaut J M, et al. Dielectric study of the activation and deactivation of sphalerite by metallic ions [J]. International Journal of Mineral Processing,1990,28(1-2):1-13
    [8]Trahar W J, Senior G D, Heyes G W, et al. The activation of sphalerite by lead -a flotation perspective [J]. International Journal of Mineral Processing,1997,49(3-4): 121-148
    [9]Rashchi F, Sui C, Finch J A. Sphalerite activation and surface Pb ion concentration [J]. International Journal of Mineral Processing,2002,67(1-4):43-58
    [10]Ralston J, Healy T W. Activation of zinc sulphide with CuⅡ, CdⅡ and PbⅡ:Ⅱ. Activation in neutral and weakly alkaline media [J]. International Journal of Mineral Processing,1980,7(3):203-217
    [11]Bulatovic S M. Handbook of flotation reagent [M]:Elsevier Science & Technology Books
    [12]Lascelles D, Finch J A. Quantifying accidental activation. Part Ⅰ. Cu ion production [J]. Minerals Engineering,2002,15(8):567-571
    [13]杨国锋,孙敬锋,贾凤梅,等.某铜—锌矿石的浮选和分离工艺试验研究[J].矿产保护与利用,2009(4):33-35
    [14]艾光华,周源.细粒嵌布铜铅锌矿石的浮选新工艺试验研究[J].金属矿山,2004:36-38
    [15]吴熙群,戴芳蓉.含锌铜硫化矿石分选研究[J].矿冶,2003,12(1):26-30
    [16]帕那亚托V.铜锌浮选的电化学处理技术[J].国外金属矿选矿,2000,11:39-40
    [17]Hintikka V V, Leppinen J O. Potential control in the flotation of sulphide minerals and precious metals [J]. Minerals Engineering,1995,8(10):1151-1158
    [18]Leppinen J O, Hintikka V V, Kalapudas R P. Effect of electrochemical control on selective flotation of copper and zinc from complex ores [J]. Minerals Engineering, 1998,11(1):39-51
    [19]Yuan X M, Palsson B I, Forssberg K S E. Flotation of a complex sulphide ore Ⅰ. Cu/Zn selectivity control by adjusting pulp potential with different gases [J]. International Journal of Mineral Processing,1996,46(3-4):155-179
    [20]赵宙,李小康.铜锌混合矿加压浸出的试验研究[J].中国有色冶金,2006,3:20-30
    [21]Д·Ж·格维列夏尼.综合处理马德纽里斯克矿床的铜锌矿石[J].国外金属矿选矿,2007,1:38-41
    [22]B·A·钱图利亚,屈风华,李伍孝等.含黄铁矿的多金属矿石选矿技术的完善[J].国外金属矿选矿,2005,11:26-28
    [23]Fairthorne G, Fornasiero D, Ralston J. Interaction of thionocarbamate and thiourea collectors with sulphide minerals:a flotation and adsorption study [J]. International Journal of Mineral Processing,1997(50):227-242
    [24]詹信顺,钟宏,刘广义.提高德兴铜矿铜浮选回收率的新型捕收剂研究[J].金属矿山,2008(12):70-73
    [25]Liu G Y, Zhong H, Dai T G, et al. Investigation of the effect of N-substituents on performance of thionocarbamates as selective collectors for copper sulfides by ab initio calculations [J]. Minerals Engineering,2008,21(12-14):1050-1054
    [26]Maier G S, Dobias B.2-mercaptobenzothiazole and derivatives in the flotation of galena, chalcocite and sphalerite:A study of flotation, adsorption and microcalorimetry [J]. Minerals Engineering,1997,10(12):1375-1393
    [27]Fairthorne G, Brinen J S, Fornasiero D, et al. Spectroscopic and electrokinetic study of the adsorption of butyl ethoxycarbonyl thiourea on chalcopyrite [J]. International Journal of Mineral Processing,1998,54(3-4):147-163
    [28]唐林生,李高宁,林强.O-乙基-N,N-二甲基硫氨脂的催化合成及浮选性能[J].有色金属(选矿部分),2000(3):45-47
    [29]邱仙辉.铜锌难选硫化矿高效浮选分离理论与应用[D].赣州:江西理工大学,2009
    [30]B·A·依格纳特金娜.用改性的二硫代磷酸盐浮选铜、铁、锌和金的硫化矿物[J].国外金属矿选矿,2006,6:15-17
    [31]И·И·马克西莫夫.在萨费亚诺夫斯克矿床铜-锌矿石浮选工艺制定时应用有效的药剂[J].国外金属矿选矿,2006,2:25-28
    [32]K·M·阿松奇克.在盖伊斯克铜锌矿石浮选时提高铜精矿质量[J].国外金属矿选矿,2007,9:42-43
    [33]万玲,华金仓.阿舍勒铜矿选矿技术进步[J].有色金属(选矿部分),2006,5:12-16
    [34]A.马拉比尼.选择性浮选硫化铜的新药剂[J].国外金属矿选矿,1994:33-41
    [35]周秀英.捕收剂BK-301浮选硫化矿回收铜、锌及伴生金银的研究[J].矿冶,1998,7(3):33-37
    [36]D福内西罗等.用于硫化铜矿分离的选择性捕收剂[J].国外金属矿选矿,2000:22-24
    [37]Seke M D. Optimisation of the selective flotation of galena and sphalerite at Rosh Pinah Mine [D]. Pretoria:University of Pretoria,2005:102-104
    [38]Prestidge C A, Skinner W M, Ralston J, et al. Copper(II) activation and cyanide deactivation of zinc sulphide under mildly alkaline conditions [J]. Applied Surface Science,1997,108(3):333-344
    [39]Buckley A N, Woods R, Wouterlood H J. An XPS investigation of the surface of natural sphalerites under flotation-related conditions [J]. International Journal of Mineral Processing,1989,26(1-2):29-49
    [40]Fuerstenau D W. Activation in the flotation of sulphide minerals [M]. Johannesburg: South African Institute of Mining and Metallurgy,1982:183-198
    [41]Finkelstein N P, Allison A S. The chemsistry of activation,deactivation and depression in the flotation of zinc sulphide:A review [M]. New York:AIMMPE,1976
    [42]Prestidge C A, Skinner W M, John R, et al. Copper(Ⅱ) activation and cyanide deactivation of zinc sulphide under mildly alkaline conditions [J]. Applied Surface Science,1997,108(3):333-344
    [43]Wang X H, Forssberg E, Bolin N J. The Aqueous and Surface Chemistry of Activation in the Flotation of Sulphide Minerals-A Review. Part Ⅱ:A Surface Precipitation Model [J]. Mineral Processing and Extractive Metallurgy Review:An International Journal,1989,4(3-4):167-199
    [44]王奉刚.思茅铜锌硫化矿分离技术研究[D].昆明:昆明理工大学,2008:46-50
    [45]Davila-Pulido G I, Uribe-Salas A, Espinosa-Gomez R. Comparison of the depressant action of sulfite and metabisulfite for Cu-activated sphalerite [J]. International Journal of Mineral Processing,2011,101(1-4):71-74
    [46]Khmeleva T N, Skinner W, Beattie D A. Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite [J]. International Journal of Mineral Processing,2005,76(1-2):43-53
    [47]Khmeleva T N, Chapelet J K, Skinner W M, et al. Depression mechanisms of sodium bisulphite in the xanthate-induced flotation of copper activated sphalerite [J]. International Journal of Mineral Processing,2006,79(1):61-75
    [48]Pattison I G. The action of sodium sulphite as a depressant in sulphide mineral flotation systems containing chalcopyrite, galena, pyrite and sphalerite [D]: University of Melbourne,1981
    [49]Luthy R G, Bruce S G. Kinetics of reaction of cyanide and reduced sulphur species in aqueous solution [J]. American Chemical Society,1979,13 (12):1481-1487
    [50]Grano S R. Mechanisms for the action of sulphite and carbonate ions in the flotation of the Hilton ore of Mount Isa Mines limited [D]:University of South Australia,1997
    [51]Shen W Z, Fornasiero D, Ralston J. Flotation of sphalerite and pyrite in the presence of sodium sulfite [J]. International Journal of Mineral Processing,2001,63(1):17-28
    [52]Rashchi F, Finch J A. Deactivation of Pb-contaminated sphalerite by polyphosphate [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2006, 276(1-3):87-94
    [53]Ekmekci Z, Aslan A, Hassoy H. Effects of EDTA on selective flotation of sulphide minerals [J]. Physicochemical Problems of Mineral Processing,2004,38:79-94
    [54]Bessiere J, Chlihi K, Thiebaut J M, et al. Dielectric study of the activation and deactivation of sphalerite by metallic ions [J]. International Journal of Mineral Processing,1990,28(1-2):1-13
    [55]Wang X, Forssberg E. EDTA-induced flotation of sulfide minerals [J]. Journal of Colloid and Interface Science,1990,140(1):217-226
    [56]李玉芬,李民健.CCE组合抑制剂用于铜锌分离生产实践[J].云南冶金,2002,31(1):12-16
    [57]Quast K, Hobart G. Marmatite depression in galena flotation [J]. Minerals Engineering,2006,19(6-8):860-869
    [58]Bulatovic S M, Wyslouzil D M. Development and application of new technology for the treatment of complex massive sulphide ores case study-Faro lead/zinc concentrator-Yukon [J]. Minerals Engineering,1999,12(2):129-145
    [59]汤小军,邱廷省,陈金花,等.Z-206组合抑制剂用于铜锌分离浮选试验研究[J]. 四川有色金属,2008:19-22
    [60]Rashchi F, Finch J A, Sui C. Action of DETA, dextrin and carbonate on lead-contaminated sphalerite [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2004,245(1-3):21-27
    [61]Rath R K, Subramanian S. Adsorption, electrokinetic and differential flotation studies on sphalerite and galena using dextrin [J]. International Journal of Mineral Processing, 1999,57(4):265-283
    [62]陈建华,粱梅莲,蓝丽红.偶氮类有机抑制剂对硫化矿的抑制性能[J].中国有色金属学报,2010,20(11):2239-2247
    [63]马晶,任金菊,原连育.某难选多金属硫化矿浮选分离试验研究[J].有色金属(选矿部分),2008,3:8-11
    [64]Wong G, Lascelles D, Finch J A. Quantifying accidental activation. Part II. Cu activation of pyrite [J]. Minerals Engineering,2002,15(8):573-576
    [65]Weisener C, Gerson A. An investigation of the Cu (II) adsorption mechanism on pyrite by ARXPS and SIMS [J]. Minerals Engineering,2000,13(13):1329-1340
    [66]Khmeleva T N, Beattie D A, Georgiev T V, et al. Surface study of the effect of sulphite ions on copper-activated pyrite pre-treated with xanthate [J]. Minerals Engineering,2003,16(7):601-608
    [67]He S, Fornasiero D, Skinner W. Correlation between copper-activated pyrite flotation and surface species:Effect of pulp oxidation potential [J]. Minerals Engineering,2005, 18(12):1208-1213
    [68]Hicyilmaz C, Emre Altun N, Ekmekci Z, et al. Quantifying hydrophobicity of pyrite after copper activation and DTPI addition under electrochemically controlled conditions [J]. Minerals Engineering,2004,17(7-8):879-890
    [69]Boulton A, Fornasiero D, Ralston J. Selective depression of pyrite with polyacrylamide polymers [J]. International Journal of Mineral Processing,2001,61(1): 13-22
    [70]Natarajan R, Nirdosh I. New collectors for sphalerite flotation [J]. International Journal of Mineral Processing,2006,79(3):141-148
    [71]Hamilton D, Natarajan R, Nirdosh I. Sphalerite flotation using an Arylhydroxamic Acid collector:improving grade while using a reduced amount of copper sulfate for activation [J]. Industrial & Engineering Chemistry Research,2009,48(12):5584-5589
    [72]Nirdosh I, Natarajan R. P-heptylcupferron as collector for flotation of zinc from a Canadian copper-rougher-tails [J]. Metall,2002,56(6):366-371
    [73]Shen W Z, Fornasiero D, Ralston J. Effect of collectors, conditioning pH and gases in the separation of sphalerite from pyrite [J]. Minerals Engineering,1998,11(2): 145-158
    [74]Maier G S, Qiu X, Dobias B. New collectors in the flotation of sulphide minerals:a study of the electrokinetic, calorimetric and flotation properties of sphalerite, galena and chalcocite [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1997,122(1-3):207-225
    [75]夏柳英.双季铵盐型Gemini捕收剂对铝硅酸盐矿物的浮选特性与机理研究[D].天津:天津大学,2009
    [76]Unger H-J. Self-interaction correction with an explicitly density-dependent functional [J]. Physics Letters A,2001,284(2-3):124-129
    [77]刘靖疆.基础量子化学与应用[M].北京:高等教育出版社,2004:288-297
    [78]谢希德.固体能带理论[D].上海:复旦大学出版社,2007:12-55
    [79]赵成大.固体量子化学[D].北京:高等教育出版社,2003:128-141
    [80]陈光巨,黄元河.量子化学[M].上海:华东理工大学出版社,2008:246-256
    [81]Jensen F. Introduction to computational chemistry [M]. Chichester:John Wiley & Sons,2007
    [82]Kohn W, Sham L. Quantum density oscillations in an inhomogneneous electron gas [J]. Physical Review A,1965(137):1697-1705
    [83]Baerends E J. Perspective on "Self-consistent equations including exchange and correlation effects" [J]. Theoretical chemistry accounts,2000,103(3-4):265-269
    [84]Stowasser R, Hoffmann R. What do the Kohn-Sham orbitals and eigenvalues mean? [J]. Journal of the American Chemical Society,1999(121):3414-3420
    [85]Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP [J]. Zeitschrift fur Kristallographie-Crystalline Materials,2005,220(5-6-2005):567-570
    [86]Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP [J]. Zeitschrift Fur Kristallographie,2005,220(5-6):567-570
    [87]Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code [J]. Journal of Physics-Condensed Matter,2002, 14(11):2717-2744
    [88]Karantanas A H, Bitsios G, Karaiskou E, et al. DMol3 DFT studies:from molecules and molecular environments to surfaces and solids [J]. Computational Materials Science,2000,17(2):122-126
    [89]Porento M, Hirva P. A theoretical study on the interaction of sulfhydryl surfactants with a covellite(001) surface [J]. Surface Science,2004,555(1-3):75-82
    [90]Imai Y, Watanabe A, Shimono I. Comparison of electronic structures of doped ZnS and ZnO calculated by a first-principle pseudopotential method [J]. Journal of Materials Science:Materials in Electronics,2003,14(3):149-156
    [91]Tossell J A, Vaughan D J. Theoretical Studies of Xanthates, Dixanthogen, Metal Xanthates, and Related Compounds [J]. Journal of Colloid and Interface Science, 1993,155(1):98-107
    [92]Sun W, Hu Y H, Qin W Q. DFT research on activation of sphalerite [J]. Transactions of Nonferrous Metals Society of China,2004,14(2):376-382
    [93]Chen Y, Chen J H, Guo J. A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite [J]. Minerals Engineering,2010, 23(14):1120-1130
    [94]Chen J H, Chen Y, Li Y Q. Effect of vacancy defects on electronic properties and activation of sphalerite (110) surface by first-principles [J]. Transactions of Nonferrous Metals Society of China,2010,20(3):502-506
    [95]Chen J H, Chen Y. A first-principle study of the effect of vacancy defects and impurities on the adsorption of O2 on sphalerite surfaces [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,363(1-3):56-63
    [96]Chen J H, Wang L, Chen Y, et al. A DFT study of the effect of natural impurities on the electronic structure of galena [J]. International Journal of Mineral Processing, 2011,98(3-4):132-136
    [97]Wright K, Gale J D. A first principles study of the distribution of iron in sphalerite [J]. Geochimica et Cosmochimica Acta,2010,74(12):3514-3520
    [98]Blanchard M, Alfredsson M, Brodholt J, et al. Arsenic incorporation into FeS2 pyrite and its influence on dissolution:A DFT study [J]. Geochimica et Cosmochimica Acta, 2007,71(3):624-630
    [99]Christonpher S P, Satoshi U, Martin R. "Invisible" gold revealed:Direct imaging of gold nanoparticles in a Carlin-type deposit [J]. American Mineralogist,2004
    [100]Reich M, Becker U. First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite [J]. Chemical Geology, 2006,225(3-4):278-290
    [101]洪汉烈,肖睿娟,闵新民.雄黄矿物表面氧化过程的量子化学计算[J].矿物学报,2004,24(1):95-98
    [102]Imai Y, Watanabe A, Shimono I. Comparison of electronic structures of doped ZnS and ZnO calculated by a first-principle pseudopoteritial method [J]. Journal of Materials Science-Materials in Electronics,2003,14(3):149-156
    [103]Edelbro R, Sandstrom A, Paul J. Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite [J]. Applied Surface Science, 2003,206(1-4):300-313
    [104]Von Oertzen G U, Jones R T, Gerson A R. Electronic and optical properties of Fe, Zn and Pb sulfides [J]. Journal of Electron Spectroscopy and Related Phenomena,2005, 144-147(0):1245-1247
    [105]丁宗玲,郭英,邢怀中,等.PbS电子结构的第一性原理[J].东华大学学报(自然科学版),2008,34(4):512-516
    [106]Renock D, Becker U. A first principles study of coupled substitution in galena [J]. Ore Geology Reviews,2011,42(1):71-83
    [107]Hoffman R. Solids and Surfaces:A Chemist's View of Bonding in Extended Structures [M]. New York:VCH,1988
    [108]Hamad S, Cristol S, Catlow C R A. Surface structures and crystal morphology of ZnS: Computational study [J]. The Journal of Physical Chemistry B,2002,106(42): 11002-11008
    [109]Muscat J, Hung A, Russo S, et al. First-principles studies of the structural and electronic properties of pyrite FeS2 [J]. Physical Review B,2002,65(5)
    [110]Hung A, Muscat J, Yarovsky I, et al. Density-functional theory studies of pyrite FeS2(100) and (110) surfaces [J]. Surface Science,2002,513(3):511-524
    [111]Qiu G, Xiao Q, Hu Y, et al. Theoretical study of the surface energy and electronic structure of pyrite FeS2 (100) using a total-energy pseudopotential method, CASTEP [J]. Journal of Colloid and Interface Science,2004,270(1):127-132
    [112]Liu J, Wen S-m, Xian Y-j, et al. First-principle study on the surface atomic relaxation properties of sphalerite [J]. International Journal of Minerals, Metallurgy, and Materials,2012,19(9):775-781
    [113]Klauber C. Fracture-induced reconstruction of a chalcopyrite (CuFeSa) surface [J]. Surface and Interface Analysis,2003,35(5):415-428
    [114]Claudio D O, Duarte H A. Disulphide and metal sulphide formation on the reconstructed (001) surface of chalcopyrite:A DFT study [J]. Applied Surface Science, 2010,257(4):1319-1324
    [115]Claudio D O, Guilherme Ferreira D L, Heitor Avelino D A, et al. Reconstruction of the Chalcopyrite Surfaces-A DFT Study [J]. The Journal of Physical Chemistry C, 2012,116(10):6357-6366
    [116]Hackl R P, Dreisinger D B, Peters E, et al. Passivation of chalcopyrite during oxidative leaching in sulfate media [J]. Hydrometallurgy,1995,39(1-3):25-48
    [117]Harmer S L, Thomas J E, Fornasiero D, et al. The evolution of surface layers formed during chalcopyrite leaching [J]. Geochimica et Cosmochimica Acta,2006,70(17): 4392-4402
    [118]Muscat J, Gale J D. First principles studies of the surface of galena PbS [J]. Geochimica et Cosmochimica Acta,2003,67(5):799-805
    [119]Gece G. The use of quantum chemical methods in corrosion inhibitor studies [J]. Corrosion Science,2008,50(11):2981-2992
    [120]Feng Y, Chen S, Zhang H, et al. Characterization of iron surface modified by 2-mercaptobenzothiazole self-assembled monolayers [J]. Applied Surface Science, 2006,253(5):2812-2819
    [121]Steele H M, Wright K, Hillier I H. A quantum-mechanical study of the (110) surface of sphalerite (ZnS) and its interaction with Pb2+ species [J]. Physics and Chemistry of Minerals,2003,30:69-75
    [122]Blanchard M, Wright K, Gale J D, et al. Adsorption of As(OH)3 on the (001) Surface of FeS2 Pyrite:A Quantum-mechanical DFT Study [J]. The Journal of Physical Chemistry C,2007,111(30):11390-11396
    [123]Liu G, Zeng H, Lu Q, et al. Adsorption of mercaptobenzoheterocyclic compounds on sulfide mineral surfaces:A density functional theory study of structure-reactivity relations [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012,409(0):1-9
    [124]de Lima G F, de Oliveira C, de Abreu H A, et al. Sulfuric and hydrochloric acid adsorption on the reconstructed sulfur terminated (001) chalcopyrite surface [J]. International Journal of Quantum Chemistry,2012,112(19):3216-3222
    [125]de Lima G F, de Oliveira C u, de Abreu H A, et al. Water adsorption on the reconstructed (001) chalcopyrite surfaces [J]. The Journal of Physical Chemistry C, 2011,115(21):10709-10717
    [126]Porento M, Hirva P. Theoretical studies on the interaction of anionic collectors with Cu+,Cu2+,Zn2+ and Pb2+ ions [J]. Theoretical chemistry accounts,2002,107(4): 200-205
    [127]Porento M, Hirva P. Effect of copper atoms on the adsorption of ethyl xanthate on a sphalerite surface [J]. Surface Science,2005,576(1-3):98-106
    [128]Porento M, Hirva P. The adsorption interaction of anionic silfhydryl collectors on different PbS(001) surface sites [J]. Surface Science,2003,539(1-3):137-144
    [129]Yekeler H, Yekeler M. Reacivities of some thiol collectors and their interactions with Ag+ion by molecular modeling [J]. Applied Surface Science,2004,236(1-4): 435-443
    [130]Stirling A, Bernasconi M, Parrinello M. Ab initio simulation of water interaction with the (100) surface of pyrite [J]. Journal of Chemical Physics,2003,118(19): 8917-8926
    [131]Von Oertzen G U, Skinner W M, Nesbitt H W, et al. Cu adsorption on pyrite (100):Ab initio and spectroscopic studies [J]. Surface Science,2007,601(24):5794-5799
    [132]Taggart A F. Handbook of mineral dressing [M]. New York:Wiley,1945
    [133]覃文庆.硫化矿物颗粒的电化学行为与电位调控浮选技术[M].北京:高等教育出版社,2001
    [134]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1981
    [135]王淀佐,林强,蒋玉仁.选矿与冶金药剂分子设计[M].长沙:中南工业大学出版社,1996
    [136]Yekeler M, Yekeler H. A density functional study on the efficiencies of 2-mercaptobenzoxazole and its derivatives as chelating agents in flotation processes [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006, 286(1-3):121-125
    [137]Yekeler H, Yekeler M. Predicting the efficiencies of 2-mercaptobenzothiazole collectors used as chelating agents in flotation processes:a density-functional study [J]. Journal of Molecular Modeling,2006,12(6):763-768
    [138]Bereket G, Hur E, Ogretir C. Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium [J]. Journal of Molecular Structure:THEOCHEM,2002,578(1-3):79-88
    [139]Bereket G, Ogretir C, Yurt A. Quantum mechanical calculations on some 4-methyl-5-substituted imidazole derivatives as acidic corrosion inhibitor for zinc [J]. Journal of Molecular Structure:THEOCHEM,2001,571(1-3):139-145
    [140]K.Takahashi.巯基苯并噻唑在黄铁矿表面吸附的量子化学分子轨道方法研究[J].国外金属矿选矿,1994:4-12
    [141]Khan A, Kelebek S. Electrochemical aspects of pyrrhotite and pentlandite in relation to their flotation with xanthate. Part-Ⅰ:cyclic voltammetry and rest potential measurements [J]. Journal of Applied Electrochemistry,2004,34(8):849-856
    [142]Jones R O, Gunnarsson O. The density functional formalism, its applications and prospects [J]. Reviews of Modern Physics,1989,61(3):689-746
    [143]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J]. Physical Review Letters,1996,77(18):3865-3868
    [144]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B,1992,46(11):6671-6687
    [145]印万忠,孙传尧.矿物晶体结构与表面特性和可浮性关系的研究[J].国外金属矿选矿,1998:8-11
    [146]Edelbro R, Sandstrom A, Paul J. Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite [J]. Applied Surface Science, 2003,206(1-4):300-313
    [147]Ceperley D M, Alder B J. Ground State of the Electron Gas by a Stochastic Method [J]. Physical Review Letters,1980,45(7):566-569
    [148]冯其明.硫化矿浮选电化学[M].长沙:中南工业大学出版社,1992:37
    [149]Duke C B. Atomic and electronic structure of tetrahedrally coordinated compound semiconductor interfaces [J]. Journal of Vacuum Science & Technology A,1988,6: 1957-1962
    [150]Harmer S L, Goncharova L V, Kolarova R, et al. Surface structure of sphalerite studied by medium energy ion scattering and XPS [J]. Surface Science,2007,601(2): 352-361
    [151]Hamad S, Cristol S, Callow C R A. Surface structures and crystal morphology of ZnS: Computational study [J]. Journal of Physical Chemistry B,2002,106(42): 11002-11008
    [152]陈晔.晶格缺陷对闪锌矿半导体性质及浮选行为影响的第一性原理研究[D].广西:广西大学,2009
    [153]朱玉霜,朱建光.浮选药剂的化学原理[D].长沙:中南工业大学出版社,1987:237
    [154]俞庆森,朱龙观.分子设计导论[D].北京:高等教育出版社,2000
    [155]霍普G.A.2-巯基苯并噻唑、异丙基黄药和丁基乙氧基羰基硫脲在矿物表面上吸附的金的强化电化学光谱研究[J].国外金属矿选矿,2008:40-43
    [156]Woods R, Hope G A, Watling K. A SERS spectroelectrochemical investigation of the interaction of 2-mercaptobenzothiazole with copper, silver and gold surfaces [J]. Journal of Applied Electrochemistry,2000,30(11):1209-1222
    [157]顾帼华.硫化矿磨矿—浮选体系中的氧化—还原反应与原生电位浮选[D].长沙:中南大学,1998
    [158]Chen Z. Electrochemical studies of copper-activation of sphalerite and pyrite [D], 1998:57-68
    [159]EKMEKCI Z, ASLAN, A., HASSOY, H. Effects of EDTA on selective flotation of sulphide minerals [J]. Physicochemical Problems of Mineral Processing,2004,38: 79-94
    [160]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1994
    [161]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988
    [162]Pauling L. Handbook of Chemistry and Physics [M],2001:9
    [163]Szymula M, Koziol A E, Szczypa J. Effect of xanthate chain length on decrease of xanthate concentration in solutions in contact with copper sulphides [J]. International Journal of Mineral Processing,1996,46(1-2):123-135
    [164]郑怀礼,陈春燕,岳虎秀等.重金属离子捕集剂DTC的合成及其应用[J].环境化学,2006,25(6):765

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700