用户名: 密码: 验证码:
泡沫分离法处理胶团强化超滤渗透液的机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对泡沫分离法处理胶团强化超滤渗透液的机理及应用基础进行研究。采用十二烷基硫酸钠(SDS)为表面活性剂,系统地研究了泡沫分离过程主要参数的影响规律,优化了分离过程条件,考察了混合金属离子泡沫分离的选择性,研究了组合工艺对分离效果的影响,并通过考察SDS表面化学性质及泡沫性能,气泡尺寸分布,泡沫分离动力学过程,分析了泡沫分离过程的作用机制。
     首先综述重金属污染现状及危害,介绍胶团强化超滤和泡沫分离技术在环境保护中的应用前景及存在问题,提出研究目的和内容;其次进行了SDS表面化学性质、胶团特性及泡沫性能的研究。25℃时纯水中SDS临界胶团浓度为7.8×10-3mol/L。SDS表面吸附分子横截面积为0.46nm2,表面活性剂分子呈单分子层垂直排列。用Langmuir经验吸附方程回归分析得到饱和吸附量Γm为3.6×10-10mol/cm2。温度、重金属离子浓度、pH值、电解质、乙醇对SDS的CMC有明显影响。SDS胶团化过程为自发进行的熵驱动过程。SDS浓度,pH值,温度,电解质,乙醇,重金属离子浓度对泡沫性能影响显著,振荡和通气两种方法评价SDS泡沫性能的变化规律基本一致;接着考察了在不同空气流量、SDS浓度,离子强度条件下泡沫分离设备的气泡特性,通过图像识别软件IPP6.0研究气泡大小及分布,气泡大小最直接的影响因素是分离装置孔径的大小,泡沫分离过程中操作参数对气泡直径也有影响。在实验条件下产生的气泡平均直径均在2mm以下;采用泡沫分离技术处理胶团强化超滤渗透液,取得良好的效果,处理后金属Cd2+离子浓度小于0.1mg/L,出水水质达到国家污水综合排放标准。泡沫分离Cd2+动力学研究符合一级动力学方程,空气流量、温度、pH值、表面活性剂SDS浓度对分离速率常数k有明显的影响;对混合金属离子废水进行泡沫分离,研究发现表面活性剂SDS对三种金属离子有一定的选择性;最后对胶团强化超滤与泡沫分离组合工艺进行研究,组合工艺明显降低表面活性剂SDS用量,相比于单一MEUF,工艺联用后,大大降低了出水中SDS浓度,提高重金属离子分离效率。
     本论文采用图像分析法考察了气泡尺寸分布,研究了泡沫分离过程的动力学及混合金属离子的选择性,初步探讨了泡沫分离过程的机理。同时对泡沫分离过程参数控制、工艺优化等问题进行研究。结果表明,运用泡沫分离技术处理胶团强化超滤渗透液,处理后金属Cd2+可以达标排放;将MEUF-FF联用能明显降低SDS用量,降低SDS出水浓度,提高重金属离子分离效率。组合工艺能使各种处理技术综合应用,扬长避短,为重金属废水净化提供广阔的发展前景和应用价值。
This study focuses on mechanisms and application of the permeate in Micellar-Enhanced Ultrafiltration (MEUF) by using Foam Fractionation (FF). Sodium Dodecyl Sulfate (SDS) was applied as the surfactant. Effects of operation parameters on foam fractionation process were investigated systemically. The conditions of separation process were optimized. The selectivity of the foam fractionation of mixture ions was investigated. The effect of combined technique on separations was studied. In addition, mechanisms of foam fractionation were analyzed by surface chemistry nature and foam performance of SDS, dynamics process of foam fractionation and distribution of air bubble size.
     Firstly, the present situation and harm of heavy metal pollution were summarized, the application prospect and existence question of the technique of MEUF and FF in the environmental protection were introduced, and the purpose and content of the research were also proposed. Next, the surface chemistry nature, the micelle characteristic and foam performance of SDS were investigated. The Critical Micelle Concentration (CMC) of SDS is 7.8×10-3mol/L in the pure water at 25℃. The area Am of SDS was 0.46nm2, and the surfactant was exactly erect in the foam surface. The saturated adsorptive capacityΓm is 3.6×10-10mol/cm2 by using Langmuir adsorption equation. The temperature, the pH value, and the concentration of heavy metal ions and NaCl, had the obvious influence on CMC. The process of SDS micelles was the entropy-driven process which was carried on spontaneously. The SDS concentration, the pH value, the temperature, the ethanol concentration, the NaCl concentration, and the concentration of heavy metal ions, had the influence on the foam performance of SDS markedly. The transformation rule of vibrate and ventilate to estimate foam performance of SDS was consistent basically. The effects of conditions of air flow rate, SDS concentration, and ionic strength on air bubble characteristic of separation equipment were investigated. The size and distribution of air bubble were studied by using image recognition software IPP6.0. The direct influencing factor of air bubble diameter was the aperture size of separation equipment, and the operating parameters of foam fractionation were also influential. The mean diameter of air bubble was below 2mm under the experimental condition. By using foam fractionation to treat the permeate in MEUF, the Cd2+ concentration in the effluent was lower than 0.1 mg/L which could meet the integrated wastewater discharge standard (the first grade of national discharge standards in China). The Cd2+ dynamics research of foam fractionation conformed to the first-order kinetic equation. The air flow rate, the temperature, the pH value, and the concentration of SDS had the obvious influence on separation rate constant k. We use foam fractionation to treat wastewater containing mixed metal ions. Results showed that the SDS had the good selectivity to three metal ions. Finally, the study was to adopt the combined technique of MEUF-FF to treat the wastewater. Compared with the single MEUF, the combined technique of MEUF-FF could reduce the amount of SDS consumption significantly. After using combined technique it enhanced the separation efficiency of heavy metal ions markedly and decreased the concentration of SDS in the effluent.
     The method of image analysis was applied to review the size and distribution of air bubble in the paper. To study the dynamics process of foam fractionation and the selectivity of the mixture of metal ions, mechanism of foam fractionation process was primarily discussed. Effects of operation parameters on foam fractionation process and optimization of craft were investigated simultaneously. The result indicated that the Cd2+ concentration in the effluent could meet the integrated wastewater discharge standard by using foam fractionation to treat the permeate in MEUF. The combined technique of MEUF-FF could enhance the separation efficiency of metal ions markedly and decrease the concentration of SDS in the effluent. The study provides value for application and the broad prospects for heavy metal-containing wastewater treatment by combined technique of MEUF-FF.
引文
[1] Sekhar K C, Chary N S. Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru Lake by edible fish. Environment Internationa1. 2004, 29(7): 100l-1008
    [2] Begum A, Amin N, Kaneco S, et al. Selected elemental composition of the muscle tissue of three species of fish Tilapia nilotica Cirrhina mrigala and Clarius batrachus from the fresh water Dhanmondi Lake in Bangladesh. Food Chemistry. 2005, 93(3): 439-443
    [3]常晋娜,瞿建国.水体重金属污染的生态效应及生物监测.四川环境, 2005, 24(4): 29-34
    [4]石浚哲,刘光玉.太湖沉积物重金属污染及生态风险性评价.环境监测管理与技术, 2001, 13(3): 24-26
    [5]柴文琦.环境监测技术规范.北京:国家环境保护局出版社, 1986, 11
    [6]朱圣清,臧小平.长江主要城市江段重金属污染状况及特征.人民长江, 2001, 32(7): 23-26
    [7]周怀东,彭文启.水环境与水环境修复.北京:化学工业出版社, 2005, 3
    [8]胡必彬.我国十大流域片水污染现状及主要特征.重庆环境科学, 2003, 25(6): 15-17
    [9]赵璇,吴天宝,叶裕才.我国饮用水源的重金属污染及治理技术深化问题.给水排水, 1998, 24(10): 22-25
    [10]孟多,周立岱,于常武.水体重金属污染现状及治理技术.辽宁化工, 2006, 35(9): 532-536
    [11] Fay R M, Mumtaz M M. Development of priority list of chemical mixture occurring at 1188 hazardous waste sites using the HazDat database. Food and Chemical Toxicology. 1996, 34: 1163-1165
    [12]刘杰.镉的毒性和毒理学研究进展.中华劳动卫生职业病杂志, 1998, 16(1): 2-4
    [13]廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社, 1992. 4
    [14]朱一民,沈岩柏,魏德洲.海藻酸钠吸附铜离子的研究.东北大学学报(自然科学版), 2003, 24(6)
    [15]李定龙,姜晟.重金属废水处理的方案比较研究.工业安全与环保, 2005,31(12): 18-19
    [16]李军.铁氧体沉淀法处理重金属废水.电镀与环保, 1999, 19(1): 30-31
    [17]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势.广东化工, 2005(4): 36-39
    [18]黄继国,张永祥,吕斯濠.重金属废水处理技术综述.世界地质, 1999, 18(4): 83-86
    [19]起冰翠.重金属离子废水中和沉淀特性的研究.矿产保护与利用, 1997(1): 46-48, 54-55
    [20]王绍文,姜风有.重金属废水治理技术.北京:冶金工业出版社, 1993
    [21]张建梅,韩志萍,王亚军.重金属废水的治理和回收综述.湖州师范学院学报, 2002, 24(3): 48-52
    [22]孙建民,于丽青,孙汉文.重金属废水处理技术进展.河北大学学报, 2004, 24(4): 438-443
    [23]杨晓玲.用气浮法处理含重金属废水.云南冶金, 2000, 29(4): 38-40
    [24]赵庆良,李伟光.特种废水处理技术.哈尔滨:哈尔滨工业大学出版社, 2003
    [25] Clare A N, Wilson D J. Foam flotation treatment of heavy metals and fluoride-bearing industrial wastewaters. Separation and Purification Methods, 1978, 7(1): 55-57
    [26]袁绍军,姜斌,李天成等.电解法净化含重金属离子废水的试验研究.化学工业与工程, 2003, 20(1): 7-10, 58
    [27]张志,赵永斌,刘如意.微电解-中和沉淀法处理酸性重金属矿山地下水的试验研究.有色金属, 2002(2): 4-47
    [28]石凤林.离子交换树脂法移动处理重金属废水.工业水处理, 2004, 24(8): 79-81
    [29]马少健,李长平,莫伟.重金属废水处理技术进展.云南环境科学, 2004, 23(3): 54-57
    [30]黄君涛,熊帆,谢伟立等.吸附法处理重金属废水研究进展.水处理技术, 2006, 32(2): 9-12
    [31]王宝贞,王琳.水污染治理新技术:新工艺、新概念、新理论.北京:科学出版社, 2004: 109-1l8
    [32]谢辉玲,叶红齐,曾坚贤.膜分离技术在莺金属废水处理中的应用.化学与生物工程, 2005(5): 41-43
    [33]李武,周灿秀,彭筱峻等.膜技术在工业废水处理中的应用.江苏环境科技, 2004, 17(4): 48-50
    [34] Leung P S. Ultrafiltration membranes and applications. Cooper A R Ed. New York: Plenum, 1979: 415.
    [35]沈晴,解庆林,王敦球.三种处理重金属废水的生物方法.广西科学院学报, 2005, 21(2): 122-126
    [36]张京伟.利用微生物法处理重金属工业废水的探讨.内蒙古环境保护, 2004, 16(4): 46-47
    [37]张建梅,韩志萍,王亚军.金属废水的生物处理技术.环境污染治理技术与设备, 2003, 4(4): 75-78
    [38] Michael A S. Progress in separation and purification. New York: Wiley-Interscience, 1968.
    [39]沈钟,赵振国,王果庭.胶体与表面化学.北京:化学工业出版社, 2004: 389
    [40]肖进新,赵振国.表面活性剂应用原理.北京:化学工业出版社, 2003: 10
    [41]徐燕莉.表面活性剂的功能.北京:化学工业出版社, 2000: 21
    [42]许振良.膜法水处理技术.北京:化学工业出版社, 2001.
    [43] Hebrant M, Provin C, Brunette J P, et al. Micellar extraction of europium (III) by a bolaform extractant and parent compounds derived from 5-pyrazolone. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 181: 225-236
    [44] Juang R S, Xu Y Y, Chen C L. Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration. Journal of Membrane Science, 2003, 218(1-2): 257-267
    [45] Sadaoui B Z, Azoug C, Charbit G, et al. Surfactants for separation processes: enhanced ultrafiltration. Journal of Environmental Engineering-ASCE, 1998, 124(8): 695-700
    [46] Gzara L, Dhahbi M. Removal of chromate anions by micellar-enhanced ultrafiltration using cationic surfactants. Desalination, 2001, 137(1-3):241-250
    [47] Ahmadi B S, Huang Y C, Batchelor B, et al. Binding of heavy metals to derivatives of cholesterol and sodium dodecyl sulfat. Journal of Environmental Engineering-ASCE, 1995, 121(9): 645-652
    [48] Akita S, Yang L, Takeuchi H. Micellar-enhanced ultrafiltration of gold(III) with nonionic surfactant. Journal of Membrane Science, 1997, 133(2): 189-194
    [49] Tung C C, Yang Y M, et al. Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants. Water Management. 2002, 22: 695-701
    [50] Fillipi B R, Brant L, Scamehorn J F, et al. Use of Micellar-Enhanced Ultrafiltration at low Surfactant Concentrations and with Anionic-Nonionic Surfaction Mixtrues. Journal of Colloid and Interface Science. 1999, 213: 68-80
    [51]赵国玺.表面活性剂物理化学.北京:北京大学出版社, 1984: 154-157, 164-176
    [52]王世荣,李祥高,刘东志.表面活性剂化学.北京:化学工业出版社, 2005: 16-18
    [53]王培义,徐宝财,王军.表面活性剂-合成·性能·应用.北京:化学工业出版社, 2007: 152-153
    [54] Aoudia M, Allal N, Djennet A, et al. Dynamic micellar enhanced ultrafiltration: use of anionic(SDS)-nonionic(NPE) system to remove Cr3+ at low surfactant concentration. Journal of Membrane Science, 2003, 217: 181-192
    [55] Juang R S, Xu Y Y, Chen C L. Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration. Journey of Membrane Science, 2003, 218: 257-267
    [56] Baek K, Yang J W. Cross-flew micellar enhanced ultrafiltration for removal of nitrate and chromate: competitive binding. Journal of Hazardous Materials, 2004, B108: 119-123
    [57] Baek K, Kim B K, Cho H J, et al. Removal characteristics of anionic metals by micellar enhanced ultrafiltration. Journal of Hazardous Materials, 2003, B99: 303-311
    [58] Alargova R G, Ivanova V P. Growth of rod-like micellar in anionic surfactant solutions in the presence of Ca2+ countersions. Colloids and SurfacesA: Physico-Chemical and Engineering Aspect, 1998, 142: 201-218
    [59] Hong J J, Yang S M. Ultrafiltration of Divalent Metal Cations from Aqueous Solution Using Polycarboxylic Acid Type Biosurfactant. Journal Colloid Interface Science, 1998, 202: 63-73
    [60]杜娟,曾宪诚.金属盐作用下的表面活性剂临界胶束浓度的变化研究.四川大学学报(自然科学版), 2002, 39 (4): 721-724
    [61]马利群,周卯星.温度及无机盐对LMEE和SDS混合溶液表面张力的影响.精细化工, 2004, 21(2): 108-111
    [62]华耀祖.超滤技术与应用.北京:化学工业出版社, 2004
    [63] Akita S, Castillo L P, Nii S. Separation of Co(Ⅱ)/Ni(Ⅱ) Via micellar-enhanced ultrafiltration using organophosphorus acid extractant solubilized by nonionicsurfactant. Journal of Membrane Science, 1999, 162: 111-117
    [64] Sabate J, Pujola M, Liorens J. Comparison of Polysulfone and ceramic membrane for the separation of phenol in micellar-enhanced ultrafiltration. Journal Colloid Interface Science, 2002, 246: 157-163
    [65] Klepac J, Simmons D L, Christian S D. Use of ligand modified micellat enhanced ultrafiltration in theselective removal of metal ions from water. Separation Science and Technology, 1987, 22: 763-789
    [66] Fillipi B R, Scamehorn J F, Taylor R W, et al. Selective removal of copper from an aqueous solution using ligand-modified micellar-enhanced ultrafiltration using an alkyl-β-diketone ligand. Separation Science and Technology, 1997, 32: 2401-2424
    [67] Dharmawardana U R, Christian S D, Taylor RW, et al. An equilibrium model for ligand-modified micellar-enhanced ultrafiltration using a water-insoluble ligand. Langmuir, 1992, 8: 414-419
    [68] Purkait M K, DasGupta S, De S. Separation of aromatic alcohols using micellar-enhanced ultrafiltration and recovery of surfactant. Journal of Membrane Science, 2005, 250: 47-59
    [69] Fillipi B R, Scamehorn J F, Christian S D. A comparative economic analysis of copper removal from water by ligand modified micellar enhanced ultrafiltration and by conventional solvent extraction. Journal of Membrane Science, 1998, 145: 27-44
    [70]陆九芳,李总成,包铁竹.分离过程化学.北京:清华大学出版社, 1993, 186-189
    [71]严希康.生化分离工程,北京:化学工业出版社, 2001, 225-230
    [72] Karger L, Grieves R B. Lemlich R, et al. Nomenclature reconnendations for adsorptive bubble separation methods. Sepatation Science, 1967, 2(3): 401-404
    [73] Hossain M, Fenton G. Concentration of protein from Single Component Solution Using a Semibatch Foam Process. Separation Science and Technology, 1998, 33(11): 1703-1721
    [74] Chiu H L, Huang S D. Adsorptive bubble separation of heptachlor and hydroxychlordene. Separation Science and Technology, 1991, 26(1): 73-83
    [75] Valsaraj K T, Wilson D J. Removal of Refractory Organics by Aeration IV. Solvent Sublation of Chlorinated Organics and Nitrophenols. Colloids and Surface, 1983(8): 203-224
    [76] Valsaraj K T, Spinger C. Removal of Traces of Pentachlorophenol fromAqueous Acidic Solutions by Solvent Extraction and Solvent Sublation. Separation Science and Technology, 1986, 21(6): 789-807
    [77] Victor O, Barbara K, Mei C. Emission of Volatile Organic-Compounds to the Atmosphere in the Solvent Sublation Process .1. Toluene. Separation Science and Technology, 1996, 31(2): 213-227
    [78] Lemlich R. Adsorptive Bubble Separation Techniques. Chemistry Engneering. 1966, 73(21): 7-32
    [79] Sebba F. Ion Flotation. American Elsevier, New York: 1962
    [80]董红星,郭亚军等.稀溶液中微量组分的分离与分离方法选择.应用科技, 2002, 29(1): 55-57
    [81] Rubin A J, Lapp W L. Foam Separation of Lead(Ⅱ) with Sodium Lauryl Sulfate. Analytical Chemistry, 1969, 41(8): 1133-1136
    [82] Walkowiak W, Bhattacharyya D, Grieves R B. Selective Foam Fractionation of Chloride Complexes of Zinc(Ⅱ), Meracury(Ⅱ), and Gold(Ⅲ). Analytical Chemistry, 1976, 48(7): 976-979
    [83] Tharapiwattananon N, Scamehorn J F, etal. Surfactant Recovery from Water Using Foam Fractionation. Separation Science and Technology, 1996, 31(9): 1233-1258.
    [84] Krit K K, Scamehorn J F. Surfactant recover from water using foam fractionation: Effect of temperature and added sail. Separation Science and Technology, 1999, 34 (2): 157-172
    [85] Shen Y H. Colloidal Lilanium dioxide from water by foam flatation. Separation Science and Technology, 1998, 33(6): 2623-2635
    [86]刘志红,刘峥,丁富新.用泡沫分离法浓缩和分离蛋白质(Ⅱ).清华大学学报, 1997, 37(12): 20-26
    [87]修志龙,张代佳等.泡沫分离法分离人参皂苷.过程工程学报, 2001, 7(3): 289-292
    [88]常志东,姚宁等.泡沫分离回收水中低浓度磷酸三丁酯.化工冶金, 1999, 20(2): 125-128
    [89]周长春,刘炯天,周志坚.泡沫浮选在生化分离技术中的应用.选煤技术,2002(6): 17-21
    [90]田亚平等.生化分离技术.北京:化学工业出版社, 2006, 283-286
    [91] Nguyen A V, Harvey P A, Jameson G J. Influence of gas flow rate and frothers on water recovery in a froth column. Minerals Engineering, 2003, 16: 1143-1147
    [92] Barbian N, Hadler K, Medina E V, et a1. The froth stability column:linking froth stability and flotation performance. Minerals Engineering, 2005, 18: 317-324
    [93]于书平,张正英,樊西惊.酸性条件下泡沫的稳定性.油田化学, 1994, 91: 70-72
    [94]徐荣,申威,杨林.两元表面活性剂发泡性能的研究.西南石油学报, 1994, 16(1) :76-81
    [95]周莉,刘波. PEP与阴离子表面活性剂复配体系泡沫性能研究.功能高分子学报, 2001, 14: 461-464
    [96]陈玉英,刘子聪,陈清伟,王浩录.百色油田泡沫驱油效果的初步分析.油田化学, 15 (2): 141-145
    [97]杨燕,蒲万芬.驱油泡沫稳定剂的研究.西南石油学报, 2002, 24(4): 60-621
    [98]赵旭东,李巨峰等. N-烷基-β-氨基丙酸型两性表面活性剂的合成及其泡沫性能研究.日用化学品工业, 1997, 12(6): 9-13
    [99]李治龙,钱武鼎.我国油田用泡沫流体综述.钻井液与完井液, 1994, 11(1): 1-5
    [100] Rusanov A I, Krotov V V. New Methods for Studying Foams: Foaminess and Foam Stability. Journal of Colloid and Interface Science, 1998, 206(2): 392- 396
    [101] Lalchev Z I, Wilde P J. Effect of lipid phase state and foam film type on the properties of DMPG stabilized foams. Journal of Colloid and Interface Science, 1997, 190: 278-285
    [102] Khristov K, Exerowa D, Influence of the foam film type on the foam drainage process. Colloids and Surfaces, 1995, (94): 303-309
    [103] Khristov K, Exerowa D, Minkov G. Critical capillary pressure for destruction of single foam films and foam: effect of foam film size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 210: 159-166
    [104] Kiefer J E, Wi1son D J, Time-Dependent Foam Flotation Stripping Column Operation. Separation Science and Technology, 1981, 16(2): 147-171
    [105]於兵,施亚钧.泡沫分离技术的研究V.泡沫分离塔内气-液两相的流体力学.华东化工学院学报, 1990, 16(1): 13-20
    [106] Okamoto Y. Foam Separation Processes. Handbook of Separation Techniques for Chemical Engineers, 2001, 173-184.
    [107]宋沁.泡沫分离法处理含阴离子表面活性剂废水.污染防治技术, 2000, 13(2): 123-124
    [108]於兵,邓修,施亚钧.泡沫分离技术的研究I.脱除废水中的表面活性剂.华东化工学院学报, 1987, 13(1): 17-24
    [109]谢继宏,程晓呜,邓修.大豆蛋白质的泡沫分离研究.华东理工大学学报, 1997, 23(3): 270-275
    [110]杨博,王永华,姚汝华.蛋白质的泡沫分离.食品与发酵工业, 2001, 27(2): 76-79
    [111] Lee J, Maa J R. Separation of a Surface Active Solute by Foam Fraction. Int. Comm. Heat Mass Transfer, 1986, (13): 465-473
    [112] Uraizee F, Narsimhan G. Foam Fractiooation of Proreins and Enzymes II. Performance and Modelling. Enzyme and Microbial Techno1ogy, 1990, (12): 315-316
    [113] Moussavi M. Sepration of cyanide ions by foam fractionation. Separation Science and Technology, 1992, 27 (6): 783-792
    [114] Jurkiewicz, K. Gas bubble hydration and water removal in foam fractionation and ion flotation of some metals. Journal of Colloid and Interface, 1990, 139(1): 117-127
    [115] Stoica L. Catuneanu R, Fillp G. Decontamination of solutions containing radioactive substances by dissolved air flotation. Water Research, 1995, 29(9): 2108-2112
    [116]管志远,丁富新.环流气浮分离技术在含Cu(Ⅱ)废水处理中的应用.清华大学学报, 1999, 39(1): 114-117
    [117] Uraizee F, Narsimhan G. Foam fractionation of protein sand enzymes I: Applications. Enzyme and Microbial Techno1ogy, 1990, 12 (3):232-233
    [118]刘志红,刘铮,用泡沫分离法浓缩和分离蛋白质(Ⅰ):设备及分离过程的研究.清华大学学报, 1997, 37(12): 50-54
    [119]殷刚,周蕊.糖-蛋白质混合体系泡沫分离过程研究.化学工程, 2000, 28(6): 34-37
    [120] Fenton G. Concentration of Proteins from Single Co mponent Solution Using a Semibatch Foam Protess. Separation Science and Technology, 1998,33 (16): 2623-2635
    [121] Sarkar P, Bhattacharya P, Mukherjea R N. Isolation and purification of protease from human placenta by foam fractionation. Biotechnology and Bioengineering, 1987, 29(8): 934-940
    [122] Charm S E, Morningstar J, Mateo C. The separation and purification of enzymes through foaming. Analytical Biochemistry, 1966, 15(3):498-508
    [123] Miranda E A, Berglund K A. Evaluation of column flotation in the downstream processing of fermentation products: recovery of a genetically engineeredα-amylase. Biotechnology Progress, 1993, 9(3): 411-420
    [124]严希康.生化分离技术.上海:华东理工大学出版社, 1996
    [125] Zhang Z, Zeng G M, Huang J H, et al. Removal of zinc ions from aqueous solution using micellar-enhanced ultrafiltration at low surfactant concentrations. Water South Africa, 2007, 33, 129.
    [126] Xu K, Zeng G M, Huang J H, et al. Removal of Cd2+ from synthetic wastewater using micellar-enhanced ultrafiltration with hollow fiber membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294, 140.
    [127]杜鹃,曾宪诚.金属盐作用下的表面活性剂临界胶束浓度的变化研究.四川大学学报, 2002, 39(4): 721-724
    [128]丁慧君,顾燕梁,张兰辉.碳氟醇对阳离子型表面活性剂表面活性及胶团反离子结合度的影响.高等学校化学学报, 1994, 15(8): 1190-1194
    [129]张兰辉,蔡舟夫,丁慧君等.四乙铵离子对阴离子型表面活性剂及其混合体系的表面活性和胶团形成的影响.高等学校化学学报, 1994, 15(12): 1838-1842
    [130]李静,王栋,朱延美等.表面活性剂环境模拟水相中电导率的温度响应特征.辽宁化工, 2004, 33(4): 193-197
    [131]陈宗淇,王光信,徐桂英,胶体与表面化学.高等教育出版社, 2001, 31-33
    [132]赵国玺.表面活性剂物理化学.北京:北京大学出版社, 1984.
    [133]赵郁,刘新宇,杨宇虹.十二烷基硫酸钠与十二烷基磺酸钠.生命的化学, 2004, 24(3): 277
    [134] Wydro P, Paluch M. A study of the interaction of dodecyl sulfobetaine with cationic and anionic surfactant in mixed micelles and monolayers. Journal of Colloid and Interface Science, 2005, 286: 387-391
    [135] Birdi K S. Handbook of surface and colloid chemistry, 1997
    [136]成文彬.表面活性荆与分析化学.北京:中国计量出版社, 1986
    [137]蒋萍初,白雯.表面活性剂临界胶束浓度的研究.上海师范大学学报(自然科学版), 1994, (1): 43
    [138] Zheng Z M, Obbard J P. Evaluation of an elevated non-ionic surfactant critical micelle concentration in a soil/aqueous system. Water Research, 2002, 36: 2667-2672
    [139]杨炜春,刘维屏,胡晓捷. Zeta电位法研究除草剂在土壤胶体中的吸附.中国环境科学, 2003, 23(1): 51-54
    [140]张利,陈文汨,龚竹青等.胶体五氧化二锑胶粒大小与分布的影响因素及其稳定性.中国有色金属学报, 2004, 14(5): 877-881
    [141]施长云,王运东,戴猷元. PEO-PPO嵌段共聚物反胶束的形成及其热力学行为.应用化学, 2000, 17(6): 581-584
    [142]张武聪,徐晓新.烟道内飘灰测量方法的研究.理化检验物理分册. 2002,38(6):251-253
    [143]曾荣.浮选泡沫图像边缘检测方法的研究.中国矿业大学学报, 2002, 31(5):421-424.
    [144]冯欣,李宏伟.金相组织显微图像分析及实现.辽宁工程技术大学学报(自然科学版), 2001, 20(6): 822-825.
    [145] Fujikawa S, Zhang R, Hayama S, et al. The control of micro-air-bubble generation by a rotational porous plate. International Journal of Multiphase Flow, 2003, 29: 1221-1236
    [146] Rosenfeld A. Digital picture processing (second edition), New York: Harcount Brace Jovanovich Publishers, San Diego, 1981.
    [147] Ramakrishman S, Kumar R, Kuloor N R. Studies in bubble formation-I bubble formation under constant flow conditions, Chemical Engineering Science, 1969, 24(4): 731-747
    [148]陈学俊.气液两相流与传热基础.科学出版社, 1995
    [149]戴干策,陈敏恒.化工流体力学.化学工业出版社, 1988
    [150] Kalman K S. J. Chem. Eng.,1971, 49: 624-631
    [151] Kumpabooth K, J F Scamehorn. Surfactant recovery from water using foam fractionation: effect of temperature and added Salt. Separation Science and Technology, 1999, 34(2): 157-172
    [152] Lockwood C E, Bummer P M, Jay M. Purification of proteins using foam fractionation. Pharmaceutical Research, 1997, 14(11): 1511-1515
    [153]谢继宏,程晓鸣,邓修.大豆蛋白质的泡沫分离研究.华东理工大学学报, 1997, 23(3): 270-274
    [154]刘志红,刘铮,丁富新等.泡沫分离法浓缩和分离蛋白.清华大学学报, 1997, 37(12): 50-54
    [155] Walkowiak W, Bhattacharyya D, Grieves R B. Selective foam fractionation of chloride complexes of zinc, cadmium, mercury and gold. Analytical Chemistry, 1976, 7: 975-979
    [156] Wungrattanasopon P, Scamehorn J F, Chavedrj S. Use of foam flotation to remove tert-butylpheenol from water. Separation Science and Technology, 1996,31(11): 1523-1540
    [157] Ward A F H, Tordai L. Time-Dependence of Boundary Tensions of Solutions I. The Role of Diffusion in Time-Effects. Journal of Chemical Physics, 1946, (14): 453
    [158] Miller R, Kretzschmar G. Numeriche losung for ein gemischtes modell der diffusions-kinetik-kontrollierten adsorption. Colloid and Polymer Science, 1980, 258: 85-87
    [159]杨铈宗,染料的分析与剖析,北京:化学工业出版社, 1987, 582
    [160] Galvin K P, Nicol S K, Waters A G. Selective ion flotation of gold. Colloid and surfactaces, 1992, 64: 21-33
    [161] Morgan J D, Napper D H, Warr G G, et al. Measurement of the selective adsorption of ions at air/surfactant solution interfaces. Langmuir, 1994, 10: 797-801
    [162] Liu Z D, Doyle F M. A themodynamic approach to ion flotation.Ⅰ. Kinetics of cupric ion flotation with alkylsulfates. Colloid and Surfactace, 2001, 78(1): 79-92
    [163] Liu Z D, Doyle F M. A themodynamic approach to ion flotation.Ⅱ. Metal ion selectiveity in the SDS-Cu-Ca and SDS-Cu-Pb systems. Colloid and Surfactaces A: Physcichemical and Engineering Aspects, 2001, 178(1-3): 93-103
    [164] Liu Z D, Doyle F M. Modeling metal ion removal in alkylsulfate ion flotation systems. Minerals and Metallurgical Processing, 2001, 18(3): 167-171
    [165] Byhlin H, J?nsson A S. Influence of adsorption and concentration polarisation on membrane performance during ultrafiltration of a non-ionic surfactant. Desalination, 2002, 151: 21-31
    [166] Mohamed Aoudia, Nora Allal, et al. Dynamic micellar enhanced ultrafiltration: use of anionic(SDS)-nonionic(NPE) system to remove Cr3+ at low surfactant concentration. Journal of Membrane Science, 2003, 217: 181-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700