用户名: 密码: 验证码:
矿物浮选泡沫图像序列动态特征提取及工业应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界所蕴藏的矿产资源绝大多数需经选矿加工后才能使用。在常用的选矿方法中,泡沫浮选是最重要的选矿方法,几乎所有矿石都可用浮选来分选。泡沫浮选是发生在固、液、气三相接口上连续的物理化学过程,其中浮选泡沫层是关键,浮选泡沫表面视觉特征是浮选工况与工艺生产指标的直接指示器。一直以来,浮选过程操作都是依靠人工肉眼观察浮选泡沫表面状态来完成,这种仅凭人工肉眼观察进行浮选生产操作的方式主观性强、误差大、效率低,无法实现浮选泡沫状态的量化描述和生产工况的客观评价,造成浮选生产指标波动频繁、矿物原料流失严重、药剂消耗量大、资源回收率低等情况时有发生。自上世纪90年代以来,一些发达国家将机器视觉引入到浮选过程监控中,随后逐渐得到了各科研单位与选厂的高度重视。研究基于机器视觉的浮选过程监测、建模与浮选过程自动控制方法与技术,对提高矿产资源的利用效率、实现企业的可持续发展具有非常重要理论意义与应用价值。
     浮选泡沫表面视觉特征的准确提取是实现基于机器视觉的浮选过程自动控制的关键。泡沫表面视觉特征表现在两个方面:一是基于单帧图像的泡沫参数,称为静态特征,比如泡沫的大小、形状、颜色特征、纹理特征等;另一方面是基于图像序列的泡沫图像特征参数,称为动态特征,一般包括泡沫运动速度、泡沫稳定度等。目前,国内外学者主要研究了浮选泡沫图像静态特征的提取方法与技术,对于动态特征的提取并没有详细说明和分析。要实现浮选泡沫的视觉测量与泡沫状态的客观评价,浮选泡沫的动态特征是必不可少的特征参量。本文结合浮选工艺机理,分析浮选生产工况与泡沫表面动、静态视觉特征的内在联系,指出在各种浮选生产工况下的泡沫视觉图像的特点,重点研究浮选泡沫表面动态特征提取算法和量化表述方法及其在矿物浮选过程泡沫图像监控系统中的应用。论文主要研究工作及创新点如下:
     (1)针对浮选泡沫图像噪声大,浮选泡沫表面视觉特征不能准确提取的难题,提出了一种时空联合的基于泡沫图像序列的多尺度几何变换图像贝叶斯去噪方法。该方法采用Curvelet变换对泡沫图像序列中矿化气泡的几何结构进行稀疏表示;通过分析变换域系数的统计相关性,建立基于单帧图像和时空域多帧泡沫图像Curvelet域统计依赖模型和联合统计分布模型;以所获取图像变换域系数统计分布模型为先验知识,采用贝叶斯准则依据一定的代价测度得到变换域系数的最优估计,获得理想的无噪声污染的泡沫图像最优系数估计;最后进行Curvelet反变换获得去噪的泡沫图像。该方法和其它去噪算法相比能获得较高的峰值信噪比,并在去除噪声的同时较好地保持泡沫图像细节,为后续泡沫特征提取提供了高质量的处理图像。
     (2)针对矿化气泡在流向刮板过程中不可避免地发生角度旋转与尺度缩放等几何畸变的特性,常用的目标跟踪方法因难以实现对几何形态畸变严重的浮选泡沫的精确跟踪而无法准确获取浮选泡沫表面流速的难题,提出了一种自适应的基于Fourier-Mellin变换与模板匹配相结合的泡沫图像宏块跟踪方法来自动跟踪形变气泡以准确测量浮选泡沫流向刮板的速度。该方法通过自动扫描泡沫图像高亮点,根据气泡大小进行自适应泡沫子块选取;利用Fourier-Mellin变换获取跟踪泡沫子块在相邻帧中的形变系数和子块大致位移估计;然后,根据泡沫子块的形变系数进行几何反变换获取跟踪子块形变前形貌;再利用模板匹配在估计的大致位移局部区域进行细致的子块配准搜索,获取跟踪泡沫子块在相邻帧中的位移,实现形变泡沫子块速度特征的准确测量。该方法解决了泡沫速度特征因浮选气泡形变严重而难以准确提取的问题。
     (3)针对浮选泡沫在流动过程中气泡破碎率高、坍塌严重,常用的运动估计方法因无法实现对气泡破碎区域的匹配与跟踪,而难以获取破碎严重的浮选泡沫表面流动速度的问题,提出了一种基于泡沫图像灰度SIFT (Scale Invariant Feature Transform)与Kalman滤波相结合的泡沫速度特征提取方法跟踪各种泡沫运动子块。该方法首先通过Kalman滤波预测浮选泡沫子块在相邻帧中对应的大致位移,在预测位移局部区域进行SIFT特征点提取与泡沫子块配准,极大地减少了特征提取与匹配的盲目性,提高了特征匹配速度与准确性。该方法解决了泡沫图像中气泡大量破裂的情况下泡沫子块流速无法准确测量的问题,计算复杂度低,便于工业现场应用。
     (4)针对泡沫稳定度特征难以定量描述问题,提出基于数字图像处理的浮选泡沫表面形变系数与破碎率特征提取方法。该方法在泡沫速度特征提取的基础上,通过定义相应的稳定度评价准则,实现了泡沫形变系数、泡沫破碎率的量化描述,解决了泡沫图像稳定度特征提取与表征问题,为实现浮选泡沫状态的客观评价提供了数字化参量。
     (5)以中国铝业中州分公司铝土矿浮选过程为应用对象,在浮选现场设计并搭建了浮选泡沫图像采集硬件平台,开发了相应的矿物浮选泡沫图像视觉监测系统,实时提取了浮选泡沫图像动态特征,初步分析了浮选泡沫速度特征与浮选工况间的关系,实现了浮选生产过程实时测量与客观评价。系统的泡沫特征曲线能够为生产工人提供明确的工况信息,并给出具体的操作建议,避免了工人操作的盲目性,提高了浮选生产效率,为浮选过程优化控制奠定了基础。
Mineral beneficiation is generally an indispensable industrial process in the utilization of the most natural mineral resources. Among the commonly used mineral dressing methods, froth flotation is the most important technology and almost all of the different ores can be separated by this method. Flotation process is a complex continuous physicochemical process which occurres in solid-liquid, solid-air and liquid-air three-phase interface. In the flotation process, froth layer is the key factor to production performance. Currently, the flotation operation is mainly adjusted through observing the upper surface of the froth by the experienced operators. The naked-eye observation based flotation process operation fashion is strongly subjective and inefficient. It is deficient in qualitative descriptions of flotation froth states and the objective evaluation of the production performance, which consequently results in frequent fluctuations of production indices and low recovery of raw materials with large consumption of reagent dosage. Since1990s, some developed countries have introduced the machine vision to the flotation process monitoring and control, which incurs increasing interest of the researching communities and plant operators. It is significant to research machine vision based flotation process monitoring, modeling and automatic control method and technique in theory and practical application to improve the efficiency of the usage of the mineral resource and realize the sustainable development of enterprises.
     It's essential to extract the accurate visual characteristic parameters of the froth surface to realize the machine vision based automatic control of the flotation process. There are two kinds of visual characteristics of froth surface appearance. One is based on the froth characteristics of single frame image, called static parameters such as bubble size, bubble shape, surface froth color and froth texture characteristic and so on. The other is the characteristic based on image sequence known as dynamic parameters, generally including the bubble velocity, bubble stability and so on. Currently, researchers both at home and abroad mainly focus on extracting and analyzing the static parameters while little attention has been paid to dynamic parameter extraction. It's worth noticing that the dynamic parameters are also indispensable to realize the objective evaluation of the flotation production statuses. The inherent relation between the flotation production conditions and both the static and dynamic characteristics of froth image are presented in this dissertation based on the analysis of the flotation mechanism. This work mainly focuses on researching the dynamic parameter extraction and characterization method of flotation froth based on digital image processing with the industrial application to a bauxite flotation process monitoring and control system. The main contributions are as follows.
     (1) A Bayesian denoising method integrated spatial-temporal image information is proposed based on multi-scale geometric analysis, aiming at solving the problem of inaccurate feature extraction of the froth images with serious noise contamination. Curvelet transformation is adopted in advance to express the geometric structures and surface texture of the surface froth image sparsely. Then, the marginal statistical distribution and the joint statistical distribution model of the Curvelet transform coefficients of single-frame image and multi-frame images is constructed after analyzing the statistical characteristic of the image coefficients in the transform domain. According to a specific cost measure, Bayesian inference is used to estimate the ideal uncontaminated coefficients in the transform domain. At last, the inverse Curvelet transformation is applied to get the denoised froth image. Compared to the other image denoising algorithms, this method can achieve higher peak signal noise ratio (PSNR) and keep the froth image details effectively while making noise reduction, which provides high-quality processing signals for the subsequent feature extraction of froth images.
     (2) An adaptive macroblock tracking method of froth image based on the combination of Fourier-Mellin transformation and gray template matching is proposed to measure the accurate velocity of the flotation froth flowing to the scrapper through automatically tracking the deformed bubbles in the flotation cells. Since the mineralized bubbles in the flotation cells subject to indispensable geometric distortion in scales and orientations, the froth flow velocity cannot be extracted accurately by the traditional object tracking methods, which cannot tracking the non-rigid froth bubbles with serious geometric distortion in the flotation process. This method aims to make a complement of the traditional object tracking methods to measure the froth velocity accurately. The sub-blocks are located and assigned adaptively in advance by scanning the highlights of the froth image automatically and estimating the bubble sizes effectively. The deformation coefficients and the approximate displacement of the sub-blocks in the adjacent image frames are computed by Fourier-Mellin transform, which are used to obtain the non-deformed sub-blocks by inverse geometric transformation. Then, grey template matching is adopted to search the positions of the non-deformed sub-blocks in the local neighbourhood around the first estimated displacement to measure the precise displacement of the sub-blocks in the adjacent froth sequences. This method solves the problem of the froth velocity characteristic cannot be extracted accurately with serious geometric distorted flotation bubbles.
     (3) A new froth velocity characteristic extraction method based on image gray SIFT(Scale Invariant Feature Transform)with Kalman filtering is proposed. Since the flotation bubbles collapse and burst seriously in the flotation process, the commonly used motion estimation methods cannot match and track the collapsed bubbles areas effectively, which result in inaccurate flow velocity measurement. Firstly, Kalman filter is used to predict the approximate displacement of the sub-blocks in the adjacent frames, then the SIFT features are extracted to registered the sub-block in a narrow neighbor area around the approximate displacement. This method greatly reduces the aimlessness of SIFT features extraction and feature points matching, which greatly improves the efficiency and the accuracy of feature point matching. It computes conveniently with low computational cost and successfully solves the problem of measurement of the froth flow velocity with serious bubble burst and collapse, which is convenient to apply to the real industrial flotation process.
     (4) A method to extract the deformation coefficient and bursting rate features of the flotation froth is presented based on digital image processing aiming at solving the problem of a qualitative description of the froth stability feature. Based on the froth flow velocity, the corresponding stability evaluation criteria are defined, which results in an effective qualitative description of the deformation coefficient and burst rate of flotation froth. This method is able to extract the froth stability in real time, which provides the digital parameters of the froth images to evaluate the flotation production statuses objectively.
     (5) A flotation froth image acquisition and processing flat is designed and established in the bauxite flotation plant of Zhongzhou branch of China Aluminum Company with the corresponding visual monitoring system. It extracts the visual characteristic of the froth surface appearance timely and analyses the preliminary relation between the flotation production conditions and the froth velocity characteristics, which results in online measurement of the froth surface and objective evaluation of the flotation production statuses. The froth feature curve can afford clear indication information of the production conditions and provide guidelines for flotation operation, which avoid the blindness of traditional naked-eye observation based flotation operating. The monitoring system improves the flotation efficiency greatly and lays a foundation for the optimal control of the flotation process.
引文
[1]Chai T Y, Geng Z X, Yue H, et al. A hybrid intelligent optimal control method for complex flotation process. International Journal of Systems Science,2009, 40(9):945-960.
    [2]Aldrich C, Marais C, Shean B J, et al. Online monitoring and control of froth flotation systems with machine vision:A review. International Journal of Mineral Processing,2010,96(4):1-13.
    [3]牟学民,刘金平,桂卫华,等.基于SIFT特征配准的浮选泡沫移动速度提取与分析.信息与控制,2011,40(4):525-531.
    [4]Nunez F, Cipriano A. Visual information model based predictor for froth speed control in flotation process. Minerals Engineering,2009,22(4):366-371.
    [5]Natarajan R, Nirdosh I, Basak SC, Mills DR. QSAR modeling of flotation collectors using principal components extracted from topological indices. Journal of Chemical Information and Computer Sciences,2002,42(6):1425-30.
    [6]Hyotyniemi H, Ylinen R. Modeling of visual flotation froth data. Control Engineering Practice,2000,(8) 313-318.
    [7]Bergh L G, Yianatos J B. The long way toward multivariate predictive control of flotation processes. Journal of Process Control,2011,21(2):226-34.
    [8]Kaartinen J, Haavisto O, Hyotyniemi H. On-line color measurement of flotation froth. In:V L Syrmos(editor). Proceedings of the 9th IASTED International Conference on Intelligent Systems and Control(ISC 2006). Honolulu, Hawaii, USA.14-16 August 2006, pages 164-169.
    [9]Oestreich J M, Tolley W K, Rice D A. The development of a color sensor system to measure mineral compositions. Minerals Engineering,1995,8(1-2):31-39.
    [10]Haavisto O, Hyotyniemi H. Reflectance spectroscopy in the analysis of mineral flotation slurries. Journal of Process Control,2011,21(2):246-253.
    [11]Bonifazi G, Giancontieri V, Meloni A, et al. Characterization of the flotation froth structure and color by machine vision (ChaCo). In:Proceedings of the XXI International Mineral Processing Congress, Developments in Mineral Processing,2000,13:C8a-39-C8a-49.
    [12]Hargrave J M, Miles N J, Hall S T. The usef of gray level measurement in predicting coal flotation performance. Minerals Engineering, 1996,9(6):667-674.
    [13]Hargrave J M, Brown G J, Hall S T. A fractal characteristion of the structure of coal froths. Coal Prepation,1998,19(1-2):69-82.
    [14]Hargrave J M, Hall S T. Diagnosis of concentrate grade and mass flowrate in tin flotation from colour and surface texture analysis. Minerals Engineering, 1997,10(6):613-621.
    [15]周开军,阳春华,牟学民等.基于泡沫特征与LSSVM的浮选回收率预测,仪器仪表学报,2009,30(6):1295-1300;
    [16]Duchesne C, Bouajila A, Bartolacci G, et al. Application of multivariate image analysis(MIA) to predict concentrate grade in froth flotation processes. In: Proceedings of the 35th Annual CMP Meeting. Ottawa, Canada, January 21-23, 2003, pages:511-526.
    [17]路迈西,王勇,王凡,等.利用阈值分割技术提取煤泥浮选泡沫图像的物理特征.煤炭科学技术,2002,30(8):34-37
    [18]王勇,路迈西,王凡,等.表征煤泥浮选泡沫图像特征的最佳色彩方案.中国矿业大学学报,2002,31(6):615-617.
    [19]Vathavoorana A, Batchelora A, Milesa N J, et al. Applying froth imaging techniques to assess fine coal dewatering behavior. Coal Preparation,2006, 26(2):103-121.
    [20]Sawyerr F, Deglon D A, O'Connor C T. Prediction of bubble size distribution in mechanical flotation cells. The Journal of the South African Institute of Mining and Metallugy,1998,98(4):179-185.
    [21]Bonifazi G, Serranti S, Volpe F, Zuco R. Characterisation of flotation froth colour and structure by machine vision. Computers & Geosciences 2001,27(9):1111-1117.
    [22]Fu K S, Mui K J. A survey on image segmentation. Pattern Recognition,2003, 13(1):3-16.
    [23]Cufi X, Munoz X, Freixenet J, et al. A review on image segmentation techniques integrating region and boundary information. Advances in Imaging and Electron Physics,2002,120:1-39.
    [24]Canny J F. A Computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
    [25]王可佳,平子良,海鹰.用改进的随机Hough变换检测胸水图像中的细胞.光电子.激光,2008,19(3):420-422.
    [26]Jiang T, Yang F. An evolutionary tabu search for cell image segmentation. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2002,32(5):675-678.
    [27]Freedman D, Radke R, Zhang T, et al. Model based segmentation of medical imagery by matching distributions. IEEE Trans. Med. Imaging,2005,24(3): 281-292.
    [28]Garrido A, Perez N. Applying deformable templates for cell image segmentation. Pattern Recognition,2000,33(5):821-832.
    [29]Caselles V, Catte F, Coll T, et al. A geometric model for active contours in image processing. Numerische Matchematik,1993,66(1):1-31.
    [30]Malladi R, Sethian J A, Veruri B C. Shape modeling with front propagation:A level set Approach. IEEE Transactions Pattern Analysis and Machine Intelligence,1995,17(2):158-175.
    [31]Yoon S W, Lee H K, Kim J H, et al. Medial endoscopic image segmentation using snake. IEICE Transaction Information System,2004,87(3):785-789.
    [32]Paragios N. A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Transactions on Medical Imaging,2003,22(6):773-776.
    [33]Tao W, Tian J, Liu J. Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm. Pattern Recognition Letters, 2003,24:3069-3078.
    [34]韩思奇,王蕾.图像分割的阈值法综述.系统工程与电子技术,2002,24(6):91-94.
    [35]Sifakis E, Grinias 1, Tziritas G. Video segmentation using fast marching and region growing algorithm. EURASIP Journal on applied Signal Processing, 2002,4:379-388.
    [36]Padmavathi G, Muthukumar. Image segmentation using fuzzy c mean clustering method with thresholding for underwater images. Advanced Networking and applications,2010,2(2):514-518.
    [37]Xia Y, Feng D, Zhao R, Petrou M. Learning-based algorithm selection for image segmentation. Pattern Recogn Lett,2005,26(8):1059-1068.
    [38]Bonifazi G, Serranti S, Volpe F, et al. Characterisation of flotation froth color and structure by machine vision. Computers & Geosciences,2001, 27(9):1111-1117.
    [39]Wang W X, Wang L Y.Froth image segmentation algorithms and their validation. Mineral Engineering,2003(16):1183-1192.
    [40]Sadr-Kazemi N, Cilliers J J. An image processing algorithm for measurement of flotation froth bubble size and shape distributions. Minerals Engineering,1997, 10(10):1075-1083
    [41]林小竹,谷莹莹,赵国庆.煤泥浮选泡沫图像分割与特征提取.煤炭学报,2007,32(3):304-308
    [42]Lin X Z, Zhao G Q, Gu Y Y. A classification of flotation froth based on geometry. In:Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, China,2007.2716-2720.
    [43]Grau R A, Heiskanen K. Visual technique for measuring bubble size in flotation machines. Minerals Engineering,2002,15(7):507-513.
    [44]周开军,王一军,许灿辉.基于改进FCM和形态学的浮选泡沫形态特征提取.中南大学学报(自然科学版),2010,41(3):994-1000.
    [45]Bartolacci G, Pelletier P, Tessier J, et al. Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes-Part I:Flotation control based on froth textural characteristics. Mineral Engineering,2006,19:734-747.
    [46]Moolman D W, Aldrich C. Digital image processing as a tool for on-line monitoring of froth in flotation plants. Minerals Engineering,1994,7(9): 1149-1164.
    [47]Kaartinen J, Koivo H. Machine vision based measurement and control of zinc flotation circuit. Studies in informatics and control,2002, 11(1):97-105.
    [48]刘文礼,路迈西,王凡,等.煤泥浮选泡沫图像纹理特征的提取及泡沫状态的识别.化工学报,2003,54(6):830-835.
    [49]刘文礼,路迈西,王勇等.煤泥浮选泡沫数字图像处理研究(之一).中国矿业大学学报,2002,31(2):120-123.
    [50]刘金平,桂卫华,牟学民,等.基于Gabor小波的浮选泡沫图像特征提取[J].仪器仪表学报,2010,31(8):1769-1775.
    [51]Kaartinen J, Hatonen J, Hyotyniemi J, et al. Machine-vision-based control of zinc flotation—A case study. Control Engineering Practice, 2006,14(12):1455-1466.
    [52]Kaartinen, J., Hatonen, J., Miettunen, J.,& Ojala, O. (2002). Image-analysis basedcontrol of zincflotation—a multi-camera approach. In Preprints of the seventh international conference on control, automation, robotics and vision (ICARV 2002), Singapore.
    [53]Seaman D R, Franzidis J P, Manlapig E V. Bubble load measurement in the pulp zone of industrial flotation machines-a new device for determining the froth recovery of attached particles. International Journal of Mineral Processing, 74(1-4):1-13.
    [54]Barbian N, Cilliers J J, Morar S H, et al. Cilliers, Jan J. Froth imaging, air recovery and bubble loading to describe flotation bank performance. International Journal of Mineral Processing,2007,84(1-4):81-88.
    [55]Murphy D. G, Zimmerman W., Woodburn E. T.. Kinematic model of bubble motion in a flotation froth. Powder Tocbeotogy,1996,87(5):3-12.
    [56]Chuk O D, Ciribeni V, Gutierrez L V. Froth collapse in column flotation:a prevention method using froth density estimation and fuzzy expert systems. Minerals Engineering,2005,18(5):495-504.
    [57]Ata S, Pigram S, Jameson G J. Tracking of particles in the froth phase:an experimental technique.Minerals Engineering,2006,19(6):824-830.
    [58]Barbian N, Ventura-Medina E, Cilliers J J. Dynamic froth stability in froth flotation. Minerals Engineering 2003,16(11):1111-1116.
    [59]Holtham P N, Nguyen K K. On-line analysis of froth surface in coal and mineral flotation using JKFrothCam. International Journal of Mineral Processing,2002, 64 (2-3):163-180.
    [60]Francis J J, De Jager G An investigation into the suitability of various motion estimation algorithms for froth imaging. Proceedings of the 1998 South African Symposium on Communications and Signal Processing (COMSIG '98), pp. 139-142.
    [61]Cipriano A, Guarini M, Vidal R, et al. A real time visual sensor for supervision of flotation cells. Minerals Engineering,1998,11(6):489-499.
    [62]Kottke D P, Sun Y. Motion estimation via cluster matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(1):1128-1132.
    [63]Francis J J. Machine Vision for Froth Flotation. [Ph.D. thesis]. Department of Electrical Engineering, University of Cape Town, Cape Town, South Africa, 2001.
    [64]Nguyen K K, Holtham P. The application of pixel tracing techniques in the flotation process. Proceedings of the first joint Australian and New Zealand biennial conference on Digital Imaging and Vision Computing and Applications,1997, pp.207-212.
    [65]Zanin M, Wightman E, Grano S R, et al. Quantifying contributions to froth stability in porphyry copper plants. International Journal of Mineral Processing, 2009,91(1-2):19-27.
    [66]Nguyen K, Thornton A. The application of texture based image analysis techniques in froth flotation. Proceedings of the DICTA-95, the 3rd Conference on Digital Imaging Computing Techniques and Applications 1995. p.376.
    [67]卡斯蒂尔K.浮选的进展.国外金属矿选矿,2006,4:10-13.
    [68]Supomo A, Yap E, Zheng X, Banini G, Mosher J, Partanen A. PT Freeport Indonesia's mass-pull control strategy for rougher flotation. Minerals Engineering,2008,21(12):808-816.
    [69]范德文特J S J,墨尔曼D W.具有泡沫特征的神经计算机视觉在线显像浮选过程.国外金属矿选矿,1997,7:14-19.
    [70]Van Olst M, Brown N, Bourke P, Ronkainen S. Improving flotation plant performance at cadia by controlling and optimising the rate of froth recovery using outokumpu frothmaster. Seventh Mill Operators'Conference,2000. pp. 127-35.
    [71]Bonifazi G, Giancontieri V, Serranti S, et al. A full colour digital imaging based approach to characterize floation froth:An experience in Pyhasalmi(SF) and Garpenberg(S) plants. In:International conference on imaging technology and applications for the 21st century, Beijing, China,2005,172-173.
    [72]曾荣,沃国经.图像处理技术在浮选过程中的应用.有色金属,2001,53(4):70-72.
    [73]http://www.ky114.cn/show.asp?id=9315.访问时间:2012-11-22.
    [74]Moolman D W, Aldrich C, Schmitz G P J. The interrelationship between surface froth characteristics and industrial flotation performance.Minerals Enginerring, 1996,9(8):837-854.
    [75]Moolman D W. Interpretation of flotation froth surfaces by using digital image analysis and neural networks. Chemical Engineering Science,1995, 50(22):3501-3513.
    [76]杨尽英.浮选泡沫图像颜色与几何特征提取方法研究及分析:[硕士学位论文].长沙:中南大学,2008.
    [77]Lin B, Recke B, Jorgen K H, et al.Bubble size estimation for flotation processes. Mineral Engineering,2008,21(7):539-548.
    [78]Wang W, Li L. Image Analysis and computer vision for mineral froth. In Gu J, Liu P X, eds.Proceedings of the IEEE International Conference on Mechatronics & Automation. Canada:IEEE Publication Service Center,2005.1790-1795.
    [79]Kaartinen J, Hatonen J, Miettunen J, et al. Image analysis based control of zinc flotation—a multi-camera approach. In Preprints of the Seventh International Conference on Control, Automation, Robotics and Vision(ICARV 2002). Singapore:School of Electrical and Electronic Engineering, Nanyang Technological University,2002.920-925.
    [80]黄胜国.浮选泡沫精品矿品位图像识别研究:[硕士学位论文].长沙:中南大学,2006.
    [81]Gorain B K, Napier-Munn T J, Franzidis J P, et al. Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell-Part 5: Validation of k-Sb relationship and effect of froth depth. Minerals Engineering, 1998,11(7):615-626.
    [82]Gorain B K, Harris M C, Franzidis J P, et al. The effect of froth residence time on the kinetics of flotation. Minerals Engineering,1998,11(7):627-638.
    [83]Barbian N, Cilliers J J, Morar H S, et al. Froth imaging, air recovery and bubble loading to describe flotation bank performance. International Journal of mineral processing,2007,84:81-88.
    [84]龚光明.泡沫浮选.北京:冶金工业出版社,2007.
    [85]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选.长沙:中南工业大学出版社,1993.
    [86]列皮伦J O,刘万峰,肖力子.粗颗粒浮选的有效技术——泡沫中分选.国外金属矿选矿,2004,41(9):9-14.
    [87]Morar S H, Harris M C, Bradshaw D J. The use of machine vision to predict flotation performance. Minerals Engineering,2012,36-38:31-36.
    [88]Hyotyniemi H, Ylinen R, Miettunen J. AI in practice:case study on a flotation plant. Finnish Artificial Intelligence Days-STeP 2000, August 30,2000, Espoo, Finland.
    [89]Brown N, Bourke P, Ronkainen S, et al. Improving flotation plant performance at Cadia by controlling and optimizing the rate of froth recovery using Outokumpu Frothmaster. In Proceedings of the 33th Annual Meeting of the Canadian Mineral Processors,2001. ed. M.Smith.25-37.
    [90]Tremeau A, Tominaga S, Plataniotis K N. Color in image and video processing: most recent trends and future research directions. EURASIP Journal on Image and Video Processing,2008,1-26.
    [91]Trussell H J, Saber E, Vrhel M. Color image processing. IEEE Signal Processing Magazine,2005,22(1):14-22.
    [92]Machine Vision:Technologies and Global Markets[technique report]. BBC research, June,2010.
    [93]Huang K, Wu Z, George S K, et al. Color image denoising with wavelet thresholding based on human visual system model. Signal Processing:Image Communication,2005,20(2):115-127.
    [94]Bacchelli S, Papi S. Statistically based multiwavelet denosing. Journal of Computational and Applied Mathematics,2007,210(1-2):47-55.
    [95]Chatterjee P, Milanfar P. Patch-based near-optimal image denoising. Image Processing, IEEE Transactions on,2012,21(4):1635-49.
    [96]Puetter R C, Gosnell T R, Yahil A. Digital image reconstruction:Deblurring and denoising. Annual Review of Astronomy and Astrophysics,2005,43:139-194.
    [97]Rajan J, Van Audekerke J, Van der Linden A, et al. An adaptive non local maximum likelihood estimation method for denoising magnetic resonance images. Biomedical Imaging (ISBI),2012, the 9th IEEE International Symposium on:IEEE; 2012. p.1136-1139.
    [98]Buades A, Coll B, Morel J M. A review of image denoising algorithms,with a new one. Multiscale Model. Simul.,2005,4(2):490-530.
    [99]Sejdic E, Djurovic I, Stankovic L. Fractional fourier transform as a signal processing tool:An overview of recent developments. Signal Processing,2011, 91(6):1351-1369.
    [100]Lee P, Liu G S. An efficient algorithm for the 2-D discrete cosine transform Original Research Article. Signal Processing,1996,55(2):221-239.
    [101]Chakrabarti N B, Rao T V. A recursive filter implementation of KL transform. Signal Processing,1995,44(3):269-284.
    [102]Castleman K R,朱志刚,林学闫,等.数字图像处理.北京:电子工业出版社,1998.
    [103]Weaver J, Xu Y, Healy D, et al. Filtering MR images in the wavelet transform domain. Magnetic Resonance in Medicine,1991,21:288-295.
    [104]Zhang M, Gunturk B K. Multiresolution bilateral filtering for image denoising. IEEE Transactions on Image Processing,2008,17(12):2324-2333.
    [105]Donoho D L, Johnstone I M. Ideal spatial adaptation by Wavelet shrinkage. Biometrika,1994,81(3):425-455.
    [106]Donoho D L, Johnstone I M. Adapting to unknown smoothness via Wavelet shrinkage. J. Amer. Statist. Assoc.1995,90(432):1200-1224.
    [107]Crouse M, Nowak R, Baraniuk R. Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Process.,1998,46(4):886-902.
    [108]Portilla J, Strela V, Wainwright M J, et al. Image denoising using scale mixture of Gaussian in the wavelet domain. IEEE Transactions on Image Processing, 2003,12(11):1338-1351.
    [109]Chang S, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Processing,2000,9:1532-1546.
    [110]焦李成,侯彪,王爽,等.图像多尺度几何分析理论与应用.西安:西安电子科技大学出版社,2008.
    [111]Starck J L, Candes E J, Donoho D L. The curvelet transform for image denosing. IEEE Transactions on Image Processing,2012 11(6):670-684.
    [112]Candes E J. Ridgelet:Theory and Application. USA. Department of Statistics. Standford University,1998.
    [113]Candes E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms. Society for Industrial and Applied Mathematics,2006,5(3):861-899.
    [114]Achim A, Tsakalides P, Bezerianos A. SAR images denoising via Bayesian wavelet shrinkage based on heavy-taild modeling. IEEE Transaction on Geosicience and Remote Sensing,2003,41(8):1773-1784.
    [115]Abramovich F, Sapatinas T, Silverman Y B. Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society:Set B.1998,60(4):725-749.
    [116]姜三平.基于小波变换的图像降噪.北京:国防工业出版社,2009.
    [117]Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Trans. Pattern Analysis and Machine Intell., 1989,11(7):674-693.
    [118]Buccigrossi R W, Simoncelli E P. Image compression via joint statistical characterization in the wavelet domain. IEEE Transactions on Image Processing, 1999,8(12):1688-1999.
    [119]Chipman H A, Kolaczyk F D, Mcculloch R E. Adaptive Bayesian wavelet shrinkage. Journal of the American Statistical Association,1997, 92(440):1413-1421.
    [120]Pizurica A, Philips W. Estimating the probability of the presence of a signal of interest in multiresolution single-and mutiband image denoising. IEEE Trans. Image Proess.,2006,15(3):654-665.
    [121]Portilla J, Strela V, Wainwright M J, et al. Image denoising using scale mixture of Gaussians in the wavelet domain. IEEE Trans. Image Process., 2003,12(11):1338-1351.
    [122]Gupta N, Plotkin E I, Swamy M N S. Temporally-adaptive map estimation for video denoising in the Wavelet domain. International Conf. Image Processing, 2006,1449-1452.
    [123]Boulanger J, Kervrann C, Bouthemy P. Space-Time adaptation for patch-based image sequence restoration. IEEE Trans. Pattern Analysis and Machine Intelligence,2007,29(6):1096-1102.
    [124]Gupta N, Swamy M N S, Plotkin E I. Wavelet domain-based video noise reduction using temporal discrete cosine transform and hierarchically adapted thresholding. IET Image Process.,2007,1(1):2-12.
    [125]Varghese G, Wang Z. Video Denoising Based on a Spatiotemporal Gaussian Scale Mixture Model. IEEE Trans. Circuits and Systems for Video Technology, 2010,20(7):1032-1040.
    [126]H. Foroosh, J. B. Zerubia, M. Berthod. Extension of phase correlation to subpixel registration. IEEE Trans. Image Processing,2002,11(3):188-200.
    [127]涂建华,聂单,肖怀铁.一种基于FFT处理的目标运动补偿新方法.现代雷达,2009,31(6):32-37.
    [128]Hashemi M. Adaptive noise variance estimation in BayesShrink. IEEE Signal Processing Letters,2010,17(1):12-15.
    [129]Kovacs-Vajna Z M. A fingerprint verification system based on triangular matching and dynamic time warping. IEEE Trans. On Pattern Analsis Machine Intelligence.2000,22(11):1266-1276.
    [130]Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance. IEEE Trans, on Pattern Analysis and Machine Intelligence,1993,15(9):850-863.
    [131]Chang S, Cheng F, Hsu W, et al. Fast algorithm for point pattern matching: Invariant to translations, rotations and scale changes. Pattern Recognition, 1997,30(2):311-320.
    [132]Chang S, Cheng F, Hsu W, et al. Automatic seal identification by using point matching and fake detection. Pattern Recognition Letters,1999,20(14): 1545-1552.
    [133]Grauman K, Darrell T. The pyramid match kernel:discriminative classification with sets of image features. In Proceedings of the IEEE International Conference on Computer Vision(ICCV 2005), Beijing, China, October 2005.
    [134]Grauman K, Darrell T. The pyramid match kernel:efficient learning with sets of features. Journal of Machine Learning Research.2007,8(5-1):725-760.
    [135]Grauman K. Matching sets of features for efficient retrieval and recognition:[博士学位论文].Massachusetts, USA:Massachusetts Institute of Technology, 2003.
    [136]Lazebnik S, Schmid C, Ponce J. Beond bags of features:spatial pyramid matching for recognition natural scene categories. CVPR 2006.
    [137]Sendur L, Selesnick I W. Bivariate shrinkage functions for wavelet-based denoising, exploiting interscale dependencies. IEEE Trans, on Signal Processing, 2002,50(11):2744-2756.
    [138]Nasri M, Nezamabadi-pour H. Image denoising in the wavelet domain using a new adaptive thresholding function. Neurocomputing,2009,72(4-6):1012-1025.
    [139]Magarey J, Kingsbury N. Motion estimation using a complex-valued wavelet transform.IEEE Trans on Signal Processing.1998,46(4):1069-1084.
    [140]Wu Y T, Kanade T, Li C C, et al. Image registration using wavelet-based motion model. International Journal of Computer Vision,2000,38(2):129-152.
    [141]陈海林,吴秀清,胡俊华,等.基于密度导向的树型结构核的图像目标分类.中国图像图形学报,2009,14(12):2545-2551.
    [142]田天,周兵,李波.基于解析小波的光流计算方法.北京航空航天大学学报,2003,29(6):548-551.
    [143]梅俊华.基于Contourlet变换的主成分分析人脸识别算法:[硕士学位论文].武汉:中南民族大学,2010.
    [144]刘文耀.光电图像处理.北京:电子工业出版社,2002.
    [145]Chen HM, Varshney PK, Arora MK. Performance of mutual information similarity measure for registration of multitemporal remote sensing images. Geoscience and Remote Sensing, IEEE Transactions on, 2003,41(11):2445-2454.
    [146]Sellami M, Ghorbel F. An invariant similarity registration algorithm based on the Analytical Fourier-Mellin Transform. Signal Processing Conference (EUSIPCO),2012 Proceedings of the 20th European:IEEE; 2012. p.390-394.
    [147]Lowe D G. Object recognition from local scale-invariant features. Computer Vision,1999 The Proceedings of the Seventh IEEE International Conference on: Ieee;1999.p.1150-1157.
    [148]Lowe D G Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision.2004,60(2):91-110.
    [149]Kalman, R.E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering,1960,82 (1):35-45.
    [150]曾克文,余永富.浮选矿浆紊流强度对矿物浮选的影响.金属矿山,2000,9:17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700