用户名: 密码: 验证码:
极软煤泥水性质及溶液化学环境对絮凝影响试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极软煤泥水的絮凝沉降是煤泥水处理研究中的一个难题。本文通过研究某选煤厂极软煤泥水体系的性质、煤泥水溶液化学环境、凝聚剂与絮凝剂对煤泥水絮凝沉降的影响规律,较为全面的分析了造成极软煤泥水难沉的原因。
     利用XRD、IR、XPS、微电泳仪、分光光度计、离子色谱仪、激光粒度分析仪、接触角测量仪、浊度仪、酸度计等多种表征手段,对某矿选煤厂煤泥水的浓度、煤泥密度、粒度组成、ζ电位、pH值、硬度、煤泥表面元素组成、煤表面官能团以及煤泥的润湿性等进行了研究。结果表明,造成浓缩池溢流浓度高的内在原因有煤泥水浓度高、高灰细粒含量高、体系pH值大、水质软、煤泥ζ电位高,颗粒间排斥力大,所以药剂未能充分发挥作用,使得煤泥难沉降,循环水浊度高,絮凝效果差。
     从溶液化学的角度,研究了水质硬度、pH值、ζ电位、凝聚剂等对颗粒凝聚的影响及煤泥絮凝沉降的规律。实验表明,pH值越高,ζ电位越高,颗粒间排斥力就越大,使得颗粒之间不易发生凝聚而导致上清液浊度高,絮凝沉降效果差。对于本实验所用煤泥水, pH值在3.0-7.0的范围内均较易沉降,pH为4.3时达到等电点,而现场煤泥水的pH值为8.0,表面ζ电位较高,不利于凝聚;在极软煤泥水中加入一定量的Ca2+、Mg2+,可以降低ζ电位,改善絮凝沉降效果。因而当煤泥水保持水质硬度在一定的范围内,颗粒表面ζ电位较低,可节约药剂用量,达到满意的絮凝效果;通过凝聚剂用量对絮凝效果的影响表明,凝聚剂不可盲目加大用量,否则,不仅浪费药剂,还会降低沉降速度、影响循环水质量,降低生产效率。
     通过试验研究了凝聚剂、絮凝剂在煤泥水中的最佳混合搅拌条件。凝聚剂的搅拌强度较絮凝剂要高,絮凝剂不可有过高的搅拌速度和长的搅拌时间,避免破坏其长分子链性能及已形成的絮团。凝聚剂属无机络合物,过低搅拌不能发挥凝聚作用;通过单独使用絮凝剂与凝聚剂、絮凝剂联合使用对比,发现联合使用不仅絮凝效果好,而且药剂费用也不高;研究了不同煤泥水浓度下,不同药剂组合的絮凝效果对比,以及煤泥水浓度与沉降速度、药剂用量的关系,得出随着煤泥水浓度增大,耗药量增大,沉降速度降低。
     另外,还研究了新型纳尔科有机凝聚剂对煤泥表面ζ电位、絮凝沉降的影响以及吸附于煤泥表面的表面分析,对比分析表明,纳尔科凝聚剂能有效降低煤泥表面ζ电位,絮凝效果不仅比常规凝聚剂好,且更具经济性。
Ultra -soft slurry flocculation is a difficult target in coal slurry processes. It is studied in this paper that ultra-soft coal slurry system property、solution chemical circumstance、effect law of coagulant and flocculent on settling process ,so the reasons for difficult settling can be analyzed comprehensively.
     It was measured that coal slurry concentration、granular fraction distribution、ζ-potential、pH value、water hardness、sludge surface element composition、function group and wetting quality with such characteristic methods as XRD, IR, XPS, pH meter, Electrophoresis analyzer, Spectrophotometer, Contact angle analyzer, Laser particle size analyzer, Ion Chromatography, Nephelometer, and so on. It was indicated that the internal factors resulting in high concentration thickener overflow is high concentration slurry、high content of fine particulate containing high ash、high pH value、soft water、highζ-potential. So the agent can not exert itself, the slurry was not able to settling completely, circulating water had high turbidity, and affected the normal running in plant.
     It was studied from point of solution chemistry that the law of water hardness、pH value、ζ-potential、coagulant dosage’s effect on particulate coagulation、flocculation and settling. It was proved that when pH value is high,ζ-potential is great, so the repulse between different particles is too great to coagulate, the turbidity of supernatant fluid is high and flocculation is not satisfied. For target slurry in this paper, when pH∈(3.0-7.0), the slurry can reach promising settling result, and when pH=4.3, it can get zero-potential point. However pH of the plant slurry is 8.0, which is not profit to coagulation. Adding Ca2+、Mg2+ in soft slurry can reduceζ-potential and improve flocculation. So when slurry hardness hold in some scope,ζ-potential of particles can remain a low level comparatively, and obtain nice flocculation with fewer agent. It also highlighted that overdosing of coagulant is not only uneconomical, but meanwhile downgrades settling velocity、influencing circulating water quality and productivity.
     The best mixed agitating conditions in coal flurry for coagulant and flocculant respectively was found in flocculation test. Agitating intensity of coagulant is fiercer than flocculant’s; Flocculant can not sustain high agitating to avoid breaking long-chain molecule and the flocs have been obtained. Coagulant, as an inorganic complex, can not work well when agitating rate is too low; Comparing settling result of Flocculant used single with associated with coagulant, association method can attain more satisfied settling result without extra expenses. Research on comparing flocculation of different agents associations in different coal slurry concentrations and the relationship of settling velocity、agents dosage and slurry concentration demonstrated that agent dosage become more and settling velocity lower with concentration higher.
     Otherwise, study on effect of Nalco organic coagulant on coal particulateζ-potential、settling character and coal sludge surface function group analysis showed that Nalco coagulant can reduceζ-potential effectively , reach a well flocculation and is an economic agent compared with normal agent.
引文
[1]任守政,张子平,张双全等.洁净煤技术与矿区大气污染防治[M].北京:煤炭工业出版社,1998:55-62.
    [2]李明明.聚二甲基二烯丙基氯化铵的煤泥水除浊性能研究[J].华北科技学院学报,2006,3(4):18-22.
    [3]李少章,朱书全.细泥煤泥水凝聚与絮凝沉降[J].煤炭科学技术,2004,32(9):43-45.
    [4]刘建民,李志红.观台选煤厂煤泥水沉降试验研究[J].煤炭加工与综合利用,2005,(5):11-12.
    [5]王金官.两种药剂联合使用对煤泥水有效絮凝的探索[J].煤化工,2008,(1):44-46.
    [6]常青.水处理絮凝学[M].北京:化学工业出版社.2002:6-10.
    [7]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,1990:1017-1023.
    [8]卢寿慈.工业悬浮液-性能,调制及加工[M].北京:化学工业出版社.2003:130-137.
    [9]李凤起,朱书全.添加剂对煤一水界面性质的影响与效能研究[J].选煤技术.2001,(l):22-25.
    [10]德鲁迈尔斯.表面、界面和胶体-原理及应用[M].北京:化学工业出版社.2005:185-187.
    [11]章莉娟,郑忠.胶体与界面化学[M].广州:华南理工大学出版社.2006:101-119.
    [12]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社.2001:183-193.
    [13]李启辉,吴国光,孙志强等.煤化程度与颗粒大小对煤表面zeta电位影响研究[J].能源技术与管理,2007,(3):81-82.
    [14]郑德库,胥成龙.絮凝剂在造纸废水处理中的应用[J].黑龙江造纸,2003,(3):29-30.
    [15]苏德中,廖远威.一种阳离子型聚合电解质的合成及其絮凝性能的测定[J].沈阳化工,1995,(3):5-7.
    [16]陈海峰.影响尾煤泥水絮凝因素的解析[J].煤矿环境保护,1995,9(4):13-17.
    [17]李静.高泥化煤泥水的絮凝沉降.煤炭加工与综合利用[J],2006(2):31-32.
    [18]刘红缨,朱书全,李新晖等.水煤浆的黏度与煤粒表面动电电位关系的研究[J].煤炭科学技术,2004,32(3):12-14.
    [19]朱龙,苏永渤,张秀娟.PAM与电石渣联用治理煤泥水[J].东北大学学报,1998,19(2):218-220.
    [20]李亚峰.水治理方法的试验研究[J].煤炭技术,2001,20(11):31-33.
    [21]尚洪山,陈明波,何国锋等.水相中煤的电性及其影响因素的研究[J].洁净煤技术,1998,4(4):52-54.
    [22] M.A.安德森,A.J.鲁宾.水溶液吸附化学.北京:科学出版社.1989,199-200.
    [23]康文泽,韩春龙,范成江等.凝聚剂和絮凝剂的合理选择[J].东北煤炭技术,1999,(1):30-32.
    [24]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科技技术出版社,1988,134-135.
    [25]马强.难沉降煤泥水特性及凝聚试验研究[D].徐州:中国矿业大学,2008.
    [26]湛含辉,罗彦伟,李伟等.钙离子形态对吸附效果的影响研究.湖南科技大学学报(自然科学版).2007,22(2):115-118.
    [27]张明青,刘炯天,单爱琴等.煤泥水中Ca2+在黏土矿物表面的作用.煤炭学报.2005,30(5):637-641.
    [28]张明青,刘炯天,周晓华等.煤泥水中主要金属离子的溶液化学研究[J].煤炭科学技术,2004, 32 (2):14-16.
    [29]温雪峰,李昌平,关嘉华等.浮选尾煤煤泥水特性及沉降药剂的选择性研究[J].煤炭工程,2004,(2):55-57.
    [30]陈健,李亚峰,班福忱.钙镁复合药剂处理煤泥水的试验研究[J].煤炭工程,2005,(11):73-75.
    [31]高顶,赵跃民.煤颗粒表面形态及其对超细粉碎的影响[J].中国粉体技术.2007,(6):9-11.
    [32]苏现波,张丽萍,林晓英.煤阶对煤的吸附能力的影响[J].天然气工业-地质与勘探,2005,25(1):19-23.
    [33]石焕,史英祥.超声处理对粉煤表面性质及浮选效果的影响[J].选煤技术,2007,(5):21-23.
    [34]王爱一.无机高分子絮凝剂聚合铝铁絮凝作用过程[J].山西化工,2008,28(4):16-18.
    [35]刘建民,李志红.观台选煤厂煤泥水沉降试验研究[J].煤炭加工与综合利用,2005,(5):11-12.
    [36]向壮丽.浅谈絮凝控制技术[J].工程设计与建设,2004,36(3):40-42.
    [37]谢广元.选矿学[M].徐州:中国矿业大学出版社,2001:569-574.
    [38] D.P. Patil, J.R.G. Andrews, P.H.T. Uhlherr. Shear flocculation—kinetics of floc coalescence and breakage.Int. J. Miner. Process. 2001,(61):171–188.
    [39] Bridging Flocculation Mechanisms:The role of chain flexibility.Peter Yates, Yao-de Yan, Graeme J. Jameson,etc. 6th World Congress of Chemical Engineering Melbourne.2001,23-27.
    [40]C.Selomulya, J.Y.H. Liao,G. Bickert, R. Amal.Micro-properties of coal aggregates: Implications on hyperbaric filtration performance for coal dewatering.Int. J. Miner. Process.2006,(80): 189–197.
    [41]李东颖.煤泥水的絮凝沉降规律研究[J].煤炭加工与综合利用,2006,(2):9-11.
    [42] S.M. Glover, Y.-D. Yan, G.J. Jameson. Polymer Molecular Weight and Mixing Effects on Floc Compressibility and Filterability. 6th World Congress of Chemical Engineering.2001, 23-27.
    [43]沈一丁.高分子表面活性剂[M].北京:化学工业出版社,2002:178-181.
    [44]聂容春,徐初阳,郭立颖.不同类型聚丙烯酰胺对煤泥水的絮凝作用[J].煤炭科学技术,2005,33(2):62-64.
    [45]王少会,徐初阳.煤泥水浓缩沉降的试验研究[J].矿业研究与开发, 2004,24(4):64-66.
    [46]王金官.两种药剂联合使用对煤泥水有效絮凝的探索[J].煤化工,2008,(1):44-46.
    [47] E.Sabah,I.Cengiz.An evaluation procedure for flocculation of coal preparation plant tailings.Water Research.2004,(38):1542-1549.
    [48]严瑞瑄.水溶性高分子.北京:化学工业出版社.1998,8-180.
    [49]刘则庆.絮凝药剂在石台选煤厂的应用[J].煤质技术,2004,(2-3):27-29.
    [50]解立平,徐向荣,曾凡.聚合硫酸铁盐基度与絮凝性能关系的研究[J].工业水处理,2001,21(1):26-28.
    [51]谷庆宝,李发生,解建伟等.铁-镁-铝无机复合脱色絮凝剂的制备与应用研究[J].2004,24(4):301-304.
    [52]党酉胜,张小燕,郭焱等.新型絮凝剂FMA的制备及其性能研究.西安交通大学学报.1999,33(12):66-69.
    [53]王燕,高宝玉,岳钦艳等.聚合铝基复合絮凝剂的特性[J].环境科学.2004,25(增刊):70-73.
    [54]郭玲香,胡明星,郭世全.聚季铵盐丙烯酰胺接枝共聚物治理煤泥水的应用研究[J].煤矿环境保护.1999,13(3):22-25.
    [55]郭玲香,郭世全,胡明星.新型阳离子絮凝剂在煤泥水治理中的应用研究[J] .太原理工大学学报.1999,30(2):170-174.
    [56]降林华,朱书全,邹立壮等.阳离子高分子絮凝剂在细粒煤泥水中的应用[J].煤炭加工与环保.2008,36(5):97-100.
    [57] S.P. Vijayalakshmi, A.M. Raichur .The utility of Bacillus subtilis as a bioflocculant for fine coal.Colloids and Surfaces B: Biointerfaces.2003,(29): 265-275.
    [58] M. Raichur , M. Misra, K. Bukka, R.W. Smith. Flocculation and flotation of coal by adhesion of hydrophobic Mycobacterium phlei.Colloids and Surfaces B: Biointerfaces .1996,(8): 13-24.
    [59] Sagar Pal , G. Sen , N.C. Karmakar , D. Mal, etc. High performance flocculating agents based on cationic polysaccharides in relation to coal fine suspension. Carbohydrate Polymers .2008,(74): 590–596.
    [60] S.P. Vijayalakshmi, A.M. Raichur. Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa.Int. J. Miner. Process. 2002,(67): 199– 210.
    [61] A.M. Raichur, S.P. Vijayalakshmi. The effect of nature of raw coal on the adhesion of bacteria to coal surface.Fuel.2003, (82):225–231.
    [62]施秀屏,余樟清.表面化学在煤的选择性絮凝中的应用[J].煤炭学报,1995,20(2):201-204.
    [63]张明青,刘炯天,周晓华等.煤泥水中主要金属离子的溶液化学研究[J].煤炭科学技术,2004, 32(2):14-16.
    [64]万鹰昕,刘丛强-,刘建军等.溶液化学对高岭土吸附腐植酸影响的实验研究[J].农业环境科学学报,2003,22(2):178一180.
    [65]郭玲,武海顺,金志浩.电解质对细颗粒泥沙稳定性的影响研究[J].山西师范大学学报(自然科学版),2004,18(3):67-71.
    [66]张明青,刘炯天,王永田.水质硬度对煤泥水中煤和高岭石颗粒分散行为的影响[J].煤炭学报, 2008, 33(9):1058-1062.
    [67]陈海峰,田国明.冠山矿尾煤泥水絮凝试验[J].东北煤炭技术,1995,(4):61-64.
    [68]赵文宽.仪器分析[M].北京:高等教育出版社,2000:93-113.
    [69]何杰.煤的表面结构与润湿性[J].选煤技术,2000,(5):13-15.
    [70]聂百胜,何学秋,王恩元等.煤吸附水的微观机理[J].中国矿业大学学报.2004,33(4):379-383.
    [71] Thomas J. Horr,John Ralston, Roger St. C. Smart. The use of contact angle measurements to quantify the adsorption density and thickness of organic molecules on hydrophilic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects.1995,(97):183-196.
    [72]解兴智,傅贵.煤润湿性测量方法的探讨[J].煤炭科学技术,2004,32(2):65-68.
    [73]郭建英,郭晓峰.腐植酸溶液在煤表面接触角的实验研究[J].煤炭转化,2000,23(2):80-83.
    [74]牛蓉,卢建军,李凡等.煤的表面处理及润湿性研究.煤炭转化.2001,24(1):44-49.
    [75]康文泽,王慧,胡军.超声处理煤泥与浮选药剂的作用研究[J].煤炭学报,2006,31(6):804-807.
    [76]傅贵,张英华,邹得志.煤与纯水间平衡接触角的测量与分析.煤炭转化.1997,20(4):60-62.
    [77]虞继瞬.煤化学[M].北京:冶金工业出版社,2005:120-150.
    [78]张双全,吴国光.煤化学.徐州:中国矿业大学出版社.2004,42-45.
    [79]朱明华.仪器分析[M].北京:高等教育出版社,2000:286-319.
    [80]华中一,罗维昂.表面分析[M].上海:复旦大学出版社.1989:2-6,127-174.
    [81]泉·美治,小川雅彌,加藤俊二等.仪器分析导论[M].北京:化学工业出版社.2005:113-114.
    [82]刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M].北京:科学出版社.1988:147.
    [83]王兴涌,郑宏伟,孙康.水溶性聚合物的合成及其对细粒煤泥水的絮凝[J].煤炭加工与综合利用.1995,(6):33-35.
    [84]吴成妍.煤泥水的特性与絮凝剂的应用.选煤技术.1995,(4):23-25.
    [85]刘启贞,李九发,李为华等.AlCl3、MgCl2、CaCl2和腐殖酸对高浊度体系细颗粒泥沙絮凝的影响[J].泥沙研究,2006,(6):18-23.
    [86]赵小川.煤泥水絮凝过程药剂制度优化与絮体分形特性研究[D].太原:太原理工大学,2008.
    [87]湛含辉,罗彦伟.高浓度细粒煤泥水的絮凝沉降研究[J].煤炭科学技术,2007,35(2):76-83.
    [88]张明旭.选煤厂煤泥水处理[M].徐州:中国矿业大学出版社,2005:107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700