用户名: 密码: 验证码:
小米膳食纤维作为主要碳源对益生菌生长和发酵过程中短链脂肪酸产量的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小米是许多亚、非洲发展中国家的主食。本研究旨在评价小米膳食纤维分级物作为益生菌发酵主要碳源的可能性及其对生长、短链脂肪酸生产和附着机制的影响。在第一阶段研究中,分别从珍珠小米、狐尾小米、黍、龙爪小米这四种商业小米中提取了膳食纤维,并将其分级为总膳食纤维、不可溶膳食纤维、可溶膳食纤维。目前的研究重点主要集中在全谷物方向。小米膳食纤维含量在0.55-13.70g每100g范围内。总膳食纤维含量随着小米种类的不同而出现显著性差异。针对总膳食纤维含量,珍珠小米最高,而龙爪小米最低。不可溶膳食纤维的相对含量的趋势与总膳食纤维相似,(珍珠小米<狐尾小米<黍<龙爪小米)。然而,可溶性膳食纤维相对含量表现出不同,龙爪小米中可溶性膳食纤维相对含量最高,狐尾小米、珍珠小米、黍的可溶性膳食纤维含量分别为11.11%,9.57%和10.18%。在第二阶段研究中,四位志愿者摄入为期三个月的小米膳食后,分别采集了粪便中的微生物群样本。然而,在粪便微生物接种的小米膳食纤维分级物的体外发酵实验中,乳酸杆菌和双歧杆菌增长率分别达到9-12%和3-5%。在肠道微生物发酵后24小时,浓度为3%(v/v)的膳食纤维才足以促进其生长。相较于可溶性膳食纤维和不可溶膳食纤维,总膳食纤维的发酵对双歧杆菌和乳酸杆菌数量的增长更佳,而这一优势并未显示出显著性。在人类粪便接种发酵实验中,pH变化显著(p<0.05),然而光密度和活菌数的变化并不显著。在志愿者摄入小米膳食前后,分别将其粪便微生物群接种于各部分膳食纤维中,接种物进行厌氧培养。通过汽液色谱对发酵生产的短链脂肪酸进行分析,将摄食三个月小米膳食的志愿者的粪便菌群接种于小米膳食纤维,短链脂肪酸产量显著高于摄食小米膳食前。以珍珠小米为碳源的发酵实验中短链脂肪酸产量最高,龙爪小米最低。在发酵6-24小时,短链脂肪酸产量最高。在三种膳食纤维中,以总膳食纤维为底物的短链脂肪酸发酵产量最高。实验结果表明,相对于其他种类小米,珍珠小米显示出作为膳食纤维来源的优势。根据第一阶段的研究结果,选择两种小米(珍珠小米和狐尾小米)以及四种益生菌(鼠李糖乳杆菌、嗜酸乳杆菌、长双歧杆菌、两歧双歧杆菌),以小米膳食纤维为碳源进行体外发酵,生产短链脂肪酸。在发酵实验中,双歧杆菌显示出更长效缓慢而持续的发酵规律,这与乳酸杆菌截然不同。在培养基促进益生菌生长的实验中,乳酸菌在24小时发酵后显示出最高生长率,在不同的底物条件下均如此,然而双歧杆菌利用1.5%小米膳食纤维为碳源的条件下,在24-48小时的发酵后显示出最高生长率。在各种不同的膳食纤维底物中,短链脂肪酸产量为,总膳食纤维>可溶性膳食纤维>不可溶膳食纤维,不同小米种类的实验均表现这一结果。这表明,总膳食纤维最适合作为短链脂肪酸的生产碳源。乳酸菌和双歧杆菌分别消化60-80%和75-85%的小米膳食纤维分级物。短链脂肪酸产量由大到小乙酸>丙酸>丁酸。此外,还研究了采用四种益生菌不同组合的组合培养物对小米膳食纤维的发酵作用。值得注意的是,由不同属微生物构成的培养物较同一种微生物有更高的细胞数量。然而,相较于纤维,发酵效果最佳的组合培养物显示出对于葡萄糖的更高底物偏好性。而相对于单一属微生物,由多属微生物构成的组合培养物在发酵过程中到达更低的pH。这表明在发酵过程中组合培养物中存在协同作用。由鼠李糖乳杆菌、长双歧杆菌、两歧双歧杆菌组成的培养物可以在各种底物中生长(总膳食纤维、可溶性膳食纤维、不溶性膳食纤维和葡萄糖)。当使用菌种组合培养的情况下,小米膳食纤维发酵的短链脂肪酸产量显著高于此前研究中的单一菌种发酵。在组合发酵小米膳食纤维分级物的实验中,乙酸是最主要的产物,占每小时短链脂肪酸产量的90%。经纯化的双歧杆菌和乳酸杆菌在接种20-40分钟内即可附着于膳食纤维分级物。双歧杆菌对小米纤维的附着率达到40-55%,而乳酸杆菌仅为40%。氯化钠和吐温80对细菌细胞的附着影响不明显,但多聚糖显著降低吸附率。最适附着温度为37,且只有活细胞表现出附着现象。在蛋白酶和低pH(pH3-4.15)环境下,细胞定植受到抑制。不同益生菌组合对纤维的定植受温度,pH,蛋白消化酶的影响,而胆酸盐和氯化钠对其定植影响不大。益生菌共同培养物对纤维的附着机制与单一菌种附着相同。细菌细胞对小米纤维的定植受温度影响,在实验条件下,细菌细胞附着能力在37环境达到最大。当鼠李糖乳杆菌、嗜酸乳杆菌、长双歧杆菌、两歧双歧杆菌共同培养时,乳酸杆菌和双歧杆菌的附着能力有显著增强。本研究包括低氧以及高还原实验环境的模拟,这与人类肠道末端结肠的生理环境相似。本研究表明,小米纤维可以作为益生菌菌群的良好碳源。
Millet is the staple food in many developing countries of Asia and Africa. This study wasaimed to evaluate, the potential of millet dietary fibre fractions as a main carbon source of probioticfermentation and effect on growth, SCFA production and adhesion mechanism of probiotic bacteria. Infirst phase of study, Dietary fbres were extracted from four commercially available millet varietiesPearl millet (pennisetum glaucum), Foxtail millet (Setaria italica), Proso millet (Panicum miliacum),Finger Millet (Eleusine coracana) and separated into individual fractions of total dietary fbre (TDF),insoluble dietary fbre (IDF) and soluble dietary fbre (SDF). The current study focused on the “wholegrain”. The dietary fibres of millet varied between0.55-13.70g per100g.TDF varied significantlyamong tested millet varieties. Pear millet (PM) variety gave a highest yield of TDF while the fingermillet (FM) produced the least. The relative proportions of IDF in the different millet varieties were thesame as for TDF (Pearl millet (PM)SDF>IDF irrespective of millet variety, indicating that TDF is the best possible dietary fibre forSCFA production. Lactobacillus and Bifdobacterium spp. digested60–80%and75–85%of the milletfbre fractions from both millet samples respectively. The quantity of different SCFAs produced was inthe order acetate>propionate>butyrate. The fermentation of millet dietary fibre using nine co-culturesof four probiotics was also investigated. Interestingly, co-cultures of different genus showed more cellcount than combinations from same genus. However, maximum co-cultures showed more preferencefor glucose than fibre as a substrate. Co-cultures prepared of more than one genus reached a lower pHthan those made up of bacteria from the same genus, providing more evidence for the synergisticassociation in these co-cultures. Co-culture BB+BL+LR showed growth on all substrates tested (TDF,SDF, IDF and Glucose). Millet dietary fibre fractions fermentation with most of the co-culturessignificantly increased (p<0.05) the production of SCFA when compared to pure cultures results in ourprevious study. During all co-culture fermentation with fibre fractions, acetate was found the mostpredominant SCFA and contributed to more than90%of the total SCFA formation at each hour. Purebifidobacteria and lactobacilli adhered to dietary fibre fractions within20to40minutes. A higherpercentage of Bifidobacteria almost40-55%adhered to millet fibre while lactobacilli percentage wasless than40%. Adhesion was not influenced by NaCl or Tween80but, was decreased bypolysaccharides. The optimum temperature for adhesion was found37°C and live cells found essentialfor adhesion. Adhesion was significantly inhibited by protease and by low pH (pH3-4.15). Whileadhesion of probiotic combinations to fibre was influenced by the temperature, pH, and proteindigestive enzymes, but not affected by bile and NaCl. The probiotic co-cultures appear to have similarmechanisms of adhesion as the individual probiotics. Colonization of millet fibre by bacterial cells wasinfluenced by the temperature, with adhesion observed higher at37°C. This study observed enhancedadhesion for BB+BL and LA+LR when these combinations were together as BB+BL+LA+LR. Thisstudy involved low oxygen and highly reducing experimental conditions which were similar to humangut distal colon. Millet fibre was found a suitable substrate for probiotic microflora.
引文
[1] Guarner, F.&Schaafsma, G. J.(1998). Probiotics. International Journal of Food Microbiology,39,237–238.
    [2] Perdigon, G.&Alvarez, S.(1992). Probiotics and the immune state. In: Probiotics: The Scientificbasis,(Fuller, R., Ed.) Chapman and Hall, London, pp145–180.
    [3] Simon, G.L.&Gorbach, S.L.(1984).Intestinal flora in health and disease. Gastroenterology,86,174–193.
    [4] Gibson, G.R.&Roberfroid, M.B.(1995) Dietary modulation of the human colonic microorganisms:introducing the concept of prebiotics. The Journal of Nutrition,125,1401–1412.
    [5] FAO-Food&Agriculture Organization of the United Nations.(2007). Report on FAO technicalmeeting on prebiotics, www.fao.org/ag/agn/agns/index_en.stm.
    [6] Kontula, P., Jaskari, J., Nollet, L., De Smet, I., vonWright, A., Poutanen, K.&Mattila-Sandholm,T.(1998b).The colonisation of a simulator of the human intestinal microbial ecosystem by aprobiotic strain fed on a fermented oat bran product: effects on the gastrointestinalmicroorganisms. Applied Microbiology&Biotechnology,50:246-252.
    [7] Gibson, G. R.(1998). Dietary modulation of human gut microflora using prebiotics. British Journalof Nutrition,80, S209–212.
    [8] Delzenne, N.M.&Roberfroid, M.B.(1994).Physiological effects of non-digestible oligosaccharides. Lebensmittel-Wissenschaft und-Technologie,27:1-6.
    [9] Wang, X.&Gibson, G.R.(1993). Effects of the in vitro fermentation of oligofructose&inulin bybacteria growing in the human large intestine. Journal of Applied Bacteriology,75:373-380.
    [10] Sanders, M.E.(2000). Considerations for use of probiotic bacteria to modulate human health. TheJournal of Nutrition,130,384S-390S.
    [11] Saikali, J., Picard, C., Freitas, M.&Holt, P.(2004). Fermented milks, probiotic cultures&coloncancer. Nutrition&Cancer,49(1),14-24.
    [12] Hickson, M., D'Souza, A.L., Muthu, N., Rogers, R.T., Want, S., Ajkumar, C., Christopher, J.&Bulpitt, C.J.(2007).Use of probiotic lactobacillus preparation to prevent diarrhoea associatedwith antibiotics: randomized double blind placebo controlled. British Medical Journal335:80-83.
    [13] Kirjavainen, P.V., Salminen. J.&Isolauri, E.(2003) Probiotic bacteria in the management ofatopic disease: underscoring the importance of viability. Journal of Pediatric Gastroenterology&Nutrition,36(2),223–227.
    [14] FDA-U.S. Food&Drug Administration.(2007). Evidence based review system for the scientificevaluation of health claims. http://www.cfsan.fda.gov/~dms/hclmgui6.htmL.
    [15] Tannock, G.W.(1995). Role of probiotics. In: Human Colonic Bacteria: Role in Nutrition,Physiology&Pathology (Gibson, G.R. and Macfarlane, G.T., Eds.). CRC Press, London, pp257–271.
    [16]Tannock, G.W.(1997). Probiotic properties of lactic-acid bacteria: plenty of scope for fundamentalR&D. Trends in biotechnology,15,270–274.
    [17] Lee, Y.K.&Salminen.S.(1995). The coming of age of probiotics. Trends in Food Science&Technology,6,241-245.
    [18]Sanders, M. E.(1999). Probiotics. Food Technology.53,67-77.
    [19] Sullivan, A.&Nord, C.E.(2002). Probiotics in human infections. Journal of AntimicrobialChemotherapy,50,625-627.
    [20] Saulnier, D.M., Gibson, G.R.&Kolida, S.(2008).In vitro effects of selected synbiotics on thehuman faecal microorganism’s composition. FEMS Microbiology Ecology,66(3),516-27.
    [21] Schrezenmeir, J.&DeVrese, M.(2001). Probiotics, prebiotics, and synbiotics approaching adefinition. American Journal of Clinical Nutrition,73(2),361S-364S.
    [22] Glits, L.V., Brunsgaard, G., H jsgaard, S., Sandstr m, B.&BachKnudsen, K.E.(1998).Intestinal degradation in pigs of rye dietary fibre with different structural characteristics.British Journal of Nutrition,80:457-468.
    [23] Goh, Y.J., Zhang, C., Benson, A.K., Schlege, L.V., Lee, J.H.&Hutkins, R.W.(2006).Identification of a putative operon involved in fructo oligosaccharide utilization bylactobacillus paracasei. Applied&Environmenatal Microbiolology,72:7518–7530.
    [24] Codex Alimentarius Commission.(2008). Report of the30th session of the Codex Committee onNutrition&Foods for special dietary uses, pp46.
    [25] álvarez, E.E.&Sánchez, P.G.(2006). Dietary fibre. Nutrition Hospitalaria,21(2S),60-71.
    [26]Cho, S., DeVries. J.W.&Prosky, L.(1997a). The physicochemical properties of dietary fibre. In:Dietary Fibre Analysis and Applications (Cho, S., DeVries. J.W.&Prosky, L., Eds.) AOACInternational, Gaithersburg, pp119–138.
    [27]Fleury, N.&Lahaye, M.(1991). Chemical&physico-chemical characterization of fibres fromLaminaria digitata (Kombu breton): A physiological approach. Journal of the Science of Foodand Agriculture,55(3),389-400.
    [28]Bach Knudsen, K.E.(2002). The nutritional significance of dietary fibre analysis. Animal FeedScience&Technology,90,3-20.
    [29] Salvador, V.&Cherbut, C.(1992). Modulation of gastrointestinal transit time by dietary fibre(Regulation du transit digestif par les fibres alimentaires).Cahiers de Nutrition et de diététique,27,290-297.
    [30] Aozasa, O., Ohta, S., Nakao, T., Miyata, H.&Nomura, T.(2001). Enhancement in faecalexcretion of dioxin isomer in mice by several dietary fibres. Chemosphere,45(2),195-200.
    [31] Sola, R., Godas, G., Ribalta, J.&Vallvé, J.(2007). Effects of soluble fibre (Plantago ovata husk)on plasma lipids, lipoproteins, and apolipoproteins in men with ischemic heart disease.American Journal of Clinical Nutrition,85(4):1157-63.
    [32] Prosky, L., Asp, N-G., Furda, I., DeVries, J. W., Schweizer, T. F.&Harland, B. F.(1985).Determination of total dietary fibre in foods and food products: collaborative study. Journalof Association of Official Analytical Chemists,68(4),677-679.
    [33]AOAC Official Method984.13.(1990).(Protein (Crude) Determination in animal feed: Coppercatalyst Kjeldahl method. In; Official methods of analysis,15thedition. Arlington, VA: AOACInternational.
    [34]AOAC Official Method985.29.(1995)Total dietary fibre in foods enzymatic-gravimetric method.In: Official methods of analysis,16thedition. Arlington, VA: AOAC International.
    [35]Asp, N-G.&Johansson, C-G.(1981). Techniques for measuring dietary fibre: Principal aims ofmethods and a comparison of results obtained by different techniques. In: The Analysis ofDietary Fibre in Food (James, W.P.T. and Theander, O., Eds.) New York: Marcel Dekker, pp173-189.
    [36] Asp, N-G.&Johansson, C-G.(1984).Dietary fibre analysis. Nutrition Abstracts and Reviews,54,735–752.
    [37]Asp, N-G., Schweizer, T.F., Southgate, D.A.T.&Theander, O.(1992). Dietary fibre Analysis. In:Dietary Fibre–A component of food nutritional function in health and disease (Schweizer, T.F.and Edwards, C.A., Eds.) Springer-Verlag, London, pp57-102.
    [38] Gordon, D.T., McCleary, B.V.&Sontag-strohm, T.(2006). Summary of dietary fibre methodwork shop. June11, Helasinki, Finland, pp,1-25.
    [39] Prosky, L., Asp, N-G., Furda, I., DeVries, J. W., Schweizer, T. F.&Harland, B. F.(1985).Determination of total dietary fibre in foods and food products: collaborative study. Journalof Association of Official Analytical Chemists,68(4),677-679.
    [40] Prosky, L., Asp, N-G., Schweizer, T.F., DeVries, J.W., Furda, I.&Lee, S.C.(1994).Determination of soluble dietary fibre in foods and food products: Collaborative study. TheJournal of Association of Official Analytical Chemists International,77,690–694.
    [41] McCleary, B.V., McNally, M., Rossiter, P., Aman, P., Amrein, T., Arnouts, S., Arrigoni, E.,Bauer, L., Bavor, C., Brunt, K., Bryant, R., Bureau, S., Camire, M. E., Champ, M.,&Chen(2002). Measurement of resistant starch by enzymatic digestion in starch and selected plantmaterials: collaborative study. Journal of AOAC International,85(5),1103-1111.
    [42] McCleary, B.V.(2003).Dietary fibre analysis. Proceedings of the Nutrition Society,62:3-9.
    [43] Sharma. J (2007).National Conference on agriculture for rabi Campaign2007; Presentation by Dr,J.S. Sharma, CEO, National Rainfed Agriculture Authority, downloaded on29th July2009from http://agricoop.nic.in/Rabi%20Conference2007/Dr.%20Samra.ppt#257,2,Rationale.
    [44] CSE (2007), Rainfed areas of India-Center for Science and environment, downloaded on29th July2009from http://www.cseindia.org/programme/nrml/rainfed_specials.htm
    [45]FAO-Food&Agriculture Organization.(2009). Report on crop prospects and food situation.Global cereal supply and demand brief http://www.fao.org/docrep/012/ai484e/ai484e04.htmFinegold, S.M., Sutter, V.L.&Mathisen, G.E.(1983) Normal indigenous intestinal flora. InHuman Intestinal Microflora in Health&Disease (Hentges, D.J. Ed.) London, pp3–31.
    [46] Varsha, V., Asna, U.&Malleshi, N.G.(2009). Evaluation of antioxidant and antimicrobialproperties of fnger millet Polyphenols (Eleusine coracana).Food chemistry,114,340-346.
    [47] FAO STAT.(2007). Statistical databases agriculture data, agricultural production, major food&agricultural commodities and producers. Food&Agriculture Organization of United Nations.
    [48] Upaksha, T., Ramachandra, G.&Shadakshara, S.M.(1997).Relationship between tannin levels&in vitro digestibility in fnger millet (E.coracana). Journal of Agriculture food chemistry,25,1101–1104.
    [49] Sharma. J (2007).National Conference on agriculture for rabi Campaign2007; Presentation by Dr,J.S. Sharma, CEO, National Rainfed Agriculture Authority, downloaded on29th July2009from http://agricoop.nic.in/Rabi%20Conference2007/Dr.%20Samra.ppt#257,2,Rationale.
    [50] Souci, S.W., Fachmann, W.&Kraut, H.(1996). Food Composition and Nutrition,3rdEdition.Wissenschaftliche Verlagsgesellschaft, Stuttgart.
    [51] van Loo, J., Cummings, J., Delzenne, N., Englyst, H., Franck, A., Hopkins, M.&Kok, N.(1999)Functional food properties of non-digestible oligosaccharides: a consensus report from theENDO project. British Journal of Nutrition,81,121.132.
    [52] Cummings, J.H.(1981a). Short chain fatty acids in the human colon. Gut.22:763-779.
    [53]Macfarlane, G.T.&Gibson, G.R.(1996). Carbohydrate fermentation, energy transduction&gasmetabolism in the human large intestine. In: Ecology and physiology of gastrointestinalmicrobes: Gastrointestinal fermentations&ecosystems (Mackie, R.I. and White, B.A. Eds.)Chapman&Hall, New York, pp269–318.
    [54] Zaunmüller, T., Eichert, M., Richter, H.&Unden, G.(2006). Variations in the energy metabolismof biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugarsand organic acids. Applied Microbiology&Biotechnology,72,421-429.
    [55] Scardovi, V., Sgorbati, B.&Zani, G.(1971). Starch gel electrophoresis of fructose-6-phosphatephosphoketolase in the genus Bifidobacterium. The Journal of Bacteriology,106(3):1036-1039.Schneeman, B.O.(2009). Dietary Fibre and Gastrointestinal Function. Nutrition Reviews,45(7),129-132.
    [56] Fandi, K.G., Ghazali, H.M., Yazid, A.M.&Raha, A.R.(2001).Purification and N-terminal aminoacid sequence of fructose-6-phosphate phosphoketolase from bifidobacterium longum BB536.Letters in Applied Microbiology,32,235-239.
    [57] Cherbut, C., Michel, C., Raison, V. Kravtchenko, T.&Severine, M.(2003). Acacia gum is abifidogenic dietary fibre with high digestive tolerance in healthy humans. Microbial Ecologyin Health&Disease,15(1),43–50.
    [58] Crater, A.R., Barboza, P.S. and Forster, R.J.(2007) Regulation of rumen fermentation duringseasonal fluctuations in food intake of muskoxen. Comparative Biochemistry and Physiology-Part A: Molecular&Integrative Physiology,146(2),233-241.
    [59] María, E. L., Angel, A-T., Pilar, G-P., Isabel, G.&Emilia, M-M.(2006). Induction of epithelialhypoplasia in rat cecal and distal colonic mucosa by grape antioxidant dietary fiber. NutritionResearch,26,651-658.
    [60] Monsma, D.J., Thorsen, P.T., Vollendorf, N.W., Crenshaw, T.D.&Marlett, J.A.(2000) In-vitrofermentation of swine ileal digesta containing oat bran dietary fibre by rat cecal inoculaadapted to the test fibre increases propionate production but fermentation of wheat bran ilealdigesta does not produce more butyrate. The Journal of Nutrition,130,585-593.
    [61] McIntosh, G.H., Leu, L. R.K., Royle, P.J.&Young, G.P.(1996). A comparative study of theinfluence of differing barley brans on DMH-induced intestinal tumors in male Sprague-Dawley rats. Journal of Gastroenterology&Hepatology,11,113-119.
    [62] Oliveira, R., Azeredo, J.&Teixeira, P.(2003). The importance of physicochemical properties inbiofilm formation and activity. In: Biofilm in waste water treatment: An inter disciplinaryapproach (Wuertz, S., Bishop, P.L.,&Wilderer, P.A., Eds.) IWA, London, UK, pp211–231.
    [63] An, Y.H.&Friedman, R.J.(1998). Concise review of mechanisms of bacterial adhesion tobiomaterial surfaces. Journal of Biomedical Materials Research. Part B,43(3),338–348.
    [64] Eryavuz, A. and Dehority, B.A.(2009). Effects of supplemental zinc concentration on cellulosedigestion and cellulolytic and total bacterial numbers in-vitro. Animal Feed Science&Technology,151:175–183.
    [65] Miron, J., Ben-Ghedalla, D.&Morrison, M.(2001).Adhesion mechanisms of rumen cellulolyticbacteria. Journal of Dairy Science,84,1294-1309.
    [66] Wang, J.F., Zhu, Y.H., Li, D.F., Wang, Z.&Jensen, B.B.(2004). In vitro fermentation of variousfibre and starch sources by pig faecal inocula. Journal of Animal Science,82,2615–2622.
    [67] Goni, I., Gudiel-Urbano, M.&Saura-Calixto, F.(2002).In vitro determination of digestible&unavailable protein in edible seaweeds. Journal of the Science of Food&Agriculture,82,1850-1854.
    [68] Gibson, G.R., Beatty, E.R., Wang, X.&Cummings, J. H.(1995). Selective stimulation ofbifidobacteria in the human colon by oligofructose and inulin. Gastroenterology,108,975-982.
    [69] Collins, D.M.&Gibson, G.R.(1999).Probiotics, prebiotics, and synbiotics: approaches formodulating the microbial ecology of the gut. American Journal of Clinical Nutrition,69(5),1052S-1057S.
    [1] Wang, J.F., Zhu, Y.H., Li, D.F., Wang, Z.&Jensen, B.B.(2004). In-vitro fermentation of variousfibre and starch sources by pig faecal inocula. Journal of Animal Science,82,2615–2622.
    [2] Spiller, G. A.(2001). CRC handbook of dietary fber in human nutrition. Boca Raton, FL: CRCPress.
    [3] Gibson, G. R., Probert, H. M., Van Loo, J., Rastall, R. A.,&Roberfroid, M. B.(2004).Dietarymodulation of the human colonic microbiota: updating the concept of prebiotics. NutritionResearch Reviews,17,259-275
    [4] Macfarlane, G. T., Steed, H.,&Macfarlane, S.(2008). Bacterial metabolism and health-relatedeffects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology,104,305-344.
    [5] Gong, J., Yu, H., Liu, T., Gill, J. J., Chambers, J. R.&Wheat croft, R.(2008). Effects of zincbacitracin, bird age and access to range on bacterial microbiota in the ileum and caeca ofbroiler chickens. Journal of Applied Microbiology,104,1372-1382.
    [6] Vanhoutte, T., Huys, G., De Brandt, E.,&Swings, J.(2004). Temporal stability analysis of themicrobiota in human feces by denaturing gradient gel electrophoresis using universal andgroup-specifc16S rRNA gene primers. FEMS Microbiology Ecology,48,437-446.
    [7] Flamm, G., Glinsmann, W., Kritchevsky, D., Prosky, L.&Roberfroid, M.(2001). Inulin andOligofructose as Dietary Fibre: A Review of the Evidence. Critical Reviews in Food Scienceand Nutrition,41(5),353–362.
    [8]Flint, H. J.(2004). Polysaccharide breakdown by anaerobic microorganisms inhabiting themammalian gut. Advances in Applied Microbiology,56,89-91.
    [9]Macfarlane, G.T.&Cummings, J.H.(1999). Probiotics and prebiotics: Can regulating the activitiesof intestinal bacteria benefit health? Western Journal of Medicine,171,187-191.
    [10] Fleet, G.H.(1999). Microorganisms in food ecosystems. International Journal of FoodMicrobiology,50,101-117.
    [11] Mongeau, R.,&Brassard, R.(1982). Insoluble dietary fber from breakfast cereals and brans: Bilesalt binding and water-holding capacity in relation to particle size. Cereal Chemistry,59,413–417.
    [12] Forster, S., Dongowski, G.,&Kunzek, H.(2002). Structure, physio-chemical properties and invitro fermentation of enzymatically degraded cell wall materials from apples. NahrunglFood,46,158–166.
    [13] Asp, N-G.(1993). The enzymetic gravimetric method. In: dietary fibre in human nutrition, CRCHandbook (Spiller, G.A., Ed.) Boca Raton: CRC Press, pp51-62.
    [14] Kutos, T., Golob, T., Kac, M.&Plestenjak, A.(2003).Dietary fbre content of dry and Processedbeans. Food Chemistry,80,231–235.
    [15] AOAC O" cial Method985.29.(1995). Total dietary fbre in foods enzymatic-gravimetric method.In: Official Methods of Analysis,16th edn. Arlington, VA: AOAC International
    [16] Farooq, U., Mohsin, M., Liu, X&Zhang, H.(2013). Enhancement of Short Chain Fatty AcidProduction From Millet Fibres by Pure Cultures of Probiotics Fermentation. Tropical Journalof Pharmaceutical Research,12(2):000
    [17] Gibson, G.R., Beatty, E.R., Wang, X.&Cummings, J.H.(1995) Selective stimulation ofbifidobacteria in the human colon by oligofructose and inulin. Gastroenterology,108,975-982.
    [18] Apajalahti, J.H.A., Kettunen, A., Nurminen, P.H., Jatila, H.&Holben, W.E.(2003). Selectiveplating underestimates abundance and shows differential recovery of bifidobacterial speciesfrom human faeces. Applied and Environmental Microbiology,69:5731-5735.
    [19] Pylkas, A.M., Juneja, L.R.&Slavin, J.L.(2005) Comparison of different fibres for in vitroproduction of short chain fatty acids by intestinal microflora. Journal of Medicinal Food,8(1),113-116.
    [20] Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerstr m, R., Matto, J., Saarela, M.,Mattila-Sandholm, T.&Poutanen, K.(2002). In vitro fermentation of cereal dietary fibrecarbohydrates by probiotic and intestinal bacteria. Journal of the Science of Food andAgriculture,82(8),781-789.
    [21] Leila, P. da. S.&Maria, de. L. S. C.(2003). Total, insoluble and soluble dietary fiber valuesmeasured by enzymatic–gravimetric method in cereal grains. Journal of Food Compositionand Analysis,18,(1),113-120.
    [22] Garcia, O.E., Infante, R.B.&Rivera, C.J.(1997). Determination of total, soluble and insolubledietary fibre in two new varieties of Phaseolus vulgaris L. using chemical and enzymaticgravimetric methods. Food Chemistry,59,(1),171-174.
    [23] Isabelle, L., Marie, B., Valérie, L-P., Christian, P., Serge, T.(2012). Losses of nutrients and anti-nutritional factors during abrasive decortications of two pearl millet cultivars (Pennisetumglaucum). Food Chemistry,100,1316-1323.
    [24] Roopa, S.&Premavalli, K.S.(2008). Effect of processing on starch fractions in different varietiesof finger millet, Food Chemistry,106,875-882.
    [25] Linda, D.&Rooney, L.W.(2006). Sorghum and millet phenols and antioxidants, Journal ofCereal Science, Volume44, Issue3, November2006, Pages236-251.
    [26] Paul, B, T., Mensah, G.W.K.&Alan, R. M.(2002). Effect of millet variety and date of sowing ondiapauses development in Coniesta ignefusalis (Hampson) in Northern Ghana.CropProtection,21,793-798.
    [27] O’Kennedy, M.M., Grootboom, A.&Shewry, P.R.(2006). Harnessing sorghum and milletbiotechnology for food and health. Journal of Cereal Science,44,(3),224-235.
    [28] Stephen, P.J.B., Roger, M., Josephine, R. D., Brian, J. L.&René, B.(2006). Dietary fibre in babyfoods of major brands sold in Canada. Journal of Food Composition and Analysis,19,59-66.
    [29] Gibson, G.R.&Roberfroid, M.B.(1995). Dietary modulation of the human colonicmicroorganisms: introducing the concept of prebiotics. The Journal of Nutrition,125,1401–1412
    [30] Perez-Conesa, D., Lopez, G.&Ros, G.(2005) Fermentation capabilities of bifidobacteria usingnondigestible oligosaccharides, and their viability as probiotics in commercial powder infantformula. Journal of Food Science,70,279-285.
    [31] Kneifel, W., Rajal, A.&Kulbe. K.D.(2000). In-vitro growth behaviour of probiotic bacteria inculture media with carbohydrates of prebiotic importance. Microbial Ecology in Health andDisease,12,27-34.
    [32] Xiaoping, Y., Jing, W.&Huiyuan, Y.(2006). Production of feruloyl oligosaccharides from wheatbran insoluble dietary fibre by xylanases from Bacillus subtilis. Food Chemistry,95,(3),484-492.
    [1] Susan, M.T.&Sylvia.Y.(2010). Dietary fbres in pulse seeds and fractions: Characterization,functional attributes and applications. Food Research International,43,450–460.
    [2] Schneeman, B.O.(2001).Dietary fbre and gastro intestinal function, advanced dietary fbretechnology. In B.V. McCrery and L. Prosky (Eds.) Black well Science Ltd. pp.168–176.
    [3] Morris, E.R.(2001).Assembly and rheology of non-starch polysaccharides, advanced dietary fbretechnology. In B.V. McCrery and L. Prosky (Eds.), Oxford: Black well Science.Ltd. pp,30–41.
    [4] Kabel, M.A., Kortenoeven, L., Schols, H.A.&Voragen, A.G.J.(2002).In vitro fermentability ofdi!erently substituted xylo-oloigosaccharides. Journal of Agriculture Food Chemistry,50,6205–6210.
    [5] Bouhnik, Y., Flourie, B.&Riottoi, M.(1996). E!ects of fructo-oligosaccharide ingestion on fecalbifdobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans.Nutrition Cancer,26,21–29.
    [6] Bourquin, L.D., Titgemeyer, E.C., Garleb, K.A.&Fahey, G.C.(1992). Short chain fatty acidproduction and fber degradation by human colonic bacteria: E!ects of substrate and cell wallfractionation procedures. Journal of Nutrition,122,1508–1520.
    [7] Francisco, G.&Juan-R, M.(2003). Gut flora in health and disease. Lancet.361,512–519.
    [8] Simon, G.L.&Gorbach, S.L.(1984).Intestinal flora in health and disease. Gastroenterology,86:174–193.
    [9] Bengmark, S.(1998). Ecological control of the gastrointestinal tract: the role of probiotic flora. Gut,42:2–7.
    [10] Younes, H., Coudray. C., Bellanger, J., Demigne, C., Rayssiguier, Y.&Remesy C.(2001)Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination oncalcium and magnesium balance in rats. British journal of Nutrition,86,479–85.
    [11] Varsha, V., Asna, U.&Malleshi, N.G.(2009).Evaluation of antioxidant and antimicrobialproperties of fnger millet Polyphenols (Eleusine coracana).Food chemistry,114,340-346.
    [12] Ahmed, R.Segal, I. and Hassan, H.(2000). Fermentation of dietary starch in humans. AmericanJournal of Gastroenterology,95,1017–1020.
    [13] Pylkas, M.A., Juneja, R.L. and Salvin, J.L.(2005). Comparison of di!erent fbres for in vitroproduction of short chain fatty acids by intestinal micro fora. Journal of Medicinal Food,8,113–116.
    [14] Dankert, J., Zijlstra, J.B and Wolthers, B.G.(1981) Volatile fatty acids in human and peripheraland portal blood: quantitative determination vacuum distillation and gaschromatography. Clinica Chimica Acta,110,301–307.
    [15] Jouany, J.P.(1982). Volatile fatty acids and alcohol determination in digestive contents, silagejuice, bacterial cultures and anaerobic fermentation contents. Science des Aliments,2,131-144.
    [16] Farooq, U., Mohsin, M., Liu, X&Zhang, H.(2013). Enhancement of Short Chain Fatty AcidProduction From Millet Fibres by Pure Cultures of Probiotics Fermentation. Tropical Journalof Pharmaceutical Research,12(2):000
    [17] Upaksha, T., Ramachandra, G. and Shadakshara, S.M.(1997).Relationship between tannin levelsand in vitro digestibility in fnger millet (E.coracana). Journal of Agricultural and FoodChemistry,25,1101–1104.
    [18] Luo, J., Van Yperselle, M., Rizkalla, S.W., Rossi, F., Bornet, F.R.&Slama, G.(2000). Chronicconsumption of short-chain fructo oligosaccharides does not affect basal hepatic glucoseproduction or insulin resistance in type2diabetics The Journal of Nutrition,130,1572–1577.
    [19] Lintas, C., Cappelloni, M., Montalbano, S.&Gambelli, L.(1995). Dietary fbre in legumes:Effect of processing. European Journal of Clinical Nutrition,49,298–302.
    [20] Stewart, M. L.&Slavin, J. L.(2006). Molecular weight of guar gum a!ects short chain fatty acidprofle in model intestinal fermentation. Molecular Nutrition and Food Research,50,971–976.
    [21] Delgado, S., Suárez, A.&Mayo, B.(2006). Identification of dominant bacteria in faeces andcolonic mucosa from healthy Spanish adults by culturing and by16S rDNA sequence analysis.Digestive Diseases and Sciences,51(4),744–751.
    [22] McBurney, M. I.&Thomson, L.U.(1990). Fermentative characteristics of cereal brans andvegetable fber. Nutrition Cancer,13,271–280.
    [23] Burbano, C., Muzquiz, M., Ayet, G., Cuadrado, C.&Pedrosa, M. M.(1999).Evaluation of antinutritional factors of selected varieties of Phaseolis vulgaris. Journal of the Science of Foodand Agriculture,79,1468–1472.
    [24] Guillon, F.&Champ, M.(2000).Structural and physical properties of dietary fbres, andconsequences of processing on human physiology. Food Research International,33,233–245.
    [25] Han, I. H.&Baik, B.-K.(2006). Oligosaccharide content and composition of legumes and theirreduction by soaking, cooking, ultrasound, and high hydrostatic pressure. Cereal Chemistry,83,428–433.
    [26] Slavin, J. L., Jacobs, D.&Marquart, L.(2000). Grain processing and nutrition. Critical Reviewsin Food Science and Nutrition,40,309–326.
    [27] Collar, C., Santos, E.&Rosell, C.M.(2007).Assessment of the rheological profle of fbre-enriched bread dough by response surface methodology. Journal of Food Engineering,8(3),820–826.
    [1] Farooq U, Liu X and Zhang H.(2012). Safety aspects of Lactococcus lactis as a dairy starter.Journal of Pure Applied Microbiology,6,537-541.
    [2] Cummings JH.(1981) Short chain fatty acids in the human. Gut,22,763-779.
    [3] Nomoto K.(2004). Review: Prevention of infections by probiotics. Journal of Bioscience andBioengering,100,583–592.
    [4] Mark-Herbert C.(2004). Innovation of a new product category-functional food. Technovation,24,713–719.
    [5] Reuter, G.(2001).The Lactobacillus and Bifidobacterium microflora of the human intestine:composition and succession. Current Issues in Intestinal Microbiology,2(2),43-53.
    [6] Ding, W., Wang, H.&Griffiths, M.W.(2005). Probiotics down-regulate Fla A sigma28promoter in Campylobacter jejuni. Journal of Food Protection,68,2295–2300..
    [7] Roller, M., Pietro, F.A., Caderni, G., Rechkemmer, G.&Watzl, B.(2004). Intestinal immunity ofrats with colon cancer is modulated by oligofructose-enriched inulin combined withLactobacillus rhamnosus and Bifidobacterium lactis. British Journal of Nutrition,92,931–938
    [8] Wang, J.D.&Levin, P.A.(2009). Metabolism, cell growth and the bacterial cell cycle. NatureReviews Microbiology,7,822-827.
    [9] Gibson, G. R.&Roberfroid, M. B.(1995). Dietary modulation of the human colonicmicroorganisms: introducing the concept of prebiotics. The Journal of Nutrition,125,1401–1412.
    [10] Gibson, G.R., Beatty, E.R., Wang, X.&Cummings, J. H.(1995) Selective stimulation ofbifidobacteria in the human colon by oligofructose and inulin. Gastroenterology,108,975-982.
    [11] Farooq, U., Mohsin, M., Liu, X&Zhang, H.(2013). Enhancement of Short Chain Fatty AcidProduction From Millet Fibres by Pure Cultures of Probiotics Fermentation. TropicalJournal of Pharmaceutical Research,12(2):000
    [12] Kontula, P., Jaskari, J., Nollet, L., De Smet, I., vonWright, A., Poutanen, K.&Mattila-Sandholm,T.(1998b). The colonisation of a simulator of the human intestinal microbial ecosystem bya probiotic strain fed on a fermented oat bran product: effects on the gastrointestinalmicroorganisms. Applied Microbiology and Biotechnology,50,246-252.
    [13] Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerstr m, R., M tt, J., Saarela, M.,Mattila-Sandholm, T.&Poutanen, K.(2002). In vitro fermentation of cereal dietary fibrecarbohydrates by probiotic and intestinal bacteria. Journal of the Science of Food andAgriculture,82(8),781-789.
    [14] Titgemeyer, E.C., Bourquin, L.D., Fahey, G.C., Jr.&Garleb, K. A.(1991). Fermentability ofvarious fibre sources by human fecal bacteria in vitro. American Journal of ClinicalNutrition,53,1418-1424.
    [15] Tilly, J.M.&Terry, R.A.(1963). A two stage technique for the in vitro digesion of forage crops.The Journal of the British Grassland Society,18,104-111.
    [16] Pylkas, M.A., Juneja, R.L. and Salvin, J.L.(2005). Comparison of di!erent fbres for in vitroproduction of short chain fatty acids by intestinal micro fora. Journal of Medicinal Food,8,113–116.
    [17] Kaplan, H.&Hutkins, R.W.(2000). Fermentation of fructo oligosaccharides by Lactic acid bacteriaand Bifidobacteria. Applied and Environmental Microbiology,66(6),2682-2684.
    [18] Perez-Conesa, D., Lopez, G.&Ros, G.(2005). Fermentation capabilities of bifidobacteria usingnondigestible oligosaccharides, and their viability as probiotics in commercial powderinfant formula. Journal of Food Science,70,279-285.
    [19] Kontula, P., Jaskari, J., Nollet, L., De Smet, I., vonWright, A., Poutanen, K.&Mattila-Sandholm, T.(1998b). The colonisation of a simulator of the human intestinal microbial ecosystem by aprobiotic strain fed on a fermented oat bran product: effects on the gastrointestinalmicroorganisms. Applied Microbiology and Biotechnology,50,246-252.
    [20] Gupthar, A.S., Bhattacharya, S.&Basu, T.K.(2000). Evaluation of the maximum specific growthrate of yeast indicating non-linear growth trends in batch culture. World Journal ofMicrobiology and Biotechnology,16,613-616.
    [21] Macfarlane, G.T.&Macfarlane, S.(1993) Factors affecting fermentation reactions in the large-bowel. Proceedings of the Nutrition Society,52,367-373.
    [22] Beatrice, L.P.&Michael, G.(2006). Experimental approaches to assess dietary fibre-mediatedmechanisms of chemoprotection: In-vitro studies with human colon cells in culture.Cancer Preventive Research,11,151-161.
    [23] Stewart, M.L., Savarino, V.&Slavin, J.L.(2009). Assessment of dietary fibre fermentation: Effectof Lactobacillus reuteri and reproducibility of short-chain fatty acid concentrations.Molecular Nutrition and Food Research,53,114-120.
    [24] Sembries, S., Dongowski, G., Jacobasch, G., Mehrl nder, K., Will, F.&Dietrich, H.(2003). Effectsof dietary fibre-rich juice colloids from apple pomace extraction juices on intestinalfermentation products and microorganisms in rats. British Journal of Nutrition,90,607-615.
    [25] Mortensen, P.B.&Nordgaard-Andersen, I.(1993). The dependence of the in-vitro fermentation ofdietary fibre to short chain fatty acids on the contents of soluble non starch polysaccharides.Scandinavian Journal of Gastroenterology,28,418-422.
    [26] Casterline, J.L.J., Oles, C.&Ku, Y.(1997). In vitro fermentation of various food fibre fractions.Journal of Agriculture and Food Chemistry,45,2463.2467.
    [27] Vlkova, E., Medkova, J.&Rada, V.(2002). Comparison of four methods for identification ofBifidobacteria to the genus level. Czech Journal of Food Science,20,171–174.
    [28] Christian, R., Nigel, B., Ronan, T.G., Paul, R.&Francis, B.(2010). Development of potentiallysynbiotic fresh-cut apple slices. Journal of Functional Food,2(4),245-254.
    [29] Waitzberg, D.L., Luciana, C.L., Amanda, F.B., Raquel, S.T., Glaucia, M.S., Natalia, P.&Maria, L.T.(2013). Effect of synbiotic in constipated adult women-A randomized, double-blind,placebo-controlled study of clinical response. Clinical Nutrition,32,27-33.
    [30] Vogt, J.A., Pencharz, P.B.&Wolever, T.M.S.(2004). L.rhamnosis increases serum propionate inhumans.AmericanJournalofClinicalNutrition,80(1),89-94.
    [1] Daniel, S., Anke, B., Nina, H., Thomas, H., Stefanie, K., Claudia, M., Umang, M., Katrin, S.&Michael, G.(2009). Mechanisms of primary cancer prevention by butyrate and otherproducts formed during gut flora-mediated fermentation of dietary fibre. MutationResearch/Reviews in Mutation Research,682,1,39-53.
    [2] Montagne, L., Pluske, J.R.&Hampson, D.J.(2003). A review of interactions between dietary fibreand the intestinal mucosa, and their consequences on digestive health in young non-ruminantanimals. Animal Feed Science and Technology,108,95-117.
    [3] Stephen, A. M.&Cummings, J. H.(1980). Mechanism of action of dietary fibre in the humancolon. Nature,284,283-284.
    [4] Valentina, T.&Fredrik, B.(2012). Functional interactions between the gut microbiota and hostmetabolism. Nature,489,242-249.
    [5] Zampa, A., Stefania, S., Roberto, F., Guido, M., Carla, O.&Alberto, C.(2004). Effects of differentdigestible carbohydrates on bile acid metabolism and SCFA production by human gutmicro-flora grown in an in vitro semi-continuous culture. Anaerobe,10,(1),19-26.
    [6] Rinne, M., Kalliomaki, M., Arvilommi, H, Salminen, S.&Isolauri, E.(2005). Effect of probioticsand breastfeeding on the Bifidobacterium and Lactobacillus enterococcus microorganismsand humoral immune responses. The Journal of Pediatrics,147,186–191.
    [7] Wang, J. D.&Levin, P. A.(2009). Metabolism, cell growth and the bacterial cell cycle. NatureReviews Microbiology,7,822-827.
    [8] Rada, V.&Koc, J.(2000). The use of mupirocin for selective enumeration of bifidobacteria infermented milk products. Milchwissenshaft,55:65-67.
    [9] Gibson, G.R.&Roberfroid, M.B.(1995). Dietary modulation of the human colonicmicroorganisms: introducing the concept of prebiotics. The Journal of Nutrition,125,1401–1412.
    [10] Farooq, U., Mohsin, M., Liu, X&Zhang, H.(2013). Enhancement of Short Chain Fatty AcidProduction From Millet Fibres by Pure Cultures of Probiotics Fermentation. Tropical Journalof Pharmaceutical Research,12(2):000
    [11] Kontula, P., Jaskari, J., Nollet, L., De Smet, I., vonWright, A., Poutanen, K.&Mattila-Sandholm,T.(1998b). The colonisation of a simulator of the human intestinal microbial ecosystem by aprobiotic strain fed on a fermented oat bran product: effects on the gastrointestinalmicroorganisms. Applied Microbiology and Biotechnology,50,246-252.
    [12] Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerstr m, R., M tt, J., Saarela, M.,Mattila-Sandholm, T.&Poutanen, K.(2002). In vitro fermentation of cereal dietary fibrecarbohydrates by probiotic and intestinal bacteria. Journal of the Science of Food andAgriculture,82(8),781-789.
    [13] Pylkas, M.A., Juneja, R.L. and Salvin, J.L.(2005). Comparison of di!erent fbres for in vitroproduction of short chain fatty acids by intestinal micro fora. Journal of Medicinal Food,8,113–116.
    [14] Angelov, A., Gotcheva, V., Hristozova, T.&Gargova, S.(2005). Application of pure and mixedprobiotic lactic acid bacteria and yeast cultures for oat fermentation. Journal of the Science ofFood and Agriculture,85,2134-2141.
    [15] Beverly, A.D.&George, T. M.(1991). Comparison of carbohydrate substrate preferences ineight species of bifidobacteria. FEMS Microbiology Letters,84,151-156.
    [16] Bezkorovainy, A.(1999). Biochemistry and physiology of bifidobacteria. In: Nutrition andmetabolism of Bifidobacteria (Miller-Catchpole, R. and Bezkorovainy, A., Eds.) CRC press,Boca Raton, FL, pp93–129.
    [17] Joanne, L. S.(2005). Dietary fiber and body weight. Nutrition,21,(3),411-418.
    [18] Zampa, A., Stefania, S., Roberto, F., Guido, M., Carla, O.&Alberto, C.(2004). Effects ofdifferent digestible carbohydrates on bile acid metabolism and SCFA production by human gutmicro-flora grown in an in vitro semi-continuous culture. Anaerobe,10,(1),19-26.
    [19] Stephen, A. M.&Cummings, J. H.(1980). Mechanism of action of dietary fibre in the humancolon. Nature,284,283-284.
    [20] Valentina, T.&Fredrik, B.(2012). Functional interactions between the gut microbiota and hostmetabolism. Nature,489,242-249
    [21] Gomes, A.M.P., Malcata, F.X.&Klaver, F.A.M.(1998). Growth Enhancement ofBifidobacterium lactis and Lactobacillus acidophilus by Milk Hydrolyzates. American DairyScience Association,81,2817-2825.
    [22] Gomes, A.M.P.&Malcata, F.X.(1999). Bifidobacterium species and Lactobacillus acidophilus:biological, biochemical, technological and therapeutical properties relevant for use asprobiotics. Trends in Food Science and Technology,10,139-157.
    [23] McBurney, M. I.&Thompson, L. U.(1987). Effect of human faecal inoculum on in vitrofermentation variables. British Journal of Nutrition,58,233-243.
    [24] Meyer, R.M., Bartley, E.E., Julius, F.&Fina, L.R.(1971). Comparison of four in vitro methodsfor predicting in vivo digestibility of forages. Journal of Animal Science,32,1030-1036.
    [25] Odenyo, A.A., Mackie, R.I., Stahl, D.A.&White, B.A.(1994).The use of16s ribosomal-rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria-development of probes for ruminococcus species and evidence for bacteriocin production.Applied and Environmental Microbiology,60,3688-3696.
    [26] Saulnier, D.M.A., Gibson, G.R.&Kolida, S.(2007). In-vitro effects of selected synbiotics onthe human faecal microorganisms composition. FEMS Microbiology Ecology,66(3),516-527.
    [27] Nilsson, U., Nyman, M., Ahrné S., Sullivan, E.O.&Fitzgerald, G.(2006). Bifidobacterium lactisBb-12and Lactobacillus salivarius UCC500Modify Carboxylic Acid Formation in theHindgut of rats given pectin, inulin, and lactitol. The Journal of Nutrition,136,2175-2180.
    [28] Norelys, R-R., Leticia, A.&Manuel, F.(2012). Bacterial profile from caecal contents and softfaeces in growing rabbits given diets differing in soluble and insoluble fibre levels. Anaerobe,18,(6),602-607.
    [29] Iain, A. B.(2011).The physiological roles of dietary fibre. Food Hydrocolloids,25,2,238-250.
    [30] Green, C. J.(2001). Fibre in enteral nutrition. Clinical Nutrition,20,23-39.
    [31] Montagne, L., Pluske, J.R.&Hampson, D.J.(2003). A review of interactions between dietaryfibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology,108,95-117.
    [32] Vogt, J.A., Pencharz, P.B.&Wolever, T.M.S.(2004). L.rhamnosis increases serum propionate inhumans. American Journal of Clinical Nutrition,80(1),89-94.
    [33] Bourquin, L.D., Titgemeyer, E.C.&Fahey Jr, G.C.(1996).Fermentation of various dietary fibersources by human fecal bacteria. Nutrition Research,16,1119-1131.
    [1] Maria, C. C., Miguel, G.&Seppo, S.(2010).Chapter23-Probiotics in Adhesion of Pathogens:Mechanisms of Action, In: Ronald Ross Watson and Victor R. Preedy, Editor(s),Bioactive Foods in Promoting Health, Academic Press, Boston,353-370.
    [2] Huihua, Y., Pan, Z., Dong, L., Lingxiang, S., Haiming, S.&Huanle, D.(2011). Factorsaffecting bacterial biofilm expression in chronic rhinosinusitis and the influences onprognosis. American Journal of Otolaryngology,32,583-590.
    [3] Bj rn, E. C.(1989). The role of extracellular polysaccharides in biofilms. Journal ofBiotechnology,10,181-202.
    [4] Barnes, H.(1970). Chapter5-A review of some factors affecting settlement and adhesion inthe cyprids of some common barnacles, In: Richard Manly, Editor(s), Adhesion inBiological Systems, Academic Press,89-111.
    [5] Vivian, H.&Thomas, F.(1984). Binding of Escherichia coli K-12to cellulose.FEMSMicrobiology Letters,25,11-15.
    [6] Miron, J., Ben-Ghedalla, D.&Morrison, M.(2001). Adhesion mechanisms of rumencellulolytic bacteria. Journal of Dairy Science,84,1294-1309..
    [7] Akihiko, T., Atsushi, Y., Satoshi, T., Akira, H., Akio, K.&Masao, T.(2005). Elucidation ofdominant effect on initial bacterial adhesion onto polymer surfaces prepared by radiation-induced graft polymerization, Colloids and Surfaces B: Biointerfaces,43,99-107.
    [8] Kontula, P., vonWright, A.&Mattila-Sandholm.(1998). Oat bran beta-gluco-and xylo-oligosaccharides as fermentative substrates for lactic acid bacteria. International JournalOf Food Microbiology,45,163-169.
    [9] Crittenden, R., Laitila, A., Forssell, P., M.att, o. J., Saarela, M., Mattila-Sandholm, T.&Myll.arinen, P.(2001). Adhesion of bifidobacteria to granular starch and implication inprobiotic technologies. Journal of Microbiology and Technology,67,3469-3475.
    [10] Cegelski, L, L., Smith, C.L. L.&Hultgren, S.J.(2009). Adhesion, Microbial, In:Encyclopedia of Microbiology (Third Edition). Academic Press, Oxford,1-10.
    [11] Roger, V., Fonty, G., Komisarczukbony, S.&Gouet, P.(1990). Effects of physicochemicalfactors on the adhesion to cellulose avicel of the ruminal bacteria ruminococcus-lavefaciens and fibrobacter-succinogenes subsp succinogenes. Applied and EnvironmentalMicrobiology,56,3081-3087.
    [12] Briczinski, E.P., Phillips, A.T.&Roberts, R.F.(2008). Transport of glucose byBifidobacterium animalis subsp. lactis Occurs via facilitated diffusion. Applied andEnvironmental Microbiology.74,6941-6948!
    [13] Craig, S. B.&David, J. B. The Effect of Tween80on Signal Intensity of Intact Proteins byMALDI Time-of-Flight Mass Spectrometry. Journal of the American Society for MassSpectrometry,18,102-105.
    [14] Stanislav, G. B., Tatiana, A. R., Stanislav, E. E., Nikita, B. P., Vladimir, I. S., Nina, V. S.,Sergey, M. L., Nikolai, S. P.&Yuri, A. N.(2003). A novel lipopeptide, an inhibitor ofbacterial adhesion, from the thermophilic and halotolerant subsurface Bacilluslicheniformis strain603. Biochimica et Biophysica Acta (BBA)-Molecular and CellBiology of Lipids,1634,107-115.
    [15] Colin, P. M., Rebecca, A. C., Seana, M. M., Louise, C., David S. J.&Sean P.G.(2012).Surface localization of photosensitizes on intraocular lens biomaterials forprevention of infectious endophthalmitis and retinal protection. Biomaterials,33, Issue32,7952-7958.
    [16] Cuesta-Alonso, E.P.&Gilliland, S.E.(2003). Binding of bile salts by soluble fibres and itseffect on deconjugation of glycocholate by Lactobacillus acidophilus and Lactobacilluscasei. The Journal of Food Science,68,2086-2089.
    [1] Lynd, L. R., Weimer, P. J., van Zyl., W. H.&Pretorius, I. S.(2002) Microbial cellulose utilization:fundamentals and biotechnology. Microbiology and Molecular Biology Reviews,66,566–577.
    [2] Imam, S.H., Bard, R.F.&Tosteson, T.R.(1984). Specificity of marine microbial surfaceinteractions. Applied and Environmental Microbiology,48,833-839.
    [3] Romano, A.H.&Conway, T.(1996) Evolution of carbohydrate metabolic pathways. Research inMicrobiology,147(6-7),448-455.
    [4] Wilkins, K.M., Martin, G.P., Hanlon, G.W.&Marriott, C.(1989). The influence of critical surfacetension and microrugosity on the adhesion of bacteria to polymer monofilaments. InternationalJournal of Pharmaceutics,57,1-7.
    [5] Maria, C. C., Miguel, G.&Seppo, S.(2010).Chapter23-Probiotics in Adhesion of Pathogens:Mechanisms of Action, In: Ronald Ross Watson and Victor R. Preedy, Editor(s), BioactiveFoods in Promoting Health, Academic Press, Boston,353-370.
    [6] Huihua, Y., Pan, Z., Dong, L., Lingxiang, S., Haiming, S.&Huanle, D.(2011). Factors affectingbacterial biofilm expression in chronic rhinosinusitis and the influences on prognosis.American Journal of Otolaryngology,32,583-590.
    [7] Barnes, H.(1970). Chapter5-A review of some factors affecting settlement and adhesion in thecyprids of some common barnacles, In: Richard Manly, Editor(s), Adhesion in BiologicalSystems, Academic Press,89-111.
    [8] Imam, S.H.&Harry-O'Kuru, R.E.(1991) Adhesion of Lactobacillus amylovorus to insoluble andDerivatized Cornstarch Granules. Applied and Environmental Microbiology,57(4),1128–1133.
    [9] Xu, L-C.&Bruce, E. L.(2006). Adhesion forces between functionalized latex microspheres andprotein-coated surfaces evaluated using colloid probe atomic force microscopy. Colloids andSurfaces B: Biointerfaces,48,84-94.
    [10] Lavermicocca, P., Valerio, F., Lonigro, S.L., DeAngelis, M., Morelli, L., Callegari, M. L.,Rizzello, C.G.&Visconti, A.(2005) Study of adhesion and survival of Lactobacilli andBifidobacteria on table olives with the aim of formulating a new probiotic food. Applied andEnvironmental Mcrobiology,71(8),4233–4240.
    [11] Mark-Herbert, C.(2004). Innovation of a new product category-functional food. Technovation,24,713–719.
    [12] Karen, M. W., Hanion, G.W., Martin, G.P.&Marriott, C.(1990). The role of adhesion in themigration of bacteria along intrauterine contraceptive device polymer monofilaments.International Journal of Pharmaceutics,58,165-174.
    [13] Sasso, M. D., Culici, M., Bovio, C.&Braga, P.C.(2003). Gemifloxacin: Effects of sub-inhibitoryconcentrations on various factors affecting bacterial virulence. International Journal ofAntimicrobial Agents,21,325-333.
    [14] Kontula, P., vonWright, A.&Mattila-Sandholm.(1998). Oat bran beta-gluco-and xylo-oligosaccharides as fermentative substrates for lactic acid bacteria. International Journal OfFood Microbiology,45,163-169.
    [15] Crittenden, R., Laitila, A., Forssell, P., M.att, o. J., Saarela, M., Mattila-Sandh olm, T.&Myll.arinen, P.(2001). Adhesion of bifidobacteria to granular starch and implication inprobiotic technologies. Journal of Microbiology and Technology,67,3469-3475.
    [16] Baillif, S., Hartmann, D., Freney, J.&Kodjikian,L.(2010). Implant intraoculaire et adhésionbactérienne: influence des conditions environnementales, des propriétés bactériennes et descaractéristiques du biomatériau. Journal Fran ais d'Ophtalmologie,33,210-221.!
    [17] Mosoni, P., Fonty, G.&Gouet, P.(1997). Competition between ruminal cellulolytic bacteria foradhesion to cellulose. Current Microbiology,35,44-47.
    [18] Miron, J., Ben-Ghedalla, D.&Morrison, M.(2001). Adhesion mechanisms of rumen cellulolyticbacteria. Journal of Dairy Science,84,1294-1309.
    [19] Odenyo, A. A., Mackie, R.I., Stahl, D.A.&White.B.A.(1994a). The use of16S rRNA-targetedoligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culturestudies with cellulose and alkaline peroxide-treated wheat straw. Applied and EnvironmentalMicrobiolology,60,3697–3703.
    [20] Odenyo, A.A., Mackie, R.I., Stahl, D.A.&White, B.A.(1994b). The use of16s ribosomal-rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria-development of probes for ruminococcus species and evidence for bacteriocin production.Applied and Environmental Microbiology,60,3688-3696.
    [21] Sleator, R. D.&Hill. C.(2007). Food reformulation for improved health: a potential risk forfood safety? Medical Hypotheses,69,1323–1324.
    [22] Bj rn, E. C.(1989). The role of extracellular polysaccharides in biofilms. Journal ofBiotechnology,10,181-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700