用户名: 密码: 验证码:
具有抗2型糖尿病活性的海洋药物HS203的制备及其初步药代动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的提高,糖尿病的发病率迅速上升。据世界卫生组织公布,全世界已有3.47亿糖尿病患者。中国已成为世界糖尿病发病人数最多的国家,发病率达9.7%。2型糖尿病患者占糖尿病总患病人数的90%以上,以胰岛素分泌不足和胰岛素抵抗为主要特征。2型糖尿病的治疗不依赖胰岛素,主要通过口服降糖药治疗,现有的口服降糖药多存在着继发性失效,诱发低血糖及价格昂贵等缺点。因此,有必要开发新型口服降糖药。大量研究表明,糖尿病的发生和体内糖胺聚糖的改变有密切关系,补充铬可以显著改善糖尿病人的糖代谢和血脂代谢。海洋寡糖具有资源丰富,低毒和生物活性好等优点,具有良好的开发应用前景。基于以上几点,本文选择与糖胺聚糖结构类似的海洋酸性寡糖与铬离子进行配合,以期发挥两者的协同抗糖尿病作用,开发新型口服降糖药。
     本论文在前期研究的基础上,优化了抗2型糖尿病海洋药物HS203的制备条件。通过核磁共振碳谱,紫外-可见全波长光谱,红外光谱等分析手段对制得的HS203进行了结构表征。然后对HS203胶囊剂的制备和质量标准进行了研究,确定了HS203胶囊制剂配方,并对药物在加速条件下6个月和室温条件下24个月的稳定性进行了考察,结果发现,HS203质量稳定,选用的包装材料也符合要求,对存储条件无苛刻要求。
     采用Wistar大鼠2型糖尿病模型和KM小鼠2型糖尿病模型对HS203的降血糖活性及其机制进行了研究,结果表明HS203在糖尿病模型动物上表现出较好的降血糖活性,且没有急性降血糖作用,不存在一过性血糖降低的危险,其通过提高胰岛素敏感指数降低血糖,且具有一定的肾脏保护和减轻胰腺损伤作用,有较好的抗糖尿病应用前景。
     对HS203药物在小鼠及beagle犬内的急性毒性试验进行了研究,结果表明HS203药物在动物体内毒性很小,在可给药的最大剂量下,动物仍无死亡情况发生,因此HS203安全性高,毒副作用小。采用柱后衍生-高效液相色谱法对HS203初步的药代动力学进行了研究,结果表明HS203药物注射给药后在大鼠体内代谢较快,t1/2α为3.35±0.78min。口服给药后,药物在大鼠体内代谢较慢,t1/2α为143.2±9.8min,在beagle犬内吸收较快。在beagle犬内的毒代动力学表明,药物连续给药后,在第8天和第30天血药浓度明显升高,且在雄犬内血药浓度较雌犬内高。说明药物经口服给药后,在大鼠和beagle犬内的代谢存在种属差异,且代谢过程可能与性别有关。
     由于HS203属于口服用药,它属于非淀粉类糖类物质,该类物质对肠道微生物的影响,以及它是否被降解以及降解产物情况需要研究。本文采用厌氧发酵系统对HS203在不同人肠道微生物中的利用情况进行了研究,结果发现:HS203可被微生物降解为更低聚合度寡糖。采用PCR-DGGE的方法对HS203为底物发酵的样品菌群结构进行了研究,结果表明HS203可以明显影响肠道微生物的菌群结构。此外,对厌氧培养过程中微生物发酵产生的短链脂肪酸进行了测定,结果表明HS203能促进短链脂肪酸的产生。采用稀释涂板法进一步对细菌进行筛选分离,从肠道微生物中分离得到了两株可以利用HS203的细菌,分别为解木聚糖拟杆菌(Bacteroides xylanisolvens)和卵形拟杆菌(Bacteroides ovatus),说明拟杆菌在利用HS203和褐藻胶及其寡糖寡糖过程中具有重要的作用。
     综上所述,本论文对海洋寡糖药物HS203及其制剂的制备工艺,理化性质及稳定性进行了研究。对其在糖尿病动物模型上的降血糖活性进行了研究,然后对其急性毒性试验进行了考察,还对HS203在不同动物体内的药代毒代动力学进行了研究,最后对HS203及其类似物对肠道微生物的影响进行了研究,为将其开发成为抗2型糖尿病海洋寡糖药物提供了基础与依据。
The incidence of diabetes is rising rapidly along with the improvement of people'sliving standards. World health organization announced that347million people havediabetes all over the world. China has become the country with the largest number ofdiabetes, the prevalence is9.7%. Type2diabetes accounts for more than90%of thetotal number of diabetes patients, mainly associated with insufficient insulin secretionand insulin resistance. Treatment for type2diabetes is not dependent on insulin, mainlytreated by oral hypoglycemic drugs, however, current oral hypoglycemic drugs oftenhave many disadvantages such as secondary failure, hypoglycemia and expensive.Therefore, it is necessary to develop new oral hypoglycemic drugs. Many studies showthat there is a close relationship between the occurrence of diabetes and the changes inglycosaminoglycans structure, and chromium supplementation can significantlyimprove glucose metabolism and lipid metabolism in diabetic patients. Marineoligosaccharides have many advantages including abundant resources, low toxicity andgood bioactivity, show good application prospects in drug development. In this paper,the complex prepared from marine acidic oligosaccharide which is similar in structurewith glycosaminoglycans and chromium ions was studied, in order to develop a neworal hypoglycemic drug.
     First of all, the orthogonal experiments were carried out to optimize the preparationconditions of marine drug HS203from oligomannuronate and chromium, and theoptimal reaction conditions were determined. The structural characterization of HS203was performed by using Nuclear magnetic resonance (NMR) spectroscopy, fullwavelength UV-Vis scanning spectrametry, Infrared spectroscopy and other analyticaltechniques. Then the preparation of its capsule and the quality standards were studied, and the capsule formulations were determined. The stabilities of HS203capsules underaccelerated conditions for six months and room temperature for twenty-four monthswere investigated, the results indicated that the drug was stable and the packagingmaterials also meet the requirements, the drug did not need strict conditions for storage.
     The hypoglycemic activity and its mechanism of HS203were also studied by usingtype2diabetic animal model in Wistar rats and in KM mice, the results showed thatHS203exhibited good hypoglycemic activity in animal models of diabetes mellitus, andhad no acute hypoglycemic effect, so there was no risk of a transient reduction of bloodglucose. The hypoglycemic activity of HS203was by improving insulin sensitivityindex, and also HS203could protect kidney and pancreas from damage caused byhyperglycemia, it showed good anti diabetic prospect.
     The acute toxicity test of HS203in mice and beagle dogs was investigated, and theresults indicated that the toxicity of HS203was very little, no animal was dead even atthe highest dose by intravenous injection or intragastric administration, so it showedthat HS203was very safe, and with less toxic side effect. The preliminarypharmacokinetics in rats and toxicokinetic in beagle dogs of HS203were studied usingfluorescent labelling high-performance liquid chromatography with post-columnderivatization method, the results showed that HS203could be metabolized afterintravenous injection in rats, t1/2α was3.35±0.78min. After oral administration, HS203was absorbed slowly in rats but fast in beagle dogs. The toxicokinetic in beagle dogsshowed that the plasma concentration of HS203was significantly higher aftercontinuous oral administration for8days and30days than that in the first day, and theplasma concentration in the male dog was higher than that in the female dog. Theseresults showed that the metabolism was not only associated with species differences, butalso might related to gender.
     The marine drug HS203will be developed as an oral preparation, and it belongs tonon-starchy carbohydrates, so it is necessary to study its effect to gut microbes. WhetherHS203was degraded or not, and what kinds of degradation products are produced, in order to know the metabolic process in vivo. The anaerobic fermentation system wasused to study the utilization of HS203, the results showed that HS203could be used bythe gut microbes. Polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE) analysis was used to study the composition of the microbiota afterfermentation of HS203, the results indicated that HS203could significantly affect thecomposition of the microbiota, the intestinal microflora from different person weredistinctly different. The results also showed that the bacterias were mainly Bacteroides,and two strains were found in almost all the samples, they were Bacteroidesxylanisolvens and Clostridium clostridioforme respectively. The short chain fat acidsproduced during anaerobic fermentation process were determined. The isolation ofmicrobes was studied by using the gradient dilution and plate paint isolation methods,two strains could degrade HS203were isolated, they were Bacteroides xylanisolvensand Bacteroides ovatus, these results indicated that Bacteroides played an important rolein the use of HS203and its oligosaccharides.
     In conclusion, the preparation, the properties and stability of marine oligosaccharidedrug HS203and its capsule were studied in this paper. And then the hypoglycemicactivity in animal models of diabetes and the acute toxicity test were investigated, thepharmacokinetics and the toxicokinetic in different animals were also studied. In the last,the effect on intestinal microflora of HS203was investigated by using anaerobicfermentation system. These useful data offered the basis for developing it to be apromising anti-type2diabetes marine oligosaccharide drug in the future.
引文
[1]许曼音.糖尿病学[M].第二版.上海:上海科学技术出版社,2010.12.
    [2]中国2型糖尿病防治指南(2010年版)[J].中国医学前沿杂志(电子版),2011(6):54-109.
    [3] Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl JMed,2010,362(12):1090-1101.
    [4]刘建民,赵咏桔.糖尿病酮症酸中毒和高血糖高渗状态[J].中华内分泌代谢杂志,2003(6):87-90.
    [5] Kitabchi A E, Umpierrez G E, Miles J M, et al. Hyperglycemic crises in adult patients withdiabetes. Diabetes Care,2009,32(7):1335-1343.
    [6]许曼音.糖尿病学[M].第二版.上海:上海科学技术出版社,2010.389-395.
    [7] Kitabchi A E, Umpierrez G E, Murphy M B, et al. Hyperglycemic crises in patients withdiabetes mellitus. Diabetes Care,2003,26Suppl1: S109-S117.
    [8] Buse J B, Ginsberg H N, Bakris G L, et al. Primary prevention of cardiovascular diseases inpeople with diabetes mellitus: a scientific statement from the American Heart Association andthe American Diabetes Association. Diabetes Care,2007,30(1):162-172.
    [9] Barr E L, Zimmet P Z, Welborn T A, et al. Risk of cardiovascular and all-cause mortality inindividuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance:the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation,2007,116(2):151-157.
    [10]王耀珍,张志利.糖尿病肾病发病机制的研究进展[J].中国药物与临床,2008,8(1):58-60.
    [11] Dronavalli S, Duka I, Bakris G L. The pathogenesis of diabetic nephropathy. Nat Clin PractEndocrinol Metab,2008,4(8):444-452.
    [12] Ritz E, Stefanski A. Diabetic nephropathy in type II diabetes. American journal of kidneydiseases: the official journal of the National Kidney Foundation,1996,27(2):167-194.
    [13] Said G. Diabetic neuropathy--a review. Nat Clin Pract Neurol,2007,3(6):331-340.
    [14] Apelqvist J, Bakker K, van Houtum W H, et al. International consensus and practicalguidelines on the management and the prevention of the diabetic foot. International WorkingGroup on the Diabetic Foot. Diabetes Metab Res Rev,2000,16Suppl1: S84-S92.
    [15] Edwards J, Stapley S. Debridement of diabetic foot ulcers. Cochrane Database Syst Rev,2010(1): D3556.
    [16] Frykberg R G, Zgonis T, Armstrong D G, et al. Diabetic foot disorders. A clinical practiceguideline (2006revision). J Foot Ankle Surg,2006,45(5): S1-S66.
    [17] Klein B E. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol,2007,14(4):179-183.
    [18] Yau J W, Rogers S L, Kawasaki R, et al. Global prevalence and major risk factors of diabeticretinopathy. Diabetes Care,2012,35(3):556-564.
    [19]许曼音.糖尿病学[M].第二版.上海:上海科学技术出版社,2010.446-452.
    [20] Koster J C, Permutt M A, Nichols C G. Diabetes and insulin secretion: the ATP-sensitive K+channel (K ATP) connection. Diabetes,2005,54(11):3065-3072.
    [21] Proks P, Reimann F, Green N, et al. Sulfonylurea stimulation of insulin secretion. Diabetes,2002,51Suppl3: S368-S376.
    [22] Harrower A D. Comparison of efficacy, secondary failure rate, and complications ofsulfonylureas. J Diabetes Complications,1994,8(4):201-203.
    [23] Van Staa T, Abenhaim L, Monette J. Rates of hypoglycemia in users of sulfonylureas. J ClinEpidemiol,1997,50(6):735-741.
    [24] Cheng A Y, Fantus I G. Oral antihyperglycemic therapy for type2diabetes mellitus. CMAJ,2005,172(2):213-226.
    [25] Whitelaw D C, Clark P M, Smith J M, et al. Effects of the new oral hypoglycaemic agentnateglinide on insulin secretion in Type2diabetes mellitus. Diabet Med,2000,17(3):225-229.
    [26] Goldberg R B, Einhorn D, Lucas C P, et al. A randomized placebo-controlled trial ofrepaglinide in the treatment of type2diabetes. Diabetes Care,1998,21(11):1897-1903.
    [27] Culy C R, Jarvis B. Repaglinide: a review of its therapeutic use in type2diabetes mellitus.Drugs,2001,61(11):1625-1660.
    [28] Fuhlendorff J, Rorsman P, Kofod H, et al. Stimulation of insulin release by repaglinide andglibenclamide involves both common and distinct processes. Diabetes,1998,47(3):345-351.
    [29] Strack T. Metformin: a review. Drugs of today,2008,44(4):303-314.
    [30] Defronzo R A, Goodman A M. Efficacy of Metformin in Patients with Non-Insulin-DependentDiabetes Mellitus. New England Journal of Medicine,1995,333(9):541-549.
    [31] Lee A, Morley J E. Metformin decreases food consumption and induces weight loss insubjects with obesity with type II non-insulin-dependent diabetes. Obes Res,1998,6(1):47-53.
    [32] Lamanna C, Monami M, Marchionni N, et al. Effect of metformin on cardiovascular eventsand mortality: a meta-analysis of randomized clinical trials. Diabetes, Obesity and Metabolism,2011,13(3):221-228.
    [33] Anfossi G, Russo I, Bonomo K, et al. The cardiovascular effects of metformin: further reasonsto consider an old drug as a cornerstone in the therapy of type2diabetes mellitus. CurrentVascular Pharmacology,2010,8(3):327.
    [34] Khan H B H, Vinayagam K S, Moorthy B T, et al. Anti-inflammatory and anti-hyperlipidemiceffect of Semecarpus anacardium in a High fat diet: STZ-induced Type2diabetic rat model.Inflammopharmacology,2013,21(1):37-46.
    [35] Choi K, Kim Y. Molecular mechanism of insulin resistance in obesity and type2diabetes. TheKorean journal of internal medicine,2010,25(2):119-129.
    [36] Spiegelman B M. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor.Diabetes,1998,47(4):507-514.
    [37] Josse R G, Chiasson J. Acarbose in the treatment of elderly patients with type2diabetes.Diabetes Research and Clinical Practice.2003,59(1):37-42.
    [38] Bischoff H. Pharmacology of alpha-glucosidase inhibition. Eur J Clin Invest,1994,24Suppl3:3-10.
    [39]Jacobo S M P, Guerra M L, Hockerman G H. Cav1.2and Cav1.3are differentially coupled toglucagon-like peptide-1potentiation of glucose-stimulated insulin secretion in the pancreaticβ-cell line INS-1. Journal of Pharmacology and Experimental Therapeutics,2009,331(2):724-732.
    [40] Blundell J E, Levin F, King N A, et al. Overconsumption and obesity: peptides andsusceptibility to weight gain. Regulatory peptides,2008,149(1):32-38.
    [41]张月华. GLP-1及其类似物与2型糖尿病的关系[J].武警医学院学报,2010(11):921-924.
    [42]纪明侯.海藻化学[M].北京:科学出版社,2004.208-209.
    [43] Sabra W, Zeng A P, Deckwer W D. Bacterial alginate: physiology, product quality andprocess aspects. Appl Microbiol Biotechnol,2001,56(3-4):315-325.
    [44] Grasdalen H, Larsen B. Monomer sequence and acetylation pattern in some bacterial alginates.Carbohydrate Research,1986,154(1):239-250.
    [45] Windhues T, Borchard W. Effect of acetylation on physico-chemical properties of bacterialand algal alginates in physiological sodium chloride solutions investigated with light scatteringtechniques. Carbohydrate Polymers,2003,52(1):47-52.
    [46] Gombotz W R, Wee S F. Protein release from alginate matrices. Advanced drug deliveryreviews,1998,31(3):267-285.
    [47]吴金华,王资生.褐藻及褐藻酸的研究现状和进展[J].盐城工学院学报,1999(4):52-54.
    [48]杨湘庆.海藻酸钠在食品中的应用[J].食品研究与开发,1985(3):28-29.
    [49]卢俊荣.褐藻酸钠及其应用[J].中学生物学,2006,22(12):12-13.
    [50] Fischer F G, D rfel H. Die Polyurons uren der Braunalgen (Kohlenhydrate der Algen I).Hoppe-Seyler′s Zeitschrift für physiologische Chemie,1955,302(1-2):186-203.
    [51]赵峡.聚古罗糖醛酸硫酸酯及其寡糖的制备、结构与活性研究[D].中国海洋大学,2007.
    [52] Grasdalen H. High-field,1H-NMR spectroscopy of alginate: sequential structure and linkageconformations. Carbohydrate Research,1983,118(1):255-260.
    [53] Haug A, Larsen B O R, Smidsr O D O. A study of the constitution of alginic acid by partialacid hydrolysis. Acta Chem. Scand,1966,20(1):183-190.
    [54] Ikeda A, Takemura A, Ono H. Preparation of low-molecular weight alginic acid by acidhydrolysis. Carbohydrate Polymers,2000,42(4):421-425.
    [55] Chandía N P, Matsuhiro B, Vásquez A E. Alginic acids in Lessonia trabeculata:characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohydrate Polymers,2001,46(1):81-87.
    [56] Haug A, Larsen B R. Quantitative determination of the uronic acid composition of alginates.Acta Chem. Scand,1962,16(8):1908-1918.
    [57] Yang Z, Li J, Guan H. Preparation and characterization of oligomannuronates from alginatedegraded by hydrogen peroxide. Carbohydrate Polymers,2004,58(2):115-121.
    [58]杨钊,张真庆,管华诗.一种新的褐藻胶寡糖制备方法——氧化降解法[J].海洋科学,2004(7):19-22.
    [59] Wong T Y, Preston L A, Schiller N L. Alginate Lyase: review of major sources and enzymecharacteristics, structure-function analysis, biological roles, and applications. Annu RevMicrobiol,2000,54:289-340.
    [60]陈俊帆,石波,范红玲,等.褐藻胶裂解酶的研究进展[J].食品工业科技,2011(8):428-431.
    [61] Gacesa P. Enzymic degradation of alginates. Int J Biochem,1992,24(4):545-552.
    [62] Li L, Jiang X, Guan H, et al. Preparation, purification and characterization of alginateoligosaccharides degraded by alginate lyase from Pseudomonas sp. HZJ216. CarbohydrateResearch,2011,346(6):794-800.
    [63] Zhang Z, Yu G, Guan H, et al. Preparation and structure elucidation of alginateoligosaccharides degraded by alginate lyase from Vibro sp.510. Carbohydrate Research,2004,339(8):1475-1481.
    [64]付杰.微波制备相对低分子及寡聚透明质酸及其生物活性研究[D].山东大学,2008.
    [65] Chhatbar M, Meena R, Prasad K, et al. Microwave assisted rapid method for hydrolysis ofsodium alginate for M/G ratio determination. Carbohydrate Polymers,2009,76(4):650-656.
    [66] Nagasawa N, Mitomo H, Yoshii F, et al. Radiation-induced degradation of sodium alginate.Polymer Degradation and Stability,2000,69(3):279-285.
    [67] Lee D W, Choi W S, Byun M W, et al. Effect of γ-irradiation on degradation of alginate.Journal of Agricultural and Food Chemistry,2003,51(16):4819-4823.
    [68] Wasikiewicz J M, Yoshii F, Nagasawa N, et al. Degradation of chitosan and sodium alginateby gamma radiation, sonochemical and ultraviolet methods. Radiation Physics and Chemistry,2005,73(5):287-295.
    [69] Holme H K, Lindmo K, Kristiansen A, et al. Thermal depolymerization of alginate in the solidstate. Carbohydrate Polymers,2003,54(4):431-438.
    [70] Aida T M, Yamagata T, Watanabe M, et al. Depolymerization of sodium alginate underhydrothermal conditions. Carbohydrate Polymers,2010,80(1):296-302.
    [71] Burana-Osot J, Hosoyama S, Nagamoto Y, et al. Photolytic depolymerization of alginate.Carbohydrate Research,2009,344(15):2023-2027.
    [72] Fujihara M, Nagumo T. The effect of the content of d-mannuronic acid and l-guluronic acidblocks in alginates on antitumor activity. Carbohydrate Research,1992,224(0):343-347.
    [73] Iwamoto Y, Xu X, Tamura T, et al. Enzymatically Depolymerized Alginate Oligomers ThatCause Cytotoxic Cytokine Production in Human Mononuclear Cells. Bioscience,Biotechnology, and Biochemistry,2003,67(2):258-263.
    [74] Iwamoto M, Kurachi M, Nakashima T, et al. Structure-activity relationship of alginateoligosaccharides in the induction of cytokine production from RAW264.7cells. FEBS Lett,2005,579(20):4423-4429.
    [75] Hu X, Jiang X, Hwang H, et al. Antitumour activities of alginate-derived oligosaccharides andtheir sulphated substitution derivatives. European Journal of Phycology,2004,39(1):67-71.
    [76]窦勇.褐藻胶寡糖生物活性的研究进展[J].广西轻工业,2009(10):12-13.
    [77]管华诗.新药藻酸双酯钠(PSS)的研究[J].医学研究通讯,1999(9):8.
    [78] Zhao X, Yu G, Guan H, et al. Preparation of low-molecular-weight polyguluronate sulfate andits anticoagulant and anti-inflammatory activities. Carbohydrate Polymers,2007,69(2):272-279.
    [79] Fan L, Jiang L, Xu Y, et al. Synthesis and anticoagulant activity of sodium alginate sulfates.Carbohydrate Polymers,2011,83(4):1797-1803.
    [80] Yao Z, Wu H, Han B, et al. The antithrombotic action of propylene glycol mannite sulfate(PGMS). Pharmacological Research,2006,53(2):166-170.
    [81] Ogawa H, Kajimoto N, Hiura N, et al. Effects of sodium alginate oligosaccharide on serumlipids, serum minerals and urinary minerals in rats. Journal-Japanese Society Of Nutrition andFood Science,2001,54(5):297-304.
    [82]管华诗,兰进,田学琳,等.褐藻酸钠在人体健康中的作用[J].山东海洋学院学报,1986(4):99-106.
    [83]陈丽,王淑军,刘泉,等.褐藻寡糖对3种水产致病菌抗菌活性研究[J].淮海工学院学报(自然科学版),2009(1):90-92.
    [84]窦勇,胡佩红.褐藻胶寡糖制备及抑菌活性研究[J].广东农业科学,2009(12):161-163.
    [85] Hu XK, Jiang XL, Gong J,et al. Antibacterial activity of lyase-depolymerized products ofalginate. Journal of Applied Phycology,2005,17(1):57-60.
    [86]江琳琳,陈温福,陈晓艺,等.海藻酸寡糖生物活性研究[J].大连工业大学学报,2009(3):157-160.
    [87]刘中华,张杰,郭婕.褐藻胶寡糖激发子活性研究[J].周口师范学院学报,2010(5):82-84.
    [88] Sen M, Atik H. The antioxidant properties of oligo sodium alginates prepared byradiation-induced degradation in aqueous and hydrogen peroxide solutions. Radiation Physicsand Chemistry,2012,81(7):816-822.
    [89]孙丽萍,薛长湖,许家超,等.褐藻胶寡糖体外清除自由基活性的研究[J].中国海洋大学学报(自然科学版),2005(5):811-814.
    [90] Kawada A, Hiura N, Shiraiwa M, et al. Stimulation of human keratinocyte growth by alginateoligosaccharides, a possible co-factor for epidermal growth factor in cell culture. FEBS Lett,1997,408(1):43-46.
    [91] Kawada A, Hiura N, Tajima S, et al. Alginate oligosaccharides stimulate VEGF-mediatedgrowth and migration of human endothelial cells. Arch Dermatol Res,1999,291(10):542-547.
    [92] Hien N Q, Nagasawa N, Tham L X, et al. Growth-promotion of plants with depolymerizedalginates by irradiation. Radiation Physics and Chemistry,2000,59(1):97-101.
    [93] Iwasaki K, Matsubara Y. Purification of alginate oligosaccharides with root growth-promotingactivity toward lettuce. Bioscience, biotechnology, and biochemistry,2000,64(5):1067-1070.
    [94] Xu X, Iwamoto Y, Kitamura Y, et al. Root growth-promoting activity of unsaturatedoligomeric uronates from alginate on carrot and rice plants. Biosci Biotechnol Biochem,2003,67(9):2022-2025.
    [95] Otterlei M, Ostgaard K, Skj k-Braek G, et al. Induction of cytokine production from humanmonocytes stimulated with alginate. Journal of immunotherapy: official journal of the Societyfor Biological Therapy,1991,10(4):286.
    [96] Hu J, Geng M, Li J, et al. Acidic oligosaccharide sugar chain, a marine-derived acidicoligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. Journal ofpharmacological sciences,2004,95(2):248-255.
    [97] Fan Y, Hu J, Li J, et al. Effect of acidic oligosaccharide sugar chain on scopolamine-inducedmemory impairment in rats and its related mechanisms. Neurosci Lett,2005,374(3):222-226.
    [98] Yoshida T, Hirano A, Wada H, et al. Alginic acid oligosaccharide suppresses Th2development and IgE production by inducing IL-12production. International archives ofallergy and immunology,2004,133(3):239-247.
    [99] Jeong H J, Lee S A, Moon P D, et al. Alginic acid has anti-anaphylactic effects and inhibitsinflammatory cytokine expression via suppression of nuclear factor-kappaB activation. ClinExp Allergy,2006,36(6):785-794.
    [100] Zhao X, Yu G, Guan H, et al. Preparation of low-molecular-weight polyguluronate sulfate andits anticoagulant and anti-inflammatory activities. Carbohydrate Polymers,2007,69(2):272-279.
    [101] Mertz W, Schwarz K. Impaired intravenous glucose tolerance as an early sign of dietarynecrotic liver degeneration. Arch Biochem Biophys,1955,58(2):504-506.
    [102] Schwarz K, Mertz W. Chromium(III) and the glucose tolerance factor. Arch Biochem Biophys,1959,85:292-295.
    [103] Evans G W, Roginski E E, Mertz W. Interaction of the glucose tolerance factor (GTF) withinsulin. Biochemical and Biophysical Research Communications,1973,50(3):718-722.
    [104] Anderson R A. Chromium, glucose intolerance and diabetes. Journal of the American Collegeof Nutrition,1998,17(6):548-555.
    [105] Sano H, Mowat D N, Ball R O, et al. Effect of supplemental chromium on whole-bodykinetics of glucose, lactate, and propionate in rams fed a high grain diet. ComparativeBiochemistry and Physiology Part B: Biochemistry and Molecular Biology,1997,118(1):117-121.
    [106] Anderson R A, Cheng N, Bryden N A, et al. Elevated intakes of supplemental chromiumimprove glucose and insulin variables in individuals with type2diabetes. Diabetes,1997,46(11):1786-1791.
    [107] Shinde U A, Sharma G, Xu Y J, et al. Insulin sensitising action of chromium picolinate invarious experimental models of diabetes mellitus. Journal of Trace Elements in Medicine andBiology,2004,18(1):23-32.
    [108] Kim D S, Kim T W, Kang J S. Chromium picolinate supplementation improves insulinsensitivity in Goto-Kakizaki diabetic rats. Journal of Trace Elements in Medicine and Biology,2004,17(4):243-247.
    [109] Martin J, Wang Z Q, Zhang X H, et al. Chromium picolinate supplementation attenuates bodyweight gain and increases insulin sensitivity in subjects with type2diabetes. DiabetesCare,2006,29(8):1826-1832.
    [110] Jain S K, Rains J L, Croad J L. Effect of chromium niacinate and chromium picolinatesupplementation on lipid peroxidation, TNF-alpha, IL-6, CRP, glycated hemoglobin,triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free RadicBiol Med,2007,43(8):1124-1131.
    [111] Votava H J, Hahn C J, Evans G W. Isolation and partial characterization of a51Cr complexfrom Brewers' yeast. Biochem Biophys Res Commun,1973,55(2):312-319.
    [112] Liu L, Jin W, Lv J P. Oral administration of the high-chromium yeast improve blood plasmavariables and pancreatic islet tissue in diabetic mice. Biol Trace Elem Res,2010,138(1-3):250-264.
    [113] Krol E, Krejpcio Z, Byks H, et al. Effects of chromium brewer's yeast supplementation onbody mass, blood carbohydrates, and lipids and minerals in type2diabetic patients. Biol TraceElem Res,2011,143(2):726-737.
    [114] Liu J, Bao W, Jiang M, et al. Chromium, selenium, and zinc multimineral enriched yeastsupplementation ameliorates diabetes symptom in streptozocin-induced mice. Biol Trace ElemRes,2012,146(2):236-245.
    [115]陈强,李清禄,兰国政.烟酸铬(Ⅲ)的配位结构与生物活性关系[J].结构化学,2003,22(3):346-350.
    [116]滕冰,韩友文.铬(Ⅲ)螯合物的制备及相关性质鉴定[J].动物营养学报,2000,12(3):19-23.
    [117]金哲浩.烟酸铬对实验性糖尿病小鼠降血糖作用及其机制的研究[D].延边大学,2004.
    [118]金政,辛洪斌,金松竹,等.谷氨酸铬对实验性糖尿病小鼠血糖水平的影响[J].延边大学医学学报,2002(1):11-13.
    [119] Yang X, Palanichamy K, Ontko A C, et al. A newly synthetic chromium complex-chromium(phenylalanine)3improves insulin responsiveness and reduces whole body glucosetolerance. FEBS Lett,2005,579(6):1458-1464.
    [120]吴扬,胡志和,郭嘉,等.乳铁蛋白铬对实验性糖尿病小鼠血糖水平的影响[J].食品科学,2010(13):253-258.
    [121]王秀丽,刘安军,李琨,等.胶原蛋白多肽-铬(Ⅲ)螯合物的降血糖机理探讨[J].食品研究与开发,2006(5):125-126.
    [122]张国蓉,张旭,张程,等.胶原蛋白多肽-铬(Ⅲ)螯合物提高糖尿病小鼠免疫功能的研究[J].现代食品科技,2009(4):358-361.
    [123] Vincent J B. Mechanisms of chromium action: low-molecular-weight chromium-bindingsubstance. Journal of the American College of Nutrition,1999,18(1):6-12.
    [124] Pu D, Vincent J B, Cassady C J. The effects of chromium (III) coordination on the dissociationof acidic peptides. Journal of Mass Spectrometry,2008,43(6):773-781.
    [125]陈秀敏,傅德贤,欧阳藩.魔芋葡甘露寡糖铬(Ⅲ)络合物的制备及其对小鼠血糖的影响[J].中国生化药物杂志,2003(1):1-3.
    [126]张磊,曹毓,彭龙玲,等.海藻多糖铬络合物降糖作用的实验研究[J].四川生理科学杂志,2002(2):69-71.
    [127]邓毅,尹龙萍,赵爱华,等.黄芪多糖铬络合物的合成及其降血糖活性的初步研究[J].食品科学,2007(6):317-321.
    [128]曲婉秋,唐晓琳,王秀武.壳寡糖螯合铬对糖尿病小鼠降血糖作用的研究[J].天然产物研究与开发,2012(5):605-609.
    [129]金英锦,文香兰,李善花,等.葡萄糖酸铬对实验性糖尿病小白鼠胰岛β细胞影响的超微结构观察[J].微量元素与健康研究,2001(1):7-8.
    [130]李善花,尹哲洙,文香兰,等.葡萄糖酸铬对实验性糖尿病小鼠肝PAS反应的影响[J].微量元素与健康研究,2005(3):7-8.
    [131]文香兰,李善花,金英锦,等.葡萄糖酸铬对实验性糖尿病小鼠胰岛影响的免疫组织化学观察[J].微量元素与健康研究,2000(3):10-11.
    [132] Li F, Wu X, Zhao T, et al. Anti-diabetic properties of chromium citrate complex inalloxan-induced diabetic rats. Journal of Trace Elements in Medicine and Biology,2011,25(4):218-224.
    [133] Li F, Wu X, Zou Y, et al. Comparing anti-hyperglycemic activity and acute oral toxicity ofthree different trivalent chromium complexes in mice. Food Chem Toxicol,2012,50(5):1623-1631.
    [134] Sun Y, Clodfelder B J, Shute A A, et al. The biomimetic [Cr3O(O2CCH2CH3)6(H+2O)3]decreases plasma insulin, cholesterol, and triglycerides in healthy and type II diabetic rats butnot type I diabetic rats. J Biol Inorg Chem,2002,7(7-8):852-862.
    [135]韩长城,郭惠芳,于庆海.富铬豆浆对糖尿病大鼠血糖及血脂的影响[J].卫生研究,2003(5):484-487.
    [136]刘颖,蒋宝泉,孙海岚.富铬复合营养酸奶对糖尿病大鼠降血糖效应的研究[J].肠外与肠内营养,2007(2):87-91.
    [137]陈巧,刘颖,蒋宝泉,等.富铬复合营养酸奶对糖尿病模型大鼠胰岛结构及功能的保护作用[J].食品科学,2008(12):668-671.
    [138]王亚东,王海玉,李立,等.含铬、蜂胶奶粉对实验性糖尿病小鼠的降血糖作用[J].中国卫生检验杂志,2010(4):775-776.
    [139]方朝晖,王学林,陈金林,等.富铬松花粉胶囊辅助治疗2型糖尿病临床研究[J].中医药临床杂志,2011(8):684-685.
    [140]吴扬,胡志和.铬及铬络合物与糖尿病的关系研究进展[J].食品科学,2008(12):774-779.
    [141] Yamamoto A, Wada O, Ono T. Distribution and chromium-binding capacity of alow-molecular-weight, chromium-binding substance in mice. J Inorg Biochem,1984,22(2):91-102.
    [142] Wada O, Manabe S, Yamaguchi N, et al. Low-molecular-weight, chromium-binding substancein rat lungs and its possible role in chromium movement. Ind Health,1983,21(1):35-41.
    [143] Van Bruwaene R, Gerber G B, Kirchmann R, et al. Metabolism of51Cr,54Mn,59Fe and60Co inlactating dairy cows. Health Phys,1984,46(5):1069-1082.
    [144] Katz S A, Salem H. The toxicology of chromium with respect to its chemical speciation: areview. Journal of Applied Toxicology,2006,13(3):217-224.
    [145] Stearns D M, Wise J S, Patierno S R, et al. Chromium(III) picolinate produces chromosomedamage in Chinese hamster ovary cells. FASEB J,1995,9(15):1643-1648.
    [146] Manygoats K R, Yazzie M, Stearns D M. Ultrastructural damage in chromiumpicolinate-treated cells: a TEM study. Transmission electron microscopy. J Biol Inorg Chem,2002,7(7-8):791-798.
    [147] Bagchi D, Stohs S J, Downs B W, et al. Cytotoxicity and oxidative mechanisms of differentforms of chromium. Toxicology,2002,180(1):5-22.
    [148] Stout M D, Nyska A, Collins B J, et al. Chronic toxicity and carcinogenicity studies ofchromium picolinate monohydrate administered in feed to F344/N rats and B6C3F1mice for2years. Food Chem Toxicol,2009,47(4):729-733.
    [149] Kato I, Vogelman J H, Dilman V, et al. Effect of supplementation with chromium picolinateon antibody titers to5-hydroxymethyl uracil. Eur J Epidemiol,1998,14(6):621-626.
    [150] Langerwerf J, Bakkeren H A, Jongen W. A comparison of the mutagenicity of soluble trivalentchromium compounds with that of potassium chromate. Ecotoxicology and environmentalsafety,1985,9(1):92-100.
    [151] Lamson D W, Plaza S M. The safety and efficacy of high-dose chromium. Altern Med Rev,2002,7(3):218-235.
    [152] Berner T O, Murphy M M, Slesinski R. Determining the safety of chromium tripicolinate foraddition to foods as a nutrient supplement. Food Chem Toxicol,2004,42(6):1029-1042.
    [153] Hooper L V, Gordon J I. Commensal host-bacterial relationships in the gut. Science,2001,292(5519):1115-1118.
    [154] Guarner F, Malagelada J R. Gut flora in health and disease. Lancet,2003,361(9356):512-519.
    [155] Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature,2011,473(7346):174-180.
    [156] Cummings J H, Macfarlane G T. Role of intestinal bacteria in nutrient metabolism. ClinicalNutrition,1997,16(1):3-11.
    [157] Nishio J, Honda K. Immunoregulation by the gut microbiota. Cellular and Molecular LifeSciences,2012,69(21):3635-3650.
    [158]韩晓云,邓红,蔡艳,等.肠道微生物与慢性病[J].中国微生态学杂志,2009(11):1039-1042.
    [159]王子恺,杨云生.肠道微生物与人类疾病[J].解放军医学杂志,2012(12):1168-1176.
    [160] Jia W, Li H, Zhao L, et al. Gut microbiota: a potential new territory for drug targeting. NatRev Drug Discov,2008,7(2):123-129.
    [161] Erol A. Insulin resistance is an evolutionarily conserved physiological mechanism at thecellular level for protection against increased oxidative stress. Bioessays,2007,29(8):811-818.
    [162]肖党生,王招娣,杨云梅,等.糖尿病患者肠道菌群研究[J].中国微生态学杂志,2006(4):275-276.
    [163]黄旭东,郑晓鹏,郑赵利.2型糖尿病患者肠道菌群的研究[J].河北医学,2011(8):1041-1043.
    [164] Cani P D, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolicendotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice.Diabetes,2008,57(6):1470-1481.
    [165] Cani P D, Delzenne N M. Gut microflora as a target for energy and metabolic homeostasis.Curr Opin Clin Nutr Metab Care,2007,10(6):729-734.
    [166] Cani P D, Neyrinck A M, Fava F, et al. Selective increases of bifidobacteria in gut microfloraimprove high-fat-diet-induced diabetes in mice through a mechanism associated withendotoxaemia. Diabetologia,2007,50(11):2374-2383.
    [167] Cani P D, Delzenne N M. The role of the gut microbiota in energy metabolism and metabolicdisease. Current pharmaceutical design,2009,15(13):1546-1558.
    [168] Cani P D, Delzenne N M, Amar J, et al. Role of gut microflora in the development of obesityand insulin resistance following high-fat diet feeding. Pathol Biol (Paris),2008,56(5):305-309.
    [169] Larsen N, Vogensen F K, van den Berg F W, et al. Gut microbiota in human adults with type2diabetes differs from non-diabetic adults. PLoS One,2010,5(2):e9085.
    [170] Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type2diabetes. Nature,2012,490(7418):55-60.
    [171] Mulder S J. Bacteria of food and human intestine are the most possible sources of thegad-trigger of type1diabetes. Med Hypotheses,2005,65(2):308-311.
    [172] Wen L, Ley R E, Volchkov P Y, et al. Innate immunity and intestinal microbiota in thedevelopment of Type1diabetes. Nature,2008,455(7216):1109-1113.
    [173] Murri M, Leiva I, Gomez-Zumaquero J M, et al. Gut microbiota in children with type1diabetes differs from that in healthy children: a case-control study. BMC Med,2013,11(1):46.
    [174]闵力,刘立恒,许兰娇,等.功能性寡糖的研究进展[J].饲料研究,2012(9):18-22.
    [175] Tokunaga T, Oku T, Hosoya N. Utilization and excretion of a new sweetener,fructooligosaccharide (Neosugar), in rats. The Journal of Nutrition,1989,119(4):553-559.
    [176] Tokunaga T, Nakada Y, Tashiro Y, et al. Effects of fructooligosaccharides intake on theintestinal microflora and defecation in healthy volunteers. Bifidus-Flores, Fructus et Semina,1993,6(2):143-150.
    [177] Rycroft C E, Jones M R, Gibson G R, et al. A comparative in vitro evaluation of thefermentation properties of prebiotic oligosaccharides. J Appl Microbiol,2001,91(5):878-887.
    [178] Vernazza C L, Gibson G R, Rastall R A. In vitro fermentation of chitosan derivatives bymixed cultures of human faecal bacteria. Carbohydrate Polymers,2005,60(4):539-545.
    [179] Ramnani P, Chitarrari R, Tuohy K, et al. In vitro fermentation and prebiotic potential of novellow molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe,2012,18(1):1-6.
    [180] Olano-Martin E, Mountzouris K C, Gibson G R, et al. In vitro fermentability of dextran,oligodextran and maltodextrin by human gut bacteria. British Journal of Nutrition,2000,83(3):247-255.
    [181] Velázquez M, Davies C, Marett R, et al. Effect of Oligosaccharides and Fibre Substitutes onShort-chain Fatty Acid Production by Human Faecal Microflora. Anaerobe,2000,6(2):87-92.
    [182] Grootaert C, Van den Abbeele P, Marzorati M, et al. Comparison of prebiotic effects ofarabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbialecosystem. FEMS Microbiol Ecol,2009,69(2):231-242.
    [183]李淼,张晓楠,马莲菊,等.褐藻胶寡糖对双歧杆菌体外生长影响的研究[J].食品研究与开发,2008(11):16-19.
    [184] Wang Y, Han F, Hu B, et al. In vivo prebiotic properties of alginate oligosaccharides preparedthrough enzymatic hydrolysis of alginate. Nutrition Research,2006,26(11):597-603.
    [185] Terada A, Hara H, Mitsuoka T. Effect of dietary alginate on the faecal microbiota and faecalmetabolic activity in humans. Microbial ecology in health and disease,1995,8(6):259-266.
    [186] Dove A. The bittersweet promise of glycobiology. Nat Biotechnol,2001,19(10):913-917.
    [187]于广利,赵峡.糖药物学[M].第一版.青岛:中国海洋大学出版社,2012.
    [188]罗祖友,胡筱波,吴谋成.植物多糖的降血糖与降血脂作用[J].食品科学,2007(10):596-600.
    [189]张云峰,姬胜利.糖类及其衍生物的抗肿瘤作用[J].生命的化学,2008(1):26-28.
    [190]钟剑霞,谢苗,甘纯玑.海藻硫酸酯多糖抗HIV活性的研究现状与展望[J].中国药学杂志,2002(12):6-9.
    [191]张赛金,李文权,蔡明刚.海藻硫酸多糖及其抗HIV-1活性[J].海洋科学,2003(8):16-19.
    [192] Nakano M, Nakashima H, Itoh Y. Anti-human immunodeficiency virus activity ofoligosaccharides from rooibos tea (Aspalathus linearis) extracts in vitro. Leukemia,1997,11Suppl3:128-130.
    [193] Wang S, Li J, Xia W, et al. A marine-derived acidic oligosaccharide sugar chain specificallyinhibits neuronal cell injury mediated by beta-amyloid-induced astrocyte activation in vitro.Neurol Res,2007,29(1):96-102.
    [194]杜晓光,耿美玉.糖类药物[J].生命科学,2011(7):671-677.
    [195] Liu B, Liu W, Han B, et al. Antidiabetic effects of chitooligosaccharides on pancreatic isletcells in streptozotocin-induced diabetic rats. World journal of Gastroenterology,2007,13(5):725.
    [196]鞠传霞.壳寡糖抗2型糖尿病的作用及机制[D].青岛大学,2011.
    [197]王雪松,郑芸,方积年.降血糖多糖及寡糖的研究进展[J].药学学报,2004(12):1028-1033.
    [198] Mertz W. Chromium: History and nutritional importance. Biological trace element research,1992,32(1):3-8.
    [199] Levina A, Codd R, Dillon C T, et al. Chromium in biology: toxicology and nutritional aspects.Progress in inorganic chemistry,2003,51:145-250.
    [200] Mertz W. Chromium and its relation to carbohydrate metabolism. Med. Clin. North Am.;(United States),1976,60(4):739-744.
    [201] Anderson R A. Chromium as an essential nutrient for humans. Regulatory Toxicology andPharmacology,1997,26(1): S35-S41.
    [202]文香兰,李善花,王启伟,等.葡萄糖酸铬对糖尿病小鼠血糖水平的影响[J].微量元素与健康研究,2000(4):1-2.
    [203]李善花,尹哲洙,文香兰,等.葡萄糖酸铬对实验性糖尿病小鼠肝PAS反应的影响[J].微量元素与健康研究,2005(3):7-8.
    [204]王剑.水溶性低分子量壳聚糖及其衍生物对糖尿病大鼠血糖的影响[D].中国海洋大学,2010.
    [205]赵峡,于广利,管华诗,李广生,具有抗II型糖尿病活性的海洋寡糖化合物及制备方法,中国发明专利,专利号:ZL2009101777100,授权日2012年。
    [206]于广利,赵峡,管华诗,郝杰杰,一种具有防治胰岛素抵抗作用的海洋寡糖铬配合物,中国发明专利,专利号:ZL2009101777115,授权日2011年。
    [1] Gombotz W R, Wee S F. Protein release from alginate matrices. Advanced drug delivery reviews,1998,31(3):267-285.
    [2]纪明侯.海藻化学[M].北京:科学出版社,1997.208-233.
    [3]张真庆,江晓路,管华诗.寡糖的生物活性及海洋性寡糖的潜在应用价值[J].中国海洋药物,2003(3):51-56.
    [4]王媛媛,郭文斌,王淑芳,等.褐藻寡糖的生物活性与应用研究进展[J].食品与发酵工业,2010(10):122-126.
    [5]祝玲,程璐,蔡俊鹏.褐藻胶寡糖潜在药用价值的研究进展[J].中药材,2006(9):993-996.
    [6] Anderson R A. Chromium, glucose intolerance and diabetes. Journal of the American College ofNutrition,1998,17(6):548-555.
    [7]郝翠.系列海洋寡糖衍生物的制备及其抗2型糖尿病作用机理研究[D].中国海洋大学,2011.
    [8] Ikeda A, Takemura A, Ono H. Preparation of low-molecular weight alginic acid by acidhydrolysis. Carbohydrate Polymers,2000,42(4):421-425.
    [9]王金霞,赵峡,于广利,等.柱前衍生高效液相色谱法分析海洋褐藻多糖药物的糖醛酸组成[J].分析化学,2009(2):648-652.
    [10]马定远,胡卓逸,等.柱前衍生化高效液相色谱法分析多糖中的单糖组成[J].分析化学,2002,30(6):702-705.
    [11]王金霞.海洋褐藻多糖药物的微量分析方法研究[D].中国海洋大学,2009.
    [12]宋为丽,王敏,艾中元,等.石墨炉原子吸收光谱法测定尿中铬的方法改进[J].中国工业医学杂志,2008(5):328-329.
    [13]赵峡,苗辉,范慧红,等.用GPC法测定硫酸多糖911的分子量和分子量分布[J].青岛海洋大学学报(自然科学版),2000(4):623-626.
    [14]刘拥军,栾杨,王秀丽.藻酸双酯钠分子量及其分布的测定[J].中国医药工业杂志,2005(2):33-34.
    [15]于广利,迟连利,管华诗,等. PAGE在海洋酸性寡糖分析中的应用[J].中国海洋药物,2001(3):7-11.
    [16] Sudut G S C L, Othman Z, Al-Assaf S, et al. Molecular characterisation of sago starch usinggel permeation chromatography multi-angle laser light scattering. Sains Malaysiana,2010,39(6):969-973.
    [17] Viebke C, Borgstr O M J, Piculell L. Characterisation of kappa-and iota-carrageenan coils andhelices by MALLS/GPC. Carbohydrate polymers,1995,27(2):145-154.
    [18] Haug A, Larsen B O R, Smidsr O D O. A study of the constitution of alginic acid by partial acidhydrolysis. Acta Chem. Scand,1966,20(1):183-190.
    [19] Haug A, Larsen B R, Smidsrod O. Studies on the sequence of uronic acid residues in alginicacid. Acta Chem. Scand,1967,21(3):691-704.
    [20]赵峡.聚古罗糖醛酸硫酸酯及其寡糖的制备、结构与活性研究[D].中国海洋大学,2007.
    [21]胡春霞.功能配合物的合成及相关性能研究[D].曲阜师范大学,2001.
    [22] Grasdalen H, Larsen B, Smisrod O.13C-n.m.r. studies of monomeric composition and sequencein alginate. Carbohydrate Research,1981,89(2):179-191.
    [23]赵珊,许加超,付晓婷,等.褐藻寡糖分子量测定方法的研究[J].食品工业科技,2011(12):486-488.
    [1]崔福德.药剂学[M].第六版.北京:人民卫生出版社,2008.
    [2]刘金茂.胶囊剂的特点及质量控制[J].中国药房,1991(2):43.
    [3]唐国胜.中药硬胶囊剂的制备[J].时珍国药研究,1998(3):77.
    [4]林颖,黄琳娟,田庚元.一种改良的糖醛酸含量测定方法[J].中草药,1999(11):817-819.
    [1] Epstein F H, Johnson K H, O'Brien T D, et al. Islet amyloid, islet-amyloid polypeptide, and diabetesmellitus. New England Journal of Medicine,1989,321(8):513-518.
    [2]赵明.胰淀素研究进展[J].医学研究生学报,2003(7):550-552.
    [3]郝翠.系列海洋寡糖衍生物的制备及其抗2型糖尿病作用机理研究[D].中国海洋大学,2011.
    [4]郭啸华,刘志红,李恒,等.高糖高脂饮食诱导的2型糖尿病大鼠模型及其肾病特点[J].中国糖尿病杂志,2002(5):35-39.
    [5]苗明三,张桂兰,苗艳艳,等.玉米须总皂苷对大鼠糖尿病模型肾脏和胰脏超微结构的影响[J].中国中药杂志,2008(10).
    [1] Cder F. Guidance for industry: single dose acute toxicity testing for pharmaceuticals.1996.
    [2]国家食品药品监督管理局.化学药物急性毒性试验技术指导原则.2005.
    [3] Wang J, Zhao H, Zheng Y, et al. Monoclonal Antibodies to Sea Cucumber Polysaccharide and TheirUse in a Sandwich ELISA Assay. Hybridoma,2011,30(4):381-385.
    [4] Irhimeh M R, Fitton J H, Lowenthal R M, et al. A quantitative method to detect fucoidan in humanplasma using a novel antibody. Methods and findings in experimental and clinical pharmacology,2005,27(10):705-710.
    [5] Laznicek M, Laznickova A, Cozikova D, et al. Preclinical pharmacokinetics of radiolabelledhyaluronan. Pharmacol Rep,2012,64(2):428-437.
    [6] Mischke R, Schmitt J, Wolken S, et al. Pharmacokinetics of the low molecular weight heparindalteparin in cats. The Veterinary Journal,2012,192(3):299-303.
    [7] Toyoda H, Nagashima T, Hirata R, et al. Sensitive high-performance liquid chromatographic methodwith fluorometric detection for the determination of heparin and heparan sulfate in biologicalsamples: application to human urinary heparan sulfate. Journal of Chromatography B: BiomedicalSciences and Applications,1997,704(1):19-24.
    [8]吕志华.海洋多糖药物PS916的荧光标记及其药代动力学研究[D].中国山东济南:中国海洋大学,2008.
    [9] Sun S, Zhao X, Li G, et al. Microanalysis of oligosaccharide HS203in beagle dog plasma bypostcolumn fluorescence derivatization method. Carbohydrate Polymers,2012(89):661-666.
    [10]刘睿,谢跃生,潘桂湘,等.药物血浆蛋白结合率测定方法的研究进展[J].天津中医药,2007(6):526-528.
    [11]郝琨,柳晓泉,王广基.临床前毒代动力学研究进展[J].中国药科大学学报,2004(3):1-5.
    [12]孙淑萌. Beagle犬血清中HS203的微量分析及初步药代动力学研究[D].中国海洋大学,2012.
    [1] Nishio J, Honda K. Immunoregulation by the gut microbiota. Cellular and Molecular LifeSciences,2012:1-16.
    [2]韩晓云,邓红,蔡艳,等.肠道微生物与慢性病[J].中国微生态学杂志,2009(11):1039-1042.
    [3]王子恺,杨云生.肠道微生物与人类疾病[J].解放军医学杂志,2012(12):1168-1176.
    [4] Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type2diabetes.Nature,2012.
    [5] Tokunaga T, Nakada Y, Tashiro Y, et al. Effects of fructooligosaccharides intake on the intestinalmicroflora and defecation in healthy volunteers. Bifidus-Flores, Fructus etSemina,1993,6(2):143-150.
    [6] Rycroft C E, Jones M R, Gibson G R, et al. A comparative in vitro evaluation of the fermentationproperties of prebiotic oligosaccharides. J Appl Microbiol,2001,91(5):878-887.
    [7] Wang Y, Han F, Hu B, et al. In vivo prebiotic properties of alginate oligosaccharides preparedthrough enzymatic hydrolysis of alginate. Nutrition Research,2006,26(11):597-603.
    [8] Terada A, Hara H, Mitsuoka T. Effect of dietary alginate on the faecal microbiota and faecalmetabolic activity in humans. Microbial ecology in health and disease,1995,8(6):259-266.
    [9] Child M W, Kennedy A, Walker A W, et al. Studies on the effect of system retention time onbacterial populations colonizing a three-stage continuous culture model of the human large gut usingFISH techniques. FEMS microbiology ecology,2006,55(2):299-310.
    [10]焦广玲,于广利,赵峡.几种寡糖和单糖在不同展开体系中的薄层色谱行为.中国生化药物杂志,2007(6):372-374.
    [11]黄庆生,王加启.16S rRNA/rDNA序列分析技术在瘤胃细菌微生态系统研究中的应用.中国畜牧兽医,2003,30(1):7-11.
    [12] Smit E, Leeflang P, Wernars K. Detection of shifts in microbial community structure and diversity insoil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMSMicrobiology Ecology,1997,23(3):249-261.
    [13]吴少慧,张成刚. RAPD技术在微生物生物多样鉴定中的应用.微生物学杂志,2000,20(2):44-47.
    [14]刘博婷. ERIC-PCR的研究进展.畜牧与饲料科学,2010(8):49-51.
    [15]鲁海峰,魏桂芳,李仲逵,等. ERIC-PCR分子杂交技术分析大熊猫肠道菌群结构.中国微生态学杂志,2005(2):81-84.
    [16] Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) andtemperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie vanLeeuwenhoek,1998,73(1):127-141.
    [17] Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinionin Microbiology,1999,2(3):317-322.
    [18] Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes codingfor16S rRNA. Applied and environmental microbiology,1993,59(3):695-700.
    [19] Don R H, Cox P T, Wainwright B J, et al.'Touchdown'PCR to circumvent spurious priming duringgene amplification. Nucleic Acids Research,1991,19(14):4008.
    [20] Thompson J R, Marcelino L A, Polz M F. Heteroduplexes in mixed-template amplifications:formation, consequence and elimination by ‘reconditioning PCR’. Nucleic AcidsResearch,2002,30(9):2083-2088.
    [21]徐运杰,方热军,戴求仲.短链脂肪酸的营养生理作用.饲料研究,2007(8):26-28.
    [22]刘小华,李舒梅,熊跃玲.短链脂肪酸对肠道功效及其机制的研究进展.肠外与肠内营养,2012(1):56-58.
    [23] Olano-Martin E, Mountzouris K C, Gibson G R, et al. In vitro fermentability of dextran oligodextranand maltodextrin by human gut bacteria. British Journal of Nutrition,2000,83(3):247-255.
    [24] Yu Z, Morrison M. Comparisons of different hypervariable regions of rrs genes for use infingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. ApplEnviron Microbiol,2004,70(8):4800-4806.
    [25]李亚丹,任宏伟,吴彦彬,等.拟杆菌与肠道微生态.微生物学通报,2008(2):281-285.
    [26] Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fatstorage. Science Signalling,2004,101(44):15718.
    [27] Chassard C, Delmas E, Lawson P A, et al. Bacteroides xylanisolvens sp. nov., a xylan-degradingbacterium isolated from human faeces. Int J Syst Evol Microbiol,2008,58(Pt4):1008-1013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700