用户名: 密码: 验证码:
浅层稠油油藏低电阻成因机理研究与识别方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在准噶尔盆地西北缘九区南部齐古组稠油油藏滚动勘探、开发过程中,发现有些低于油层电测井解释标准的储层在取芯井中有稠油显示,经试油这些储集层具有很好的产能,经进一步研究与验证,确定了研究区内存在浅层低电阻稠油油藏(层)。
     本论文依据研究区浅层低电阻稠油油藏成藏背景及油藏特点,以沉积学、储层地质学、岩石物理学和测井物理学等理论为基础,结合岩心测试分析和试油、试采等生产动态信息,从宏观上分析研究了区内齐古组J3q3层储集层沉积、微幅度构造、成藏模式等因素对稠油低电阻油藏(层)的形成与分布的控制作用;从微观上分析研究了储层岩石特征、粘土矿物、导电矿物、孔隙结构、孔隙类型等因素对形成稠油低电阻油藏(层)的影响;同时对储集层中束缚水饱和度、地层水矿化度、原油粘度等因素在形成稠油低电阻油藏(层)中的作用进行分析研究。
     研究结果表明,九区南齐古组浅层稠油低电阻油藏(层)的形成主要受粘土附加导电性、高含水饱和度、导电矿物、含油性及原油粘度等因素的影响。①油藏处在盆地边缘斜坡上的辫状河三角洲平原亚相和前缘亚相,岩性较细,岩石分选较差,泥质含量增加,粘土矿物发育,粘土附加导电能力增强,从而形成低电阻率油层;②宏观上齐古组油藏是在单斜、低幅度构造背景上形成的次生浅层稠油油藏,构造对油水分布控制较弱,油水过度带较宽,导致次生成藏过程中地层水被驱替不彻底,造成储层含水饱和度较高,从而降低了储层电阻率;③储层在成岩阶段及成岩后还原环境下自生黄铁矿普遍发育,也是导致浅层稠油油藏低电阻油藏(层)形成的一个主要因素;④由于油藏埋藏浅及断裂发育,地层温度低,储集层内原油受淋滤氧化、微生物降解作用强烈,普遍形成高粘度稠油油藏,导致稠油油层电阻率偏高,但在远离断裂或封闭性较好的区块内原油稠变作用较弱,原油粘度较低,则形成相对较低电阻率稠油油层。
     为充分利用已有测井资料和便于在老井区内对稠油低电阻油层进行复查,本论文利用九区南综合测井数据、试油试井及生产动态资料建立九区南齐古组稠油低电阻油层的测井解释模型,重新确定油水层解释标准;认识到密度测井是稠油低电阻油层识别的另一个重要参数;提出定性、半定量识别方法;对该区稠油低电阻油藏(层)在区内的平面上和垂向上的分布特征进行研究并做出预测。
     通过以上研究,解决了困扰九区南稠油油藏滚动开发后备产能不足的地质难题,为九区南部的滚动开发提供新的认识和拓宽了找油思路。同时,为在九区内部老井区齐古组及其它层系进行低电阻率稠油油层的重新评价和复查提供可靠的理论依据和有效方法。这一研究成果应用于油田生产实践,使油层判别下限标准从28Ω·m降低到13Ω·m,大大地解放了油层,新增含油面积10.2km~2,新增探明储量1500×10~4t,取得了巨大经济效益和社会效益。
The ongoing exploration in the Jiuqunan Qigu Formation heavy-oil reservoir, which is located at the Karamay Oilfield in the northwestern margin of the Jungger Basin, revealed that heavy-oil occurs in some pays collected from drilling core, which is of lower logging resistivity than interpretation standard for poor oil-bearing reservoirs. Analysis indicates that they are of the potential of oil reservoir, and further research also confirms the occurrence of shallow low resistivity pay zones in the studied area.
     Based on the forming characteristics and settings of shallow heavy-oil reservoirs, and combined with sedimentology, geology, lithological and logging physics, well test, production test and core experiment: from the macroscopic view, this dissertation analyzed sedimentation of the Qigu Formation J3q3 reservior pays and the control factors including reservoir sediment, micro-amplitude structure and reservoir model and their control on the formation and distribution of heavy oil low resistivity pay zone; from the microscopic view, it also discussed the influencing factors as characteristic of reservoir rock, clay minerals, conductivity minerals, pore texture and type; and analysed the influence of the bound water saturation, salinity of stratum water and oil viscosity.
     The results shows that low resistivity heavy oil reservoirs in the Jiuqunan Qigu Formation are mainly controlled by the additive electric conductivities of clay, high water saturation, conductivity minerals(pyrite), and oil viscosity.①the reservoir locate in foreland subfacies and flatland subfacies of braided channel delta, its rock is fine and contains more clay minerals, enhance the ability of clay additional conducting, result in the lowing of resistivity;②the reservoir is a secondary shallow heavy-oil reservoir, and locate in a low amplitude structure area, result in high stratum water content and high water saturation, result in the lowing of resistivity;③a large number of authigenic pyrites formed in diagenetic stage and later is an important factor of forming the lowing of resistivity;④high viscosity heavy-oil lead to high resistivity, in the area of low viscosity forming a relatively low resistivity heavy-oil reservoir.
     For using existing logging-data and easy to find the low resistivity heavy-oil reservoir in other oil fileds, this paper rebuilt the model of logging interpretation with Jiuqunan general logging-data, well test data and production test data. Confirmed DEN is an important parameter to identify the low resistivity heavy-oil pay. Provied quantitative and semi-quantitative identify methods. Researched and predicated the distribution of low resistivity heavy-oil pay in vertical and plane in Jiuqunan area.
     The above study solved the geological problems of shorting heavy oil production capacity in rolling development and broaden the idea of looking for heavy-oil in Jiuqunan. Provided new reliable theoretical basis and effective methods to evaluate low resistivity heavy-oil pay in adjacent area. The research applied to the production of oil field, so that the low limit RT standard of oil discriminant from 28Ω·m down to 13Ω·m, added oil-bearing area 10.2km~2, added proved reserves 1500×10~4t, has made great economic and social benefits.
引文
[1]欧阳健.加强目标区块岩石物理研究提高测井识别评价油层能力.中国石油勘探,2001,6(1):24-30
    [2]中国石油勘探与生产公司.低阻油气藏测井识别评价方法与技术.北京:石油工业出版社,2006.7
    [3]曾文冲.低电阻率油气层的类型、成因及评价方法.地球物理测井,1991, 15(1): 6-12
    [4]赵发展.准噶尔盆地低阻油藏实验研究及其储层评价方法:[博士学位论文].北京:中国科学院地质与地球物理研究所,2005.6
    [5]胡俊.低电阻率油气层测井精细解释方法研究与应用:[博士学位论文].四川:西南石油学院,1999.5
    [6]梁春秀.松辽盆地南部低阻油层形成机理与定量评价:[博士学位论文].四川:成都理工大学,2003.6
    [7]穆龙新,田中元,赵丽敏.A油田低电阻率油层的机理研究.石油学报,2004,25(2):69-73.
    [8]贾建明、王军峰、杨玲,等.胡状集油田低电阻率油层的研究与应用.西南石油学院学报,2003,25(4):13-15.
    [9]康志永.低电阻油层成因及其研究方法-以辽河油田为例.新疆石油地质,1997,18(4):380-384
    [10]李林祥、傅强、窦之林,等.孤东油田低阻油层的特征.成都理工学院学报,2001,28(4):402-404
    [11]赵军、宋帆.塔里木盆地低电阻率油层成因与评价.地球科学,2004,29(3):317-322
    [12]胡英杰、冯启宁,毛志强.吉林油田低阻油气层岩心实验研究与解释.河南石油,2001.15(1):7-9
    [13]陈清华、孙述鹏、李琴.孤东油田东营组低阻油层成因分析.石油大学学报(自然科学版),2004,28(3):9-12
    [14]朱家俊.济阳坳陷低电阻率油层的微观机理及地质成因.石油学报,2006,27(6):43-46
    [15]陈学义、魏斌.辽河油田滩海地区低阻油层成因及精细解释.测井技术,2000,24(1):55-59. (1):6~12
    [16]潘和平,黄坚.低电阻率油气层测井评价.勘探地球物理进展,2002,25 (6):11~18
    [17]过洪波.对克拉玛依风城区低电阻率稠油层的认识.新疆石油地质, 1994,15 (2):179~183
    [18]霍进、刘顺生.克拉玛依油田九区检230井区齐古组油藏探明储量计算及注蒸汽开发综合研究:[内部研究报告],2001.12
    [19]新疆勘探开发研究院.克拉玛依油田六、九区滚动勘探开发[内部研究报告],2003.3
    [20]新疆重油开发公司.克拉玛依油田九区南检230井区储层预测研究[内部研究报告], 2001.12
    [21]李军等.克拉玛依油田九区齐古组稠油油藏地质研究[内部研究报告],1996.3
    [22]李军、刘世英等.克拉玛依油田九区齐古组稠油探明储量复算报告[内部研究报告],1996.5
    [23]新疆油田公司勘探开发研究院.克拉玛依油田九5区检230井区块新增石油探明储量报告(内部研究报告),2001.10
    [24]新疆油田公司勘探开发研究院地物所.准噶尔盆地克拉玛依油田九区南开发三维地震精细解释(内部研究报告),2003.6
    [25]中国石油新疆油田分公司.克拉玛依油田九区检230井区齐古组油藏二次扩边开发方案(内部研究报告),2003.2
    [26]HAFNIUM(新港)石油开发公司.克拉玛依油田九区南部检271井区齐古组油藏评价井部署意见(内部研究报告),2002.6
    [27]张恺、陆克政、沈修志.石油构造地质学.北京:石油工业出版社,1985.10
    [28]董敏煜.地震勘探.北京:石油大学出版社,2000.12
    [29]师永民、霍进,张玉广.陆相油田开发中后期油藏精细描述.北京:石油工业出版社,2004.12
    [30]裘怿楠、陈子琪.油藏描述.北京:石油工业出版社,1996.9
    [31]Waxman, M.H. and Smits, L. J. M. : Electrical Conductivities in Oil-Bearing Shaly Sands ,Soc. Pet. Eng. J. (June, 1968),P.107-122.
    [32]Waxman, M.H. and Thomas, E.C. Electrical Conductivities in Oil-Bearing Shaly Sands- 1.The Relation Between Hydrocarbon Saturation and resistivity Index;11.The Temperature Coeficient of Electrical Conductivity, SPE Journal, No.14,p.213-225, February 1974
    [33]Hill, L.J., O.J. Shirley, and GE. Klein. Bound water in Shaly-Sands -Its Relation to Qv and Other Formation Properties.edited by M.H. Waxman and E.C. Thomas, The Log Analyst, vol. xx, no.3, 1979
    [34]Hill, H. J., and J. D. Millburn. Effect of Clay and Water Salininty onElectrochemical Behavior of Reservoir Rocks. Trans. AIME,1956,vol. 207,65-72
    [35]胡宗全、朱筱敏.准噶尔盆地西北缘侏罗系储层成岩作用及孔隙演化.石油大学学报(自然科学版,2002.26(3):16-19
    [36]赵杏媛,赵有瑜主编.粘土矿物与粘土矿物分析.海洋出版社,1990年
    [37]孙川生、彭顺龙.克拉玛依九区热采稠油油藏.北京:石油工业出版社,2000.10
    [38]刘文章.热采稠油油藏开发模式.北京:石油工业出版社,1998.7
    [39]耿全喜、钟兴水主编.油田开发测井技术.石油大学出版社,1992年
    [40]欧阳健、王贵文、吴继余,等.测井地质分析与油气层定量评价.北京:石油工业出版社,1999
    [41]王贵文、郭荣坤.测井地质学.北京:石油工业出版社,2000.11
    [42]姜恩承、曾花秀、孙宝佃.求解剩余油饱和度的测井方法和解释技术.水驱油田开发测井(96)国际学术讨论会论文集,北京:石油工业出版社,1996
    [43]王允诚.油气储层评价.北京:石油工业出版社,1999
    [44]孙家振、李兰斌等.多信息储层预测和油气判别(原理、方法与应用实例).武汉:中国地质大学出版社,1997.9
    [45]华东石油学院岩矿教研室.沉积岩石学.北京:石油工业出版社,1984.4
    [46]侯景儒、尹镇南、李维明,等.实用地质统计学.北京:地质出版社,1998.7
    [47]李汉林、赵永军.石油数学地质.北京:石油大学出版社,1998.5
    [48]Clavier, Coates, G., and Dumanoir, J.. The theoretical and experimental bases for the "Dual Water" model for the interpretation of shaly sands. SPE6859,1977
    [49]Chew W C, et al.. Diffraction of Ax symmetric Waves in a Borehole by Bed Boundary Discontinuities. Geophysics, 1989,49:1586-1596
    [50] Lin Y, Gianzero S and Strickland R. Inversion of Induction Logging Data Using the Least Squares Techniques. 25th SPWLA Annual Logging Symposium, Paper AA,New Orleans, June 10-13,1984
    [51] Whitman W W, Towle G H and Kim J H. Inversion of Normal and Lateral Well Logs with Borehole Compensation. The Log Analyst, 1989,
    [52]C.Skelt, B.Harrison, An Integrated Approach to Saturation Height Analysis, SPWLA 35th Symposium, 1995
    [53]D.P.Tobola, S.A.Holitch, Determination of Reservoir Permeability From RepeatedInduction Logging, SPE, March, 1991
    [54] Dussan V, Barbara Anderson and Francois Auzerais, Estimating Vertical Permeability From Resistivity Logs, SPWLA 35th Symposium, 1994
    [55]C.Y.Yao and S.A.Holitch, Reservoir Permeability Estimation From Time-Lapse Log Data, SPE Formation Evaluation, June, 1996
    [56]PAN Heping,WANG Jiaying, FAN Zhengjun.Low Resistivity Oil(gas)-bearing Reservoir Conductive Model.SCIENCE IN CHINA (Series D),2001,44(4):346-355
    [57]吴元燕、陈碧玉.油矿地质学.石油工业出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700