用户名: 密码: 验证码:
O_2/CO_2燃烧技术应用的经济可行性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在普遍要求节能减排的国际大背景下,作为新型燃烧技术的富氧燃烧技术受到了各个研究机构广泛的重视。本文针对富氧燃烧技术存在的优点和缺点,对其进行了综合全面的经济可行性分析,为其以后的实际应用提供了理论依据。
     文中应用工程热力学和传热学的相关原理对富氧燃烧机组各个设备的运行和能耗情况进行了定量的计算评估,包括锅炉本体、空分制氧系统、CO_2捕集系统和烟气脱硫系统等。并应用热力学成本估算方法,对锅炉本体的基建投资情况进行了估算,最后还应用技术经济学中的等额年度化分期偿还成本的原理,在考虑燃煤费用、运行维护费用和净输出功率的情况下,对机组进行综合性的经济性分析,很直观的描述了富氧燃烧技术的优劣性。此外,本文对锅炉改造、各设备的相关结构和运行流程也做了详细的介绍,使评估的内容更加完善。
     通过对各设备的全面分析,可以得出,富氧燃烧锅炉和烟气脱硫系统的效率比常规机组略有提高,但空分制氧系统和CO_2捕集系统消耗的大量能量又使机组的整体效率降低了很多,同时这些设备的基建投资也需要额外的大量增加。当把所有这些因素都综合到供电成本里时,可发现富氧燃烧机组的供电成本比常规机组是要高的,但减少了大量的CO_2排放,由此引起的环境收益也是不可估量的。总的来说,富氧燃烧技术的应用是可行的,在与其他CO_2减排技术的对比中,经济性是相对比较明显的,存在的优势也是比较大的。
On the background of the universal demand of energy saving and emission reduction, the oxy-fuel combustion technology, as a new burning technology, has received various research institutions’extensive attention. To the existing merit and shortcoming of oxy-fuel combustion technology, this article has carried on the comprehensive economic feasibility analysis, providing theory basis for its future application.
     In this paper, the related principle of engineering thermodynamics and the heat transfer theory is applied to estimated the operation and the energy consumption of the equipments in the the form of quantitative, including the boiler, air separation unit, CO_2 capture system and flue gas desulphurization systems. And it has estimated the boiler’s initial cost applying thermodynamics cost estimate method. Finally, this paper carry on a comprehensive economic analysis for the unit. In the analysis, it refers to the cost of the annual amortization in technical economics, and consideres the coal costs, operation and maintenance costs and the net electricity. It is very intuitive description of the advantages and disadvantages of oxy-fuel combustion technology. In addition, The boiler improvement, the various equipment's related structure and operation process has also been introduced in detail ,in order to improve the content of the assessment.
     Through comprehensive analysis of all kinds of the equipments, we can conclude that the efficiency of the boiler and flue gas desulfurization appliance is slightly higher than conventional unit, but the huge energy consumption of air separation unit and CO_2 capture system reduced the overall efferency of unit, and the Infrastructure investment increase sharply meanwhile. When all these factors are integrated to the cost of electricity supply, you can find that the oxy-fuel combustion unit's cost of electricity supply is higher than conventional unit’s, but it reduces a large amount of CO_2 emissions and the environmental gains is inestimable. Generally speaking, oxy-fuel combustion technology is feasible, it is more economic than the other CO_2 emission reduction technology. Compared with other technology, it has more advantages.
引文
[1] Terry. F. Wall*. Combustion processes for carbon capture. Proceedings of the Combustion Institute, 2007. 31~47.
    [2]郑楚光主编.温室效应及其控制对策[M].北京:中国电力出版社, 2001. 14~18.
    [3] M. A. Benarde. Global Warming. New York, John Wiley&Sons, 1992. 1~4.
    [4]何建坤,苏明山.全球气候变化问题与我国能源战略[J].中国环保产业, 2002, 35(1): 60~63.
    [5] H. Herzog, E. Drake. Long Term Advanced CO_2 Capture Option. IEA Greenhouse gas R&D Prog, Cheltenham, UK, 1993.
    [6] J. H. Walsh. Process in the Field of Mitigation of Greenhouse Gases from the Fuels. Report, 1995.
    [7] H. Herzog, E. Drake. Long Term Advanced CO_2 Capture Option. IEA Greenhouse gas R&D Prog. , Cheltenham, UK, 1993.
    [8] P. H. Feron, A. E. Jansen. Membrane Technology in Carbon Dioxide Removal. Energy Converse. Mgmt, 1992, 33: 421~428.
    [9] D. Singh, E. Croiset, et al. Technoeconomic study of CO_2 capture from an existing coal-fired power plant: MEA scrubbing vs. O_2/CO_2 recycles combustion 2003, 44: 3073~3091.
    [10] Ligang Zheng, Yewen Tan, Richard Pomalis, Bruce Clements. Integrated emissions control and its economics for advanced power generation systems. 31st International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, Florida, America, 2006.
    [11]阎维平.洁净煤发电技术[M].北京:中国电力出版社, 2002. 217~222.
    [12]刘忠,宋蔷,姚强,等. O_2/CO_2燃烧技术及其污染物生成与控制[J].华北电力大学学报, 2007, 34(1): 82~88.
    [13] Alan M. Wolsky, Edward J Daniels, Bassam J. Jody. Recovering CO_2 from Large-and Medium-Size Stationary Combustors. J. Air Waste Manage. Assoc, 1991, (41): 449~454.
    [14] H. J. Herzog, E. M. Drake. Carbon Dioxide Recovery and Disposal from Large Energy System. Annual Review Energy Environment, 1996. 21: 145~166.
    [15] Singh D, Croiset E, Douglas PL, Douglas MA. Techno-economic study of CO_2 capture from an existing coal-fired power plant: MEA scrubbing vs. O_2/CO_2 recycle combustion. Energ Convers Manage 2003; 44: 3073~3091.
    [16] Andersson K, Johnsson F. Process evaluation of an 865 MWe lignite fired O_2/CO_2 power plant. Energ Convers Manage 2006; 47: 3487~3498.
    [17] Koyata K, Tanaka T, KigaT, et a1. Pulverized coal combustion in O_2/CO_2 atmosphere. Eighth Annual International Pittsburgh Coal Conference. 1991, 10.
    [18] Kilnura K, Kiga T, Miyamae S, et a1. Experimental studies on pulverized coal conbustion with oxygen/fuel gas recycle for CO_2 recovery. JSME-ASMEInternational Conference on Power Engineering93, 1993. 9.
    [19] Kimura N, Omata K, Kiga T, et a1. The characteristics of pulverized coal combustion with oxygen/fuel gas recycle For CO_2 recovery. Second International Conference on Carbon Dioxide Removal. 1994, 10.
    [20] Nozakieta1, Nozaki, T, S, Takano, T. Kiga K, Omata and N. Kimura. The analysis of the flame in O_2/CO_2 pulverized coal combustion. Second International Symposium on CO_2 Fixation and Efficient Utilization of Energy. 1995, 10.
    [21] Clas Ekstr?m*, Frank Schwendig, Ole Biede, Flavio Franco, Günther Haupt. Techno-Economic Evaluations and Benchmarking of Pre-combustion CO_2 Capture and Oxy-fuel Processes Developed in the European ENCAP Project. Energy Procedia, 2009, 4233—4240.
    [22] Nsakala N, Marion J, Bozzuto C, Liljedahl G. Engineering feasibility of CO_2 capture on an existing us coal-fired power plant. In: First national conference on carbon sequestration, May 14–17. Washington DC; 2001.
    [23] Hao Liu, Ramlan Zailani, Bernard M. Gibbs. Comparisons of pulverized coal combustion in air and in mixtures of O_2/CO_2. Fuel, 2005, 84: 833~840.
    [24] Croiset E, Thambimuthu K. Coal combustion in O_2/CO_2 mixtures compares with air. Canadian Journal of Chemical Engineering, 2000, 78(2): 402~407.
    [25] B. J. P. Buhre, L. K. Elliott, C. D. Sheng, et al. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science 2005, 31: 283~307.
    [26]熊杰,赵海波,柳朝晖,郑楚光等.基于热经济学的O_2/CO_2循环燃烧系统和MEA吸附系统的的技术——经济评价[J].工程热物理学报, 2008, 29(10): 1625~1629.
    [27] ShinichiTakano, TakashiKiga, YoshihikoEndo, et a1. CO_2 recovery from PCF power plant with O_2/CO_2 combustion process. IHI Engineering Review, 1995, 28(4): 446~450.
    [28] Jon Gibbons. Immediate Strategies of CO_2 Capture. GCEP International Workshop on Clean Coal Technology Development—CO_2 Mitigation, Capture, Utilization and Sequestration. 2005, 8.
    [29]王小华.氧燃烧方式下煤粉燃烧及炉内辐射传热特性基础研究: [硕士论文].能源与动力工程学院,华中科技大学, 2007.
    [30]米翠丽,阎维平,李皓宇.富氧气氛下受热面改造的经济性分析[J].华东电力, 2009, 37(5): 0842~0845.
    [31]林宗虎,徐通模主编.实用锅炉手册[M].北京:化学工业出版社. 1999.
    [32]胡震岗,黄信仪主编.燃料与燃烧概论[M].北京:清华大学出版社. 1995.
    [33]张超.复杂能量系统的热经济学分析与优化: [博士论文].能源与动力工程学院,华中科技大学, 2006.
    [34] Frangopoulos, C. A. Thermoeconomic functional analysis: a method for optimal design or improvement of complex thermal systems: [Ph. D. thesis]. Georgia Institute of Technology, 1983.
    [35] Frangopoulos, C. A. Thermoeconomic functional analysis and optimization. Energy. 1987, 12(7): 563-571.
    [36] von Spakovsky, M. R. A practical generalized analysis approach to the optimal thermoeconomic design and improvement of real-world thermal systems: [Ph. D.thesis]. Georgia Institute of Technology, 1986.
    [37] El-Sayed, Y. M. A second-law-based optimization: Part 1-Methodology. Transactions of the ASME. Journal of Engineering for Gas Turbines and Power. 1996, 118(4): 693-697.
    [38] Valero, A. , Lozano, M. A. , Serra, L. , Tsatsaronis, G. , et al. CGAM problem: definition and conventional solution. Energy. 1994, 19(3): 279-286.
    [39] Silveira, J. L. , Tuna, C. E. Thermoeconomic analysis method for optimization of combined heat and power systems-Part I. Progress in Energy and Combustion Science. 2003, 29(6): 479-485.
    [40] Silveira, J. L. , Tuna, C. E. Thermoeconomic analysis method for optimization of combined heat and power systems-Part II. Progress in Energy and Combustion Science. 2004, 30(6): 673-678.
    [41] Taal, M. , Bulatov, I. , Klemes, J. , Stehlik, P. Cost estimation and energy price forecasts for economic evaluation of retrofit projects. Applied Thermal Engineering. 2003, 23(14): 1819-1835.
    [42] Lozano, M. A. , Valero, A. , Serra, L. Theory of the exergetic cost and thermoeconomics optimization. in: Proceedings of the International Symposium ENSEC'93. Cracow, Polland: 1993.
    [43] Lozano, M. A. , Valero, A. , Serra, L. Local optimization of energy systems. in: Proceedings of the ASME, Advanced Energy System Division, AES. Atlanta, Georgia: vol. 36, 1996. 241-250.
    [44] Uche, J. Thermoeconomic analysis and simulation of a combined power and desalination plant: [Ph. D. thesis]. Department of Mechanical Engineering, University of Zaragoza, 2000.
    [45] Uche, J. , Valero, A. Thermoeconomic optimization of a dual-purpose power and desalination plant. Desalination. 2001, 136(1-3): 147-158.
    [46] Serra, L. , Torres, C. Structural Theory of Thermoeconomics. in: Frangopoulos, C. A. , editors. Exergy, Energy System Analysis, and Optimization, Oxford, UK: Encyclopedia of Life Support Systems(EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers;2003.
    [47] Torres, C. Symbolic thermoeconomic analysis of energy systems. in: Frangopoulos, C. A. , editors. Exergy, Energy System Analysis, and Optimization, Oxford, UK: Encyclopedia of Life Support Systems(EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers;2003.
    [48] Frangopoulos, C. A. Thermoeconomic functional analysis: a method for optimal design or improvement of complex thermal systems: [Ph. D. thesis]. Georgia Institute of Technology, 1983.
    [49] Tan Y, Chu I E, Douglasm, etal. Oxy-fuel coal burner design: from CFD modeling to pilot scale testing[J]. Greenhouse Gas Control Technologies, Volume II: 1791~1795.
    [50] Guo-neng Li, Hao Zhou, Ke-fa Cen. Emisson characteristics and combustion instabilities in an oxy-fuel swirl-stabilized combustor. Zhejiang University Science Acta 2008, 9(11): 1582~1589.
    [51]薛宪阔,刘彦丰.空气分离/烟气再循环燃烧对锅炉屏式过热器的影响[C].中国电机工程学会第十届青年学术会议,吉林.
    [52] Suriyawong A etal. Submicrometer particle formation and mercury speciation under O_2-CO_2 coal combustion with carbon dioxide recycle[J]. Energy Fuels,2006, 20 ( 6): 2357~2363.
    [53] Suriyawong A, Hogan Jr. , Jingkun Jiang, etal. Charged fraction and electrostatic collection of ultrafine and submicrometer particles formed duringO_2-CO_2 coal combustion[J]. Fuel, 2008, 87: 673~682.
    [54] Zanganeh K E. A novel process integration, optimization and design app roach for large-scale implementation of oxy-fired coal power plants with CO_2 capture[J]. international journal of greenhouse gas control, 2007, I: 47~54.
    [55]黄钟岳,王晓放编著.透平式压缩机[M].北京:化学工业出版社. 2004.
    [56]徐忠主编.离心式压缩机原理[M].北京:机械工业出版社. 1990.
    [57]李化治编著.制氧技术[M].北京:冶金工业出版社. 2009.
    [58]林秀娜,夏红丽,卢杰. 60000m~3/h空分设备分子筛吸附器的开发与设计[J].深冷技术, 2009, 25(3): 37~39.
    [59] Yan J, Anheden M, Lindgren G, Stroberg L. Conceptual development of flue gas cleaning for CO_2 capture from coal-fired oxyfuel combustion power plant. In: Eighth international conference on greenhouse gas control technologies, June 19–22, Trondheim, Norway; 2006.
    [60]沈维道,蒋志敏,童军耕编.工程热力学第三版[M].北京:高等教育出版社. 2001.
    [61] H. Li, J. Yan, J. Yan , M. Anheden. Impurity impacts on the purification process in oxy-fuel combustion based CO_2 capture and storage system. In: Applied Energy 86 (2009): 202~213.
    [62] IEA Greenhouse Gas R&D Programme. Potential for improvement in gasification combined cycle power generation with capture of CO_2. Report No. PH4/19; 2003.
    [63]田牧,安恩科.燃煤电站锅炉二氧化碳捕集封存技术经济性分析[J].锅炉技术, 2009, 40(3), 36~41.
    [64]董保民,王元庆,张宏亮.浅析二氧化碳压缩系统的节能降耗[J].氮肥技术, 2010, 31(1): 22~24.
    [65] Oryshchyn D, Ochs T, Gerdemann S, Summers C, Patrick B. Developments in integrated pollutant removal for low-emission oxy-fuel combustion. In: Eighth international conference on greenhouse gas control technologies (GHGT-8), June, Trondheim, Norway; 2006.
    [66] Hu Y, Natio S, Kobayashi N, eta1. CO_2, NOx and SO_2 emissions from the combustion of coal with high oxygen concentration gases[J]. Fuel, 2000, 79: 1925~1932.
    [67] Edward Furimsky. Assessment of coal combustion in O_2/CO_2 by equilibrium calculations[J]. Fuel Processing Technology, 2003, 81: 23-34.
    [68]吕当振,徐明厚,姚洪等. O_2/CO_2燃烧方式下煤中有机/无机硫的释放特性[J].工程热物理学报, 2009, 40(8): 1427~1430.
    [69]张礼知,王宏,张庆丰等. O_2/CO_2气氛下燃煤的钙基脱硫规律的实验研究[J].燃料化学学报, 2000, 28(6): 508~511.
    [70] Llerup J B, Dam–Johanse K, Lunden K. High-temperature reaction between sulfur doxide and limestong-VI. The influence of high pressure[J]. Chemical Engineering Science, 1993,48(11): 2151~2157.
    [71]郭东明编著.脱硫工程技术与设备[M].北京:化学工业出版社. 2007.
    [72]李克勤,钟琴编著.火电厂烟气脱硫系统设计、建造及运行[M].北京:化学工业出版社. 2005.
    [73]倪迎春.烟气脱硫系统中增压风机选型问题探讨[J].电力科学与工程, 2010, 26(7): 59~61.
    [74]周至祥,段建中,薛建明编著.火电厂湿法烟气脱硫技术手册[M].北京:中国电力出版社. 2006.
    [75]刘佳林,钟明慧.影响600MW机组湿法烟气脱硫厂用电率主要因素分析[J].水利电力机械, 2005, 27(5): 1~8.
    [76] Jie Xiong, Haibo Zhao*, Chuguang Zheng, etal. An economic feasibility study of O_2/CO_2 recycle combustion technology based on existing coal-fired power plants in China. Fuel 88 (2009) 1135~1142.
    [77]刘彦丰,薛宪阔. O_2/CO_2燃烧方式的锅炉热力计算方法研究与分析[J].华东电力, 2008, 36(3): 83~85.
    [78]阎维平,米翠丽,梁秀俊,等.采用O_2/CO_2燃烧方式的锅炉热效率计算与分析[J].热力发电, 2009, 38(6): 20~23.
    [79]张卫东,张栋,田克忠.碳捕集与封存技术的现状与未来[J].中外能源, 2009, 14(11): 7~14.
    [80]黄斌,许世森,郜时旺,等.燃煤电厂CO_2捕集系统的技术与经济分析[J].动力工程, 2009, 29 (9): 864~867.
    [81] Simbeck DR. CO_2 mitigation economics for existing coal-fired power plants. In: First national conference on carbon sequestration, May 14~17. Washington DC; 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700