用户名: 密码: 验证码:
1000MW火电机组吸收塔脱硫泵设计与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是国家科技支撑计划项目“典型离心泵关键技术研究及工程示范应用”课题(项目编号:2011BAF14800)及江苏省科技支撑(工业)计划项目“火电厂大型系列烟气脱硫吸收塔循环泵关键技术开发与应用”课题(项目编号:BE2011141)的主要研究内容之一。
     火电机组吸收塔脱硫泵广泛地应用于火电厂、石油、化工等重要行业,火电机组吸收塔脱硫泵的开发及推广应用,对减少火电厂排放的二氧化硫污染,治理环境具有重要的现实意义及显著的经济和社会效益。因此,对火电机组吸收塔脱硫泵的设计方法与理论进行研究,从泵内部流场进行分析,旨在开发出高效的水力模型,提出创新结构设计方案,提高机组的效率及运行的可靠性,为吸收塔脱硫泵优化设计提供依据。主要研究工作及创造性成果有:
     (1)从设计理论、试验研究、数值仿真计算和综合研究等方面概括论述了目前国内外液固两相流理论与液固两相流泵的研究现状,对叶片机械数值模拟方法研究进行了简要介绍,分析了火电机组吸收塔脱硫泵的发展及趋势。对数值模拟计算所涉及到的不可压缩的粘性流体的纳维-斯托克斯方程进行了分析,研究并选择了模拟计算所需要的数学模型。
     (2)借助液固两相流泵的设计理论对火电机组吸收塔脱硫泵的设计方法进行了探讨,借鉴速度系数法对2种规格火电机组吸收塔脱硫泵产品进行了创新设计。引入了基于贝塞尔曲线的叶片极大扭曲结构设计方法,极大扭曲叶片减少了能量损失,提高了泵的水力性能;叶轮进口处叶片超长延伸的设计方法提高了泵的效率,降低了运行成本;设计的叶轮背叶片有效平衡了轴向力;脱硫泵的叶轮和泵体之间设计了自动补偿叶轮间隙的装置及叶轮轴向位移调节装置,保证了泵在高效区运行。
     (3)对TLB600-700型脱硫泵分别进行了以清水为介质的单相流场、以含有石灰石颗粒的溶液为介质的液固两相流场的数值模拟。结果表明,泵内流场的流动规律比较好,验证了水力设计方案的可行性,并预测了输送清水时泵的外特性曲线。分析了输送液固两相流时,颗粒物参数对泵性能的影响,对脱硫泵的主要过流部件进行了分析,预测了叶轮及压水室的主要磨损位置。通过三维非定常数值模拟计算,初步揭示了TLB600-700型脱硫泵内部三维流场由于旋转的叶轮和压水室之间的动静干涉作用引起的压力脉动特性。
     (4)采用ANASYS软件对2种规格火电机组吸收塔脱硫泵的叶轮进行了流固耦合分析,揭示了脱硫泵叶轮上应力分布密集的区域出现位置,以及叶轮上的变形量最大的位置和形变分布情况。最后,对2种规格火电机组吸收塔脱硫泵样机进行了外特性测试,试验结果表明,采用创新方法设计的2种规格脱硫泵样机设计合理,设计方法可靠,高效率区较宽,额定点效率比国家标准分别提高了3.78个百分点和4.15个百分点。
     (5)将数值模拟结果与试验结果进行了对比分析,结果表明数值模拟比较准确地反应了泵内流场的流动情况,证明通过试验与数值模拟结合的方法提高火电机组吸收塔脱硫泵效率的可行性,为火电机组吸收塔脱硫泵系列产品的设计开发与理论研究提供了技术支持,大幅度缩短了设计周期,简化了理论计算的繁琐过程。
This paper is one of the main content of National Science and Technology Support Plan Project named "Key technology research and engineering demonstration application of typical centrifugal pump"(Project number:2011BAF14B00), and the Jiangsu Province Industry Science and Technology Support Plan Project named "Key technology development and application of series large scale flue gas desulfurization absorption tower circulating pump for thermal power plant"(Project number:BE2011141).
     Thermal power unit absorption tower desulfurization pumps are widely applied in national important industry such as thermal power plant, petroleum refinery, and chemical engineering. Development and application of thermal power unit absorption tower desulfurization pumps have important practical significance and remarkable economic and social benefit to reduce sulfur dioxide emissions from coal-fired power plants and environmental management. Therefore, the research of design method and theory for desulfurization pumps aim that developing its high efficiency structural and hydraulic model. The improving of the unit efficiency and reliability could provide possibility for the pump optimization design from the perspective of the internal flow field analysis. The main research work and creative achievements of this paper are shown as follows.
     (1) Present research situation of domestic and foreign liquid-solid two-phase flow theory and the liquid-solid two-phase flow pump were generalized from the independent aspects of design theory, experimental study, numerical simulation and comprehensive research. The advanced research progress on the method of blade machinery numerical simulation are briefly introduced, and the development history and growing trend of thermal power unit absorption tower desulphurization pump were analyzed. The Navier-Stokes equation for non compressible viscous fluid used in numerical simulation is analyzed, and the mathematical model required for simulation calculations in this paper is studied and selected.
     (2) Based on the design theory of liquid-solid two-phase flow pump, design method of thermal power unit absorption tower desulfurization pump was discussed. Two units thermal power unit absorption tower desulfurization pump products with given technical parameters were innovation designed by velocity coefficient method. The design method of blades greatly distorted structure was introduced based on the Bezier Curves, in which way the vibration noise and energy loss were greatly reduced by the twisted blades, and the hydraulic performance of pump was improved as well. The design method of the blades at impeller inlet super long extension was used to improve the pump efficiency and lower operating costs. The back blades arranged on the impeller balanced the axial force effectively. Automatic compensation equipment of impeller clearance and the impeller axial displacement adjusting device is arranged between the desulphurization pump impeller and the pump body, which ensured the efficient operation and the running reliability of the pump.
     (3) Numerical simulation of type TLB600-700desulfurization pump were separately carried out with clean water as single-phase flow, the medium with a solution containing limestone particles as liquid-solid two phase flow. Calculation results showed that the flow of pump internal flow field is comparative regular and reasonable, which clearly verified the feasibility of hydraulic design, and the characteristics curves of the pump when transport water was forecasted as well. The influence of particle physic-chemical parameters to the pump performance was analyzed under the conveying of liquid solid two phase flow, and the main wear position of impeller and volute were predicted by briefly analysis of desulphurization pump mainly flow components. The three dimensional unsteady numerical simulation of type TLB600-700desulfurization pump inner flow reveals the pressure fluctuation caused by rotor-stator interaction between the rotating impeller and volute.
     (4) Fluid-solid coupling analysis of impellers in series thermal power unit absorption tower desulphurization pumps were calculated according to ANASYS software. The impeller stress distribution intensive location of the desulphurization pumps, and the impeller maximum deformation position and deformation distribution were obtained. Finally, characteristics of series thermal power unit absorption tower desulfurization pump prototypes were tested, and test results showed that the series desulfurization pump prototypes that designed by innovative design method are reasonable and acceptable. It can be concluded that the design method is reliable and efficient, with a wide range of high efficiency, the pump prototypes efficiency were respectively increased by3.78percentage points and4.15percentage points than national standards.
     (5) Comparison and analysis between the numerical simulation results and test results showed that numerical simulation could reflect the pump internal flow accurately, which could prove the feasibility of improving thermal power unit absorption tower desulfurization pump efficiency by combine experiment and numerical simulation method. This research provides the possibility of rapid support for development and design theoretical study of series thermal power unit absorption tower desulphurization pump product, which will greatly shorten the design cycle, and simplify the cumbersome process of theoretical calculation.
引文
[1]张魏魏.石灰石-石膏湿法烟气脱硫技术[J].环境科技,2008,21(A02):90-92.
    [2]Grabbe Marten, Yuen Katarina, Apelfrojd Senad, et al. Efficiency of a directly driven generator for hydrokinetic energy conversion[J]. Advances in Mechanical Engineering, 2013, vol (28):40-48.
    [3]李友平,尹华强.燃煤电厂脱硫技术综合评价研究[J].四川环境,2008(2):64-66.
    [4]Ruimin Song, Bo Zhang. Study on calculating method of sulfur dioxide emissions in thermal power plant[J]. Inner Mongolia Petrochemical Industry,2011, (2):55-57.
    [5]黄道见,严建华,腾国荣.烟气脱硫泵在我国农村小火电厂应用探讨[J].农机化研究,2007,(11):226-228.
    [6]中国国家发展和改革委员会.中国21世纪初可持续发展行动纲要[M].北京:中国环境科学出版社,2003.
    [7]中国外交部,国家环保局.关于出席联合国环境与发展大会的情况及有关对策的报告[R].北京:中国环境科学出版社,2000.
    [8]马晓晓.浅淡工业燃煤二氧化硫污染防治对策[J].民营科技,2010,(2):94-95.
    [9]国家统计局,环境保护部.中国环境统计年鉴[M].北京:中国统计出版社,2013.
    [10]中华人民共和国环境保护部.全国环境统计公报[R].北京:中国环境科学出版社,2012.
    [11]Deigosha O. C, Patella R. E, Reboud J. L, et al. Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitating condition[J]. Journal of Fluids Engineering,2003, (125):970-978.
    [12]Hongbao Zhao. Numerical simulation on pressure behavior of mining field under the conditions of hard roof[J]. Disaster Advances,2011, Vol.4(1), January,15-20.
    [13]Gosman A. D, Ioannides E. Aspects of computer simulation of liquid-fueled combustors[J]. J Energy,1983,7 (6):482-490.
    [14]Fan J, Zhang X, Chen L, et al. New stochastic particle dispersion modeling of a turbulent particle-laden round jet[J]. Chemical Engineering J,1997,66 (3):207-215.
    [15]Chen X. Q, Pereira J. C. F. Computation of particle-laden turbulent gas flows using two dispersion models[J]. AIAA J,1998,36 (4):539-546.
    [16]Yang J C, Chang K C. Inflow conditions in stochastic eulerian-lagrangian calculations of two phase turbulent flow[J]. AAIA J,2001,39 (11):2100-2110.
    [17]Spalding. D. Brian. General theory of turbulent combustion[J]. Journal of Energy v2n1, Ian (1978) 2,36-54.
    [18]Zarya A.N. The effect of the solid phase of a slurry on the head developed by a centrifugal pump[J]. Fluid Mechanics Soviet Research,1975,4 (4):144-154.
    [19]太田启吉良.砂泵理论的考察[J].机械学会文集,1962,4(66):91-100.
    [20]Lopez M, Laboy RT. Phase distribution in bubbly two-phase flow in vertical ducts Int J Mult L[J]. phase Flow,1994,20 (5):805-818.
    [21]蔡葆元.离心泵的两相流理论及其设计原理[J].科学通报,1983,(8):498-502.
    [22]蔡葆元.两相流杂质泵的设计方法与性能特点[J].水泵技术,1986,(2):14-18.
    [23]Peng Weiming. On trajectory for a particle moving in pumps[J]. Drainage and Irrigation Machinery.1994, (4):3-9.
    [24]许洪元.关于泵轮中颗粒运动的研究[J].水泵技术,1994,(5):16-19.
    [25]Xu Hongyuan, Wu Yulin, Gao Zhiqiang, et al. Experimental study and numerical analysis of the motion of dilute soild particles in centrifugal pump impellers [J]. Shuili Xuebao,1997 (9):12-17.
    [26]陈次昌,刘正英.两相流泵的理论与设计[M].北京:兵器工业出版社,1994.
    [27]刘湘文.离心式泥泵系数设计方法[J].水泵技术,1982,(1):28-29.
    [28]何希杰.离心式泥浆泵的基本原理与设计方法[C].杂质泵及管道水力输送学术讨论会论文集,全国泵专叶委员会,1988,10-21.
    [29]郭晓民.经验法设计渣浆泵小结[J].水泵技术,1996,(1):16-20.
    [30]张玉新.低比转数离心式渣浆泵的理论和设计[J].水泵技术,1999,(8):26-29.
    [31]朱玉才,吴玉林等.离心式固液两相流泵叶片形状对流体动力特性影响的研究[J].机械工程学报,2004,40(8):67-71.
    [32]黄长青.脱硫泵寿命影响因素综合排序灰色理论分析[J].河北工业科技,2009,26(03):144-146.
    [33]M. P. O'Brien, R. G. Folsom. The transportation of sand in pipelines[J]. University of Caliph. Pub. in Eng.1937,7:48-52.
    [34]Derakhshan S, Nourbakhsh A. Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation[J]. Experimental Thermal and Fluid, Science,2008, 32 (5):1620-1627.
    [35]B.E.Launder, D.B.Spalding. Lectures in mathematical models of turbulence[J]. Academic Press, London,1972.
    [36]席本强.基于边界层理论的离心式固液两相流系的研究[D].陕西西安科技大学,2005.
    [37]M. G. Roco etal. Dredge pump performance predietion[J]. Journal of PiPilines,1986 (5): 171-176.
    [38]郭晨旭.烟气脱硫吸收塔循环泵内部流场分析及结构应力特性研究[D].江苏大学,2012.
    [39]赵振海.离心泵流道中固体颗粒运动规律的研究[D].清华大学,1989.
    [40]何小可.大型火电机组脱硫泵数值模拟及优化设计[D].江苏大学,2012.
    [41]许洪元.关于泵轮中颗粒运动的研究[J].水泵技术,1994,(5):16-19.
    [42]赵敬亭,蒋道振等.叶轮流道中固液两相流流动规律的研究[J].水泵技术,1992,(02):1-8.
    [43]朱玉才,吴玉林.离心式固液两相流泵叶片形状对流体动力特性影响的研究[J].机械工程学报,2004,40(8):67-71.
    [44]罗先武.离心泵叶轮内磨损规律的试验研究[D].清华大学硕士学位论文,1996.
    [45]田爱民,许洪元等.离心式渣浆泵叶轮的磨损规律研究[J].水泵技术,1997,6.
    [46]Sungwon Kim. Nonlinear hydrologic modeling using the stochastic and neural networks approach[J]. Disaster Advances,2011, Vol.4 (1), January,53-63.
    [47]杨敦敏,叶海燕等.离心泵内固液两相流动的图像测量[J].农业机械学报,2006,37(12):100-104.
    [48]孟凡素.大型脱硫循环泵变转速参数变化规律[J].通用机械,2007,1:58-59.
    [49]L. C. Fairbanks. Effect on the characteristics of centrifugal pump[J]. Paper No.2167,1942.
    [50]Cluster Herbich. Characteristics of a model dredge pump[P]. Leeching University, Report No.33. Sep.1961.
    [51]B. K. spooling. Flow characteristics of the mixture flow of mud pump[J]. Trash pump technology,1986,12:36-54.
    [52]ElghobashL S E.AppI Sci Res.1994,52:309-329.
    [53]刘正英.圆柱叶片流道中液固两相流场求解的速度—压力校正法[J].排灌机械,1998,(2):3-7.
    [54]姜培正等.离心式水泵内固液两相流场的实验研究与理论分析[C].全国第二届杂质泵及固体物管道水力输送学讨论会论文集,四川自贡,1999(7):23-27.
    [55]魏进家,胡春波,姜培正.密相液固两相湍流k~ε~T模型及其在管道两相流中的应用[J].应用数学和力学,2000,21(5):468-476.
    [56]吴玉林,葛亮等.离心泵叶轮内部固液两相流动的大涡模拟[J].清华大学学报(自然科学版),2001,41(10):93-96.
    [57]许洪元,吴玉林.稀相固粒在离心泵轮内的运动试验研究和数值分析[J].水利学报,1997,(9):12-17.
    [58]刘靖军,林玉珍等.双向不锈钢管固液两相流动腐蚀的数值模拟[J].化工机械,2004,55(3):408-412.
    [59]张玉良,李昳,崔宝玲等.两相流离心泵水力输送性能计算分析[J].机械工程学报,2012,48(14):169-176.
    [60]H Shih, W W Liou, A Shabbir Z G. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computer Fluids,24 (3):227-238,1995.
    [61]赵斌娟,袁寿其,刘厚林,等.基于Mixture多相流模型计算双流道泵全流道内固液两相湍流[J].农业工程学报,2008,24(1):7-12.
    [62]吴玉林,曹树良,葛亮等.渣浆泵叶轮中固液两相湍流的计算和实验[J].清华大学学报,1998,38(1):71-74.
    [63]刘建瑞,肖志杰,王鸿睿,等.基于CFD技术脱硫泵的设计与试验[J].排灌机械,2009,27(1):6-9.
    [64]李仁年,徐振法等.渣浆泵内部流场数值模拟与磨损特性分析[J].排灌机械,2007,25(2):5-8.
    [65]刘世光,梁双印等.脱硫浆液泵内部流场的数值模拟及磨损特性分析[J].现代电力,2010,27(4):55-59.
    [66]阎超.流体机械内部流动数值计算方法的新进展[J].流体机械,1994(9):33-37.
    [67]李海东.计算流体力学正在蓬勃发展中[J].科技导报,1997(12):30-31.
    [68]Felix A, Muggli Peter Holbein, Philippe dupont. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow[J]. Journal of Fluids Engineering, Transactions of the ASME,2002:798-802.
    [69]Huang Si, Xue Dunsong. Three dimensional calculation of gas-oil two phase flow in helicon-axial booster-pump impeller[C]. Proceedings of the 1st International Conference on Engineering Thermo physics,1999:674-679.
    [70]Wu Yulin. Three-dimension calculation of oil-bubble flows through a centrifugal pump impeller[C]. Proceedings of The Third Internal Conference On Pump and Fan. Tsinghua University Press, October 1998:526-532.
    [71]Flores M, Kubiak J, Urquiza G, et al. Modal analysis and estimation of crack initiation life of a hydraulic francs turbine runner[C]. Proceedings of the 24th IAHR Symposium on Hydraulic Machinery and systems. Fozdo Iguassu, Brazil,2008.
    [72]Katsutoshi Kobayashi, Shigeyoshi Ono, Ichiro Harada, et al. Numerical analysis of stress on pump blade by one way coupled fluid structure simulation[J]. Journal of Fluid Science and Technology,2010,5(2):219-234.
    [73]Busby J A. Unsteady 3D incompressible flow inter action in multiple blade row turbo machinery [D]. Department of Aerospace Engineering,1997.
    [74]Kazuhiro Tanaka, Toshio Kobayashi. Thrust prediction in screw-type centrifugal pump[J], ASME,2003, July 6-10.
    [75]朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社,1999.
    [76]S. V. Patankar传热与流动的数值计算[M].科学出版社,1984.
    [77]张梓雄,董增南.粘性流体力学[M].清华大学出版社,1999.
    [78]吴仲华.使用非正交曲线坐标和非正交速度分量的叶轮机械三元流动基本方程及其解法[J].机械工程学报,1979,15(1):1-24.
    [79]张莉,陈汉平,徐忠.离心压缩机叶轮内部流场的准三元迭代数值分析[M].风机技术,2000,(5):3-7.
    [80]忻孝康.叶轮机械三元流动与准正交面法[M].上海:复旦大学出版社,1988.
    [81]忻孝康,朱世灿.具有分流叶片的径流式压气机叶轮三元流场计算[J].机械工程学报,1981,17(1):50-60.
    [82]陈德江,王尚锦.应用有限元法计算离心式叶轮内部流场[J].应用力学学报,1999(16):27-32.
    [83]温正,石良辰,任毅如.FLUENT流体计算应用教程[M].清华大学出版社,2009.
    [84]Christopher Earls Brennen. Hydrodynamics of pump[M]. Cambridge University Press, 1994.
    [85]王灿星,林建忠,宋向群.多叶离心通风机内部流场的计算[J].风机技术,1997(4):6-9.
    [86]袁卫星,张克危,贾宗谟.离心泵射流-尾迹模型的三元流动计算[J].水泵技术,1990(1):12-18.
    [87]常思勤.汽车发动机气道流动模拟的数学模型与数值算法[J].武汉汽车工业大学学报,1996,18(4):1-55.
    [88]Murman E M, Cole J D. Calculation of plane steady transonic flow[J]. AIAA Journal,1971, 9:114-121.
    [89]Thompson J F, Thames F C, Martin C W. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies[J]. J. Comput. Phys.1974,15:299-399.
    [90]赵斌娟.双流道泵内非定常三维湍流数值模拟及PIV测试[D].江苏大学,2007.
    [91]Spence P, Amaral-Teixeira J. Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests [J]. Computers & Fluids,2008 (37): 690-704.
    [92]Li Xin, Peng Gaoliang,Wang Qiang, et al. A numerical analysis method of hydraulic seals for downhole equipments[J]. Advances in Mechanical Engineering,2013, vol (10):94-109.
    [93]Xiaocong He, Fengshou Gu, Andrew Ball. Fatigue behaviour of fastening joints of sheet materials and finite element analysis[J]. Advances in Mechanical Engineering,2013, vol (10):19-28.
    [94]Shi Weidong, Xu Yan, Zhang Qihua. Structural strength analysis of multistage submersible pump impeller based on fluid-structure interaction[J]. Transactions of the Chinese Society for Agricultural Machinery, vol(44):70-73.
    [95]Shum Y K P, Tan C S, Cumpsty N A. Impeller-diffuser interaction in a centrifugal compresso[J]. Journal of Turbomachinery,2000,122 (4):777-786.
    [96]何希杰,劳学苏.燃煤电厂脱硫技术与脱硫泵[J].通用机械,2006(5):22-26.
    [97]王乃华,鲁天毅.石灰石/石膏湿法烟气脱硫金属浆液循环泵国产化研究及实践[J].电力环境保护,2005,21(2):10-12.
    [98]X K He, J R Liu, C X Guo, et al. Design and test of desulfurization pump for coal-fired power plant based on acid-rain prevention[J]. Disaster Advances,2012,5(4):1010-1015.
    [99]X K He, J R Liu, Z J Gao, et al. Study of thermal power unit absorption tower desulphurization pump applies to environmental disaster[J]. Disaster Advances,2013,6 (S3):300-305.
    [100]He Xiaoke, Liu Jianrui, Fu Dengpeng. The unsteady numerical simulation and fluid-structure interaction analysis of TLB600-700 desulphurization pump[J]. Advances in Mechanical Engineering, Article ID:191697,2014 (2014)
    [101]朱玉才.离心式固液两相流泵的边界层理论及其在叶轮设计中的应用[D].辽宁工程技术大学,2002.
    [102]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997.
    [103]帕坦卡,张政.传热与流体流动的数值计算[M].北京:科学出版社,1989.
    [104]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [105]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2001.
    [106]Tourlidakis A. Numerical modeling of viscous turbo machinery flows with a pressure correction method[D]. Cranfield University, England,1992.
    [107]郭乃龙.螺旋离心泵性能与内部三维不可压湍流流动及应用混沌[D].江苏理工大学,1997.
    [108]郭烈锦.两相流与多相流动力学[M].西安:西安交通大学出版社,2002.
    [109]Kogaki T, Kobayashi T, Taniguchi N. Large eddy simulation of flow around a rectangular cylinder[J]. Fluid Dynamics Res.1997.
    [110]王瑞金,张凯,王刚FLUENT技术基础与应用实例[M].北京:清华大学出版社,2007.
    [111]韩占忠FLUENT-流体工程仿真计算实例与分析[M].北京:北京理工大学出版社,2009.
    [112]普夫米德纳尔.叶片泵与透平压缩机[M].北京:机械工业出版社,1983.
    [113]A.J.斯捷潘诺夫.离心泵与轴流泵[M].北京:机械工业出版社,1980.
    [114]袁寿其.低比速离心泵理论与设计[M].北京:机械工业出版社,1997.
    [115]刘大有.二相流体动力学[M].北京:高等教育出版社,1993.
    [116]斯波尔丁.燃烧与传质[M].北京:国防工业出版社,1984.
    [117]郭正朝,赵学斌.湿法脱硫系统中浆液泵的节能改进[J].山西焦煤科技,2012,(1): 41-44.
    [118]胡勇,文华斌,周敏等.大型脱硫循环泵用新型机械密封装置的优化设计[J].制造业自动化,2012,34(9):44-47.
    [119]任亚飞.影响脱硫泵基本性能的因素探讨[J].工业技术,2011,(6):87-91.
    [120]聂鹏飞,王志鹏.脱硫浆液循环泵机械密封失效分析与国产化改造[J].天津电力技术,2011,(2):29-39.
    [121]关醒凡.现代泵理论与设计[M].北京:中国宇航出版社,2011.
    [122]David Japikse. Centrifugal pump design and performance[J]. Concepts ETI, Inc.
    [123]周兵,陈乃祥.双蜗壳内部定常湍流数值研究[J].青岛大学学报,2004,19(2):72-75.
    [124]杨敏,闵思明,王福军.双蜗壳泵压力脉动特性及叶轮径向力数值模拟[J].农业机械学报,2009,40(11):83-88.
    [125]G K.巴切勒.流体动力学引论[M].北京科学出版社,1997.
    [126]Jone D. Anderson, J R计算流体力学入门[M].北京:清华大学出版社,2002.
    [127]Hongbao Zhao. Numerical simulation on pressure behavior of mining field under the conditions of hard roof[J]. Disaster Advances,2011, Vol.4(1), January,15-20.
    [128]Sungwon Kim. Nonlinear hydrologic modeling using the stochastic and neural networks approach[J]. Disaster Advances,2011, Vol.4(1), January,53-63.
    [129]Rudolf S. Numerical simulation of the two-phase flow in centrifugal pump impellers[J]. ASME J. Fluids Eng.2001 (1):1-6.
    [130]程效锐,齐学义,冯俊豪.颗粒浓度对双流道污水泵叶轮流场影响的数值模拟[J].水泵技术,2006,(1):21-23.
    [131]杨敏官,刘栋,贾卫东等.离心泵叶轮中固液两相流动的数值模拟[J].水泵技术,2005(4):31-34.
    [132]吴玉林,葛亮,陈乃祥.离心泵叶轮内部固液两相流动的大涡模拟[J].清华大学学报(自然科学版),2001,41(10):93-96.
    [133]陈次昌,杨昌明,熊茂涛.低比转速离心泵叶轮内固液两相流的数值分析[J].排灌机械,2006,24(6):1-3.
    [134]Solis Moises, Sofiane Bakir, Farid Khelladi, et al. Pressure fluctuations reduction in centrifugal pumps:Influence of impeller geometry and radial gap[C]. Proceedings of the ASME Fluids Engineering Division Summer Conference,2009.
    [135]Berten Stefan, Farhat Mohamed, Dupont Philippe, et al. Rotor-stator interaction induced pressure fluctuations:CFD and hydroacoustic simulations in the stationary components of a multistage centrifugal pump[C]. Proceedings of FEDSM 2007,2007:963-970.
    [136]Kumar S, Bergada J M, Watton J. Axial piston pump grooved slipper analysis by CFD simulation of three-dimensional NVS equation in cylindrical coordinates[J]. Computers and Fluids,2009,38 (3):648-663.
    [137]Masahiro Miyabe, Hideaki Maeda, Isamu Umeki, et al. Unstable head-flow characteristic generation mechanism of a low specific speed mixed flow pump[J]. Journal of Thermal Science,2006,15 (2):115-120.
    [138]杨孙圣,孔繁余,成军等.液力透平蜗壳内非定常压力脉动的研究[J].工程力学,2013,30(2):388-393.
    [139]Derakhshan S, Nourbakhsh A. Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation[J]. Experimental Thermal and Fluid, Science,2008, 32 (5):1620-1627.
    [140]Spence P, Amaral-Teixeira J. Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests[J]. Computers & Fluids,2008, (37): 690-704.
    [141]杨孙圣.离心泵做透平的理论数值与试验研究[D].江苏大学,2012.
    [142]Shilong Chu. Relationship between unsteady flow, pressure fluctuations and noise in a centrifugal pump[D]. Johns Hopkins University,1995.
    [143]Eugene Andras Chisely. Two phase flow centrifugal pump performances[D]. Idaho State University,1997.
    [144]尚庆,张建,周力行.旋流燃烧室内颗粒运动的数值模拟[J].工程热物理学报,2004,25(3):515-518.
    [145]Xiaocong He, Fengshou Gu, Andrew Ball. Fatigue behavior of fastening joints of sheet materials and finite element analysis[J]. Advances in Mechanical Engineering,2013, vol (10):19-28.
    [146]Shi Weidong, Xu Yan, Zhang Qihua. Structural strength analysis of multistage submersible pump impeller based on fluid-structure interaction[J]. Transactions of the Chinese Society for Agricultural Machinery,2010, vol (44):70-73.
    [147]徐永刚.脱硫泵液固两相流数值计算及磨损分析[D].江苏大学,2009.
    [148]闻建龙.流体力学实验[M].镇江:江苏大学出版社,2010.
    [149]IgorJ Karassik. Pump Handbook (Third Edition) [M]. 北京:中国石化出版社,2002.
    [150]Shoji Hattori, Morin Kishimoto. Prediction of cavitations erosion on stainless steel components in centrifugal pumps[J]. Wear and Abrasion.2008,256:870-874.
    [151]郑源,茅媛婷.低扬程大流量泵装置马鞍区的流动特性[J].排灌机械工程学报,2011,29(5):369-373.
    [152]陈乃祥,吴玉林.离心泵[M].北京:机械工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700