用户名: 密码: 验证码:
百岩金矿倾斜薄矿体采矿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浅孔留矿法较适应于围岩中等稳固以上的急倾斜或倾斜薄矿脉的开采。由于该法工艺简单、生产成本较低、技术上相对成熟而被广泛运用于我国金属矿山。据统计,浅孔留矿法在急倾斜极薄矿脉为主的钨矿开采中占80%以上;全国1000多座岩金矿山中使用者占85%以上,采矿量占40%左右;有色矿山中使用该法的采矿量占15%。
     百岩金矿围岩属中等稳固,矿体为倾斜薄矿体。该矿自2007年投产至今一直采用浅孔留矿法开采。据统计,该矿生产期间综合回收率为59.84%,贫化率为18.44%,采切比为13.87m/kt。与国内外同类矿山浅孔留矿法的应用现状相比,该矿回采时损失和贫化大、采切比高,从而严重影响着矿山整体经济效益。根据现场调查研究得出,矿山综合回收率低、贫化率大、采切比高的主要原因是浅孔留矿法采场结构参数不尽合理。
     本文在细致研究该矿地质详查报告和总结矿山生产实践的基础上对岩体质量分级指标进行了估算,然后以岩体质量分级指标为主要依据,应用Hoek-Brown准则进行了岩体力学参数取值研究。岩体力学参数取值研究结果表明,地质详查报告提供的岩体试块力学参数普遍偏高,因而不能直接作为工程设计的依据。为了获得良好的采场结构参数,本文以Flac3D数值分析软件为主要工具模拟了多种采场结构参数方案,并以岩体力学参数为依据进行了数值分析模拟计算。数值分析模拟计算得出,在保持该矿浅孔留矿法其它结构参数不变的条件下,将采场长度由32m增加到40m、将采场顶柱高度由3m增加到5m后不但顶柱在回采与放矿各步是相对稳固的,而且采场上盘也没有因为采场长度的增加而出现大范围的高应力集中区或拉应力区,即采场上盘仍然在可以承受范围内;同时,采场长度由32m增加到40m后可减小采切比,降低采矿成本。为了进一步验证新方案的合理性,该矿在952中段就新方案进行了工业试验。工业试验证明,新方案可使回收率从59.84%提高到70.31%,提高幅度为16%;贫化率由18.44%降低到9.80%,降低幅度为47%;采切比由13.87m/kt降低到11.22/kt,降低幅度为19%。可见,采场结构参数新方案可有效地提高资源回收率、降低贫化率、减小采切比,从而产生了可观的经济效益。同时,本文研究成果可为类似矿山提供借鉴。
Short-hold shrinkage is suitable for steeply inclined or inclined and moderately-stable above surrounding rock thin ore.This method is simple technology, cheaply and its technology is already relatively matures so it is widely used in metal mines in our country. As is shown by statistics, in the steeply inclined thin tungsten vein mining Short-hold shrinkage method occupy 85% above. In our 1000 metallurgical mines the user occupied 85% above. Mining quantity accounted for about 40%. Nonferrous quantity accounted for 15%.
     Surrounding rock of BAIYAN gold mine belong to medium solid and steep thin veins. The method has been used since the beginning of the operation in the year of 2007 in this mine. As is shown by statistics, the rate of recovery is 59.84%, dilution ratio is 18.44%, the stripping ratio is 13.87m/kt. Compared to the application situation of other mines at home and abroad, this mine has a larger loss dilution and stripping ratio, so it serious affect the business economic benefits. According to field survey research, the major reason is unreasonable structural parameter.
     On the basis of long producing experience and the study of geological detailed survey report, this paper estimates the rock mass quality classification index, and then depending on it have a study on the ascertainment of mechanical parameters of rock mass by use of the Hoek-Brown criterion. The result of mechanical parameters of rock mass shows rock test block mechanic parameters provided by geological detailed survey report generally high so it can't be directly defined as engineering design parameter. In order to obtain a satisfactory stope structure parameter, this paper carried out various simulation schemes by using Flac3D numerical analysis software and carried out numerical simulations on the basic of mechanical parameters of rock mass. Numerical analysis research concludes that length stope span from 32m to 40m and Increase the height of top pillar from 3m to 5m not only the top pillar is relative stable but also stope roof do not emerge high stress concentration zone or tension stress zone for?the lengthen of stope when other structural parameters is invariable. Stope roof is still in the affordability. At the same time, it can reduce stripping ratio and mining costs. In order to validate the rationality of the new scheme, commercial scale test was conducted in 952 level. The test proves that the new scheme make recovery ratio increased to70.31% from 59.84%, the increased is 16% and dilution rate reduced to9.80% from18.44%, the reduced is 19%. So this new scheme of stope structure parameter can effectively enhance the resource recovery rate reduce dilution rate and stripping ratio and therefore has certain economic efficiency. At the same time, the research in the thesis can also provide beneficial references to the similar mines.
引文
[1]杨振宏、何号学.难采岩金矿脉开采的技术问题探讨[J].黄金学报20003(2)(1):22-25.
    [2]包东曙.薄矿体开采的现状与对策[J].长沙矿业研究院(1):4-6.
    [3]李明、伍衡山、李蒲姣、欧阳平文.浅孔留矿法在国内黄金矿山应用中的若干技术问题[J].铀矿冶.2004.5(23)(2):65-66.
    [4]地下采矿方法(实例)图册上[M].中国有色金属建设协会设计分会矿山工程研究会.1995.1:3-9.
    [5]黄体.浅谈浅孔留矿法在生产实践中的技术问题[J].大众科学2008(5):106-107
    [6]贺志宏、姚香.浅孔留矿法新工艺试验研究[J].有色金属.2004.9(56)(5):4-5.
    [7]樊满华.浅孔留矿法的新工艺和新技术综述[J].黄金科学技术.2002.4(10)(2):7-10
    [8]李真、惠建功.浅孔留矿法的应用实践[J].金属矿山.1999(274)(4)11-12.
    [9]宫国慧、金忠伟.浅孔留矿法矿柱回收方案探讨[J].矿业工程,2008.8(2)(4):24-25.
    [10]蔡美峰等.岩石力学与工程[M].科学出版社,2002.8:109-112、119-127.
    [11]Hoek E, Carranza-Torres C, Corkum B..Hoek-Brown failure criterion-2002 edition[C]//HAMMAHW, BAWDEN J.CURRAN,& M.TELESNICKI,Eds. Proceedings of NARMS-TAC 2002, Minging Innovation and Technology. Toronto:University of Toronto,2002; 276-273.
    [12]Hoek E, Practical Rock Engineering[M].2002.
    [13]张福渊等.概率统计及随机过程[M],北京航空航天大学出版社,2000.9:240-251.
    [14]彭文斌Flac 3D实用教程[M].机械工业出版社2008.1:55-265.
    [15]杨泽.云南某露天矿东采区边坡岩体力学参数取值研究.硕十论文,20105:22-30.
    [16]郑永学.矿山岩体力学[M].北京:冶金工业出版社,1995.
    [17]夏志皋.塑性力学[M].同济大学出版社,2005.10:236-251.
    [18]刘波、韩彦辉FLAC原理、实例与应用指南[M].北京.人民交通出版社,2005
    [19]盛佳等.基于hoek-brown经验强度准则的岩体力学参数确定的方法[J].采矿技术,2009,9(2):12-14
    [20]李铁汉.岩块与岩体的强度[J].武汉地质学院学报.1985.12(3):35-37.
    [21]赵彭年.松散介质力学[M].地震出版社,1995.6.
    [22]解世俊.金属矿床地下开采[M].冶金工业出版社,2007.1.
    [23]杨殿.金属矿床地下开采[M].中南工业大学出版社,2000.2.
    [24]采矿手册第四卷[M].冶金工业出版社,1999.9.
    [25]张玉灯Flac 3D在岩质边坡稳定性分析中的应用[J].路基工程,2008(6):164-165.
    [26]解世俊.金属矿床地下开采(第2版)[M].北京:冶金工业出版社,1999.
    [27]北京有色院编采矿设计手册2,矿床开采卷(下)[M].北京:中国建筑工业出版社,1987.
    [28]《采矿手册》编辑委员会.采矿手册[M].北京:冶金工业出版社,1999.
    [29]郭建伟、孙国飞.浅述留矿采矿法在我国的应用[J].黄金.2002.11(23)(11):19-22.
    [30]赵永红.急倾斜极薄矿脉采矿方法优选研究[J].矿产保护与利用2006.2(1).
    [31]邹力,彭雄志.浅谈FLAC3D的应用原理、优缺点及改进措施[J].四川建筑,2007(1):151-153.
    [32]魏继红、吴继敏等FLAC 3D在边坡稳定性分析中的应用[J].勘察科学技术,2005(2):27-30.
    [33].乔登攀.放矿理论研究与应用[M].云南科技出版社,2006.4:13-34.
    [34]郑成英、马萃林.急倾斜薄矿体开采实践[J].中国矿山工程,2005.12(34)(6):25-26.
    [35]吴健.降低极薄矿脉矿石贫化率的几种方法[J].新疆有色金属,2003.
    [36]李振.江乳山金矿急倾斜薄矿脉开采技术研究[J].采矿技术,2002.6(2卷)(2).
    [37]胡文寿,张显志.论工程岩体完整性的评价方法[J].西安工程学院学报,2010.9(3).
    [38]孙红月等.大型地下硐室围岩稳定性数值模拟分析[J].浙江大学学报工学版,2004,38(1):70-73.
    [39]苗胜军、万林海、来兴平.三山岛金矿地应力与地质构造关系分析[J].岩石力学与工程学报,2004,23(23):3996-3999.
    [40]王永秀、毛德兵等.数值模拟中煤层物理力学参数确定的研究[J].煤炭学报,2003,28(6):320-324.
    [41]赵吉坤,张子明.三维大理岩弹塑性损伤及细观破坏过程数值模拟[J].岩石力学与工程学报,2008,27(3):487-494.
    [42]米勒L.李世平等泽.岩石力学[M].北京:煤炭工业出版社,1981.
    [43]郭金峰、王汉生.南非Tweefontein铬矿缓倾斜薄矿体开采技术实践与评述.金属矿山,2010,(2):18-21.
    [44]宋建波等.岩体经验强度准则及其在地质工程中的应用[M].地质出版社,2002.
    [45]陈育民、徐鼎平flac/FLAC 3D基础与工程实例[M].北京:中国水利水电出版社,2009.1.
    [46]Kavanagh K T,clough R W. Finite application in characterization of elastic solids[J].Int. J.Solids Structures.1972(7):11-23.
    [47]Hudson J.A.(Ed.) Comprehensive rock engineering[M].London:Pergamon Press,1993.
    [48]Oda M A.Method for evaluating the representive elementary volume based on joint survey of rockmass[J].Can.Geotech.J.,No.25 291-287 1988.
    [49]Effect of fractures on in situ rock stresses studied by the distinct element method[J].
    [50]HAISMSONT B.C. In-Stress Measurements in the Preexcavatinn Design Stage of the Serra Da Mesa Hydroelectrica Project, Brazil[J]. International Journal of Rock Mechanics and Mining Sciences, 1998,35(4-5):124.
    [51]B.Lunda m. d. Zoback. Orientation and magnitude of in situ stress to 6.5 km depth in the Baltic Shield[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:169-190.
    [52]Wiles T.D. Reliability of numerical modeling preduction[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43:454-472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700