用户名: 密码: 验证码:
硫化矿石结块机理及检测技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化矿石结块是硫化矿床开采与加工过程中长期存在而又难以解决的问题,一直以来都被视为硫化矿企业的重大安全隐患。研究结块的影响因素及结块检测技术,能够为制定结块预防措施、减少结块造成的损失提供依据。
     本文通过收集和查阅相关文献,在对国内外有关结块机理、结块检测技术研究现状进行系统综述的基础上,采用理论分析、实验测定与数值模拟相结合的方法,对影响硫化矿石结块的因素进行分析,提出了新的结块特性检测方法和结块预防措施。本文的主要研究内容和成果如下:
     (1)建立硫化矿石结块的事故树,定性分析影响结块的各种因素,并运用逻辑运算和布尔代数化简法则,求得结块的最小割(径)集,找出引起结块的各种因素组合。根据结构重要度的近似判定法则,初步确定了主要影响因素的大小顺序。在此基础上对各主要影响因素进行分析,将结块的综合机理分为三类:溶解性机理、化学反应理论和物理机理。
     (2)提出了结块情况的表征方法,从以往的定性观察上升到定量评价,除了常用的氧化增重法和结块率法以外,又提出了一种改进的单轴测试法(COSTT),对结块特性进行多角度分析,该方法不仅可以测定屈服强度,还可以测定工程上更为关心的材料极限强度、应变等力学参数。与其他方法相比,更直观精确;同时还可对各因素进行耦合分析,为以后防结块剂或防结块剂的研究提供了技术参考。
     (3)采用单因素实验和正交实验法相结合,选取温度、湿度、含水量、粒度四个因素为指标,通过正交实验法分析定性得出其影响程度的大小顺序:温度>含水量>湿度>粒度。实验表明,改变这些因素能显著改变各硫化矿石的结块情况。
     (4)在单因素实验和正交实验的基础上,使用响应面法进行优化,对实验数据进行回归分析,得出温度、湿度、粒度和含水量与结块率之间的回归方程:R2=0.881,
     上式中X1、X2、X3、X4分别是指温度、湿度、粒度和含水量的水平值,并非具体数值。该式表明,各因素对结块率的影响不是简单的一次关系,而是二次关系,X1X4和X2X4项的系数较大,所以温度与含水量、湿度与含水量的交互作用较明显,其他各因素间的交互作用不明显。
     (5)提出了结块的防治措施:物理法、化学法和工艺法;并从管理层面提出几点建议。
Caking of sulfide ores is a long-standing and difficult problem in mining and processing of sulfide deposits. It has been regarded as the major security risk of sulfide minerals enterprise for a long time. The research on caking factors and caking detection technology can provide basis for the development of caking preventive measures to reduce losses caused by agglomeration.
     Based on the collection and access to relevant literature, systematic review was given to the agglomerates mechanisms at home and abroad, caking detection technology, spontaneous combustion characteristics of sulfide ores. The caking factors of sulfide ores were analyzed by the combination of theoretical analysis, experimental method and numerical analysis, and a new detection method was found as well as caking characteristics of preventive measures made. The main research contents and results in this paper are as follows:
     (1) Various caking factors of the sulfide ores were analyzed qualitatively through the establishment of FTA, and the minimal cut (path) sets which could get combination of various caking factors, were obtained by using logical operators and Boolean algebra simplification of rules. According to the approximation determination of their important degree structure, main factors were initially identified by order. Based on this, a comprehensive caking mechanism was divided into three categories: solubility mechanism, chemical reaction theory and physical mechanism.
     (2) Characterization method was introduced to describe the caking situation from the previous qualitative observation to quantitative evaluation. In addition to the oxidation weighting law and the caking rate, a modified uniaxial testing method (COSTT) was proposed to analyze caking characteristics by multi-angle way. It can not only determine the yield strength, but also can measure more other mechanical parameters in the project such as the materials ultimate strength, strain and so on. Compared with other methods, COSTT would be more intuitive and accurate, and can also be coupled analysis with various factors, providing a technical reference for anti-caking agents in the future.
     (3) Single factor experiments and orthogonal test were combined to analyze the temperature, humidity, water content and particle size qualitatively, and get their order as follows:temperature> water content> humidity> particle size. Experimental results show that changing these factors can significantly change the caking situation of the sulfide ores.
     (4) Based on the results of single factor experiments and orthogonal test, response surface method was used to make regression analysis on the experimental data, and gain the regression equation among caking factors including temperature, water content, humidity and particle size. Y=93.654+14.048X1,+3.125X2+0.910X3+14641X4-4.724X1X2-8.663X1X3 +2.660X1X4-35.655-28.867x22-0.913X1X3+1.601X2X4-19.156X23 +0.042X3X4-1.158X24
     R2=0.881,
     In the equation, X1、X2、X3、X4 respectively represent the level value of temperature, water content, humidity and particle size, not the specific values. The expression shows that the effect of various factors on caking rate is not a simply single relationship, but the second relationship, and coefficients of X1X4 and X2X4 are larger, so the interactions between temperature and water content, humidity and water content are obvious, but the others not significant.
     (5) In the paper, it proposed several measures to prevent the caking of sulfide ores:physical, chemical and technology law, and then put forward some suggestions on the management level.
引文
[1]吴超,孟廷让著.高硫矿井内因火灾防治理论与技术[M].北京:冶金工业出版社,1995.
    [2]刘辉,吴超,崔燕等.硫化矿石氧化性的分形表征[J].安全与环境学报,2009,(3):113~116.
    [3]吴超,孟廷让,王坪龙等.硫化矿石自燃的化学热力学机理研究[J].中南矿冶学院学报,1994,25(2):156~161.
    [4]李孜军.硫化矿石自燃机理及其预防关键技术研究[D].长沙:中南大学,2007,11.
    [5]贺兵红,吴超.硫化矿石自燃倾向性的实验室测定方法与应用[J].安全与环境工程,2006,13(1):92~95.
    [6]李孜军,古德生,吴超.高温高硫矿床矿石自燃危险性的评价[J].金属矿山,2004,(5):57~60.
    [7]王坪龙.硫化矿石自燃发火规律现场试验研究[J].化工矿物与加工,1999,(5):7~10.
    [8]李孜军,吴超,李茂楠.阻化剂性能评价的氧化增重法研究[J].金属矿山,2000,(3):43~45.
    [9]周勃,吴超,李茂楠等.硫化矿石预氧化前后自燃倾向性的比较研究[J].中国矿业,1998,7(5):77~79.
    [10]吴大敏.新桥硫铁矿矿石自燃特征及综合防治措施[J].化工矿物与加工,2001(10):20~28.
    [11]仇勇海,陈白珍.水在金属硫化矿体自燃中的作用[J].中国有色金属学报,1996,6(3):5~10.
    [12]蔡建利,程平等.氯化铵的结块与防结块[J].纯碱工业,2000,(1):26~28.
    [13]王世龙.化学品防结块研究[D].郑州:郑州大学,2006,5.
    [14]刘华炜.脱脂乳粉结块特性的实验研究[D].大连:大连理工大学,2006.
    [15]Gamondes J P, Van't Hoff J B. How to prevent fertilizer caking[J]. Nitrogen,1977, 105:32.
    [16]Kurshinnikov IN and Chelikidi GF. Methods of Eliminating the Caking of Fertilizers [J]. Proceedings of the Soviet-Swedish Symposium on the Beneficiation of Phosphate Rock,1978:180~186.
    [17]唐瑞增,刘芳晓,李永亮.复合肥的结块与“肥特利”复合肥防结块[J].磷肥与复肥,2003,18(2):51~52.
    [18]周斌,王美燕.氟硅酸钠的防结块研究[J].化肥工业,2002,30(2):21~23.
    [19]宋海香,孙保平,茹宗玲.防结块剂的研究方法和进展[J].化工进展,2001,(6):50~52.
    [20]张永利,王爱娥,赵宏等.硝盐防结块剂的研制和应用[J].中氮肥,2002,(4):6~7.
    [21]刘芳晓,唐瑞增,李永亮.复合肥的结块与FJK复合肥处理剂[J].河北化工,2001,(2):14~15.
    [22]D.W. Rutland. Fertilizer caking:mechanisms, influential factors, and methods of prevention[J]. Fertilizer Research,1991,30:99~114.
    [23]范金石,徐桂云,殷钰.晶体产品的结块与防止[J].山东化工,1999,(3):28~30.
    [24]羌林成AMPS的开发及油田化学品[J].化学世界,1996(4):216~218.
    [25]张伟.硝基复混肥防结块措施[J].化肥工业,2002,29(3):13~15.
    [26]张万福,张伟.复混肥装置设计防结块措施探讨[J].贵州工业大学学报(自然科学版),2008,37(5):53~55.
    [27]吴涛.复合肥结块的原因分析及解决方法[J].石油化工应用,2007,27(2):72~75.
    [28]季保德.浅谈高氮复混肥防结块剂的使用[J].化肥设计,2006,44(3):61~32.
    [29]吴超,李孜军.聚丙烯酸钠作为硫化矿石防结块剂应用的方法:中国专利,200710034218[P].2008-07-16.
    [30]王世龙,张宝林.颗粒肥料结块快速表征方法研究[J].化工矿物与加工,2006(4):17~19.
    [31]唐云,郑世华,杜廷军等.复混(合)肥结块率的快速测定方法[J].磷肥与复肥,2005,20(5):55~57.
    [32]Paterson, A. H. J., Bronlund, J. E., Brooks, G. F. The blow test for measuring the stickiness of powders[J]. AIChE 2001 Annual Meeting, RenoHilton, USA,2001.
    [33]Lazar, M.E., Brown, A.H., Smith, G.S. Wong, F.E.[J]. Food Technology, 1956:129~134.
    [34]M. Rock, M. Ostendorf, J. Schwedes. Development of an uniaxial caking tester[J]. Chem. Eng. Technol,2006,29(6):679~685.
    [35]Lockman, C.A. [J]. Chemical Engineering Process,1999,38:301~306.
    [36]B. Weigl, Y. Pengiran, H. J. Feise, et al. Comparative testing of powder caking[J]. Chem. Eng. Technol,2006,29(6):686~690.
    [37]C. I. Beristain, E. Azuara, et al. Effect of caking and stickiness on the retention of spray-dried encapsulated orange peel oil[J]. Science of Food and Agriculture, 2003,83:1613~1616.
    [38]G El Diwani, S Hawash, N El Ibiari, et al. Treatment of ammonium nitrate fertilizer for cake prevention[J]. Ind Chem Res,1994,33:1620~1622.
    [39]王汝春.化肥防结块评价方式研究[J].云南化工,2003,30(3):40~42.
    [40]季保德.内外防结块剂共同使用的防结块效果[J].磷肥与复肥,2003,18(4):33.
    [41]Kistler, Jean P, Guinot, et al. Anticaking compositions:US,4185988[P]. 1980-01-29.
    [42]Chattopadhyay, Arun K. Coating for ammonium nitrate prillls:US,5567910[P]. 1996-10-22.
    [43]汪发松.硫化矿自燃影响因素分析及安全评价研究[D].长沙:中南大学,2009.
    [44]张科.复合肥结块原因及对策[J].农业与技术,2003,23(2):45~46.
    [45]侯翠红,张宝林,马迪等.复混(合)肥料的结块及防止的研究[J].河南化工,2001,(10):12~13.
    [46]Riitta Partanen, Piia Hakala, Olli Sjovall. Effect of relative humidity on the oxidative stability of microencapsulated sea buckthorn seed oil[J]. Journal of Food Science,2005,70(1):37-43.
    [47]C.I.Beristain, E.Azuara, E.J.Vernon-carter. Effect of water activity on the stability to oxidation of spray-dried encapsulated orange peel oil using mesquite gum (prosopis juliflora) as wall material[J]. Journal of Food Science,2002,67(1):206~ 211.
    [48]李其昌,吴超.优化凿岩爆破参数降低回采大块率[J].中国钨业,2004,19(3):24~26.
    [49]刘力红.冰粒射流试验方法的研究[D].淮南:淮南矿业学院,1997.
    [50]刘茉,雷兆武.乳状液膜体系提取废水中Cu2+试验[J].辽宁师专学报(自然科学版),2006,8(3):104~106.
    [51]常荣凤,元洪波.金渠金矿采矿方法沿革及优化[J].金属矿山,2009,(9):54~57.
    [52]赵星光.铜录山矿运输道路粉尘抑尘控制研究[D].南宁:广西大学,2005.
    [53]Dewen Jia, Wenjie Qin, Zhengxing Zuo. Study on the relationship between design parameters and volume of diesel engine based on orthogonal experiment design[J]. IE and EM 2009-Proceedings 2009 IEEE 16th International Conference on Industrial Engineering and Engineering Management,2009:851~ 854.
    [54]Hong Lu. Orthogonal experiment data analysis based on optimal discrimination plane and its application[J].2009 WRI World Congress on Computer Science and Information Engineering, CSIE,2009:215~219.
    [55]Bijun Luo, Xinhua Zhao, Zhenzhong, et al. Orthogonal experiment based analysis on chemical stability of desalinated seawater[J].2009 International Conference on Energy and Environment Technology,2009,2:644~647.
    [56]Oke Isaiah Adesola. Orthogonal experiments in the development of carbon-resin for chloride removal from solutions[J]. Statistical Methodology,2009,6(2):109~ 119.
    [57]Ying Chen, Jiafan Zhang, Canjun Yang, et al. The workspace mapping with deficient-DOF space for the PUMA 560 robot and its exoskeleton arm by using orthogonal experiment design method[J]. Robotics and Computer-Integrated Manufacturing,2007,23(4):478~487.
    [58]Gang Liu, Zhongqin Lin, Youxia Bao. Improving dimensional accuracy of a u-shaped part through an orthogonal design experiment[J]. Finite Elements in Analysis and Design,2002,39(2):107~118.
    [59]Z. C. Du, J. G. Yang, Z. Q. Yao, et al. Modeling approach of regression orthogonal experiment design for the thermal error compensation of a CNC turning center[J]. Journal of Materials Processing Technology,2002,129(1-3): 619~623.
    [60]R. W. Lewis, Y. Zheng. Coarse optimization for complex systems:An application of orthogonal experiments [J]. Computer Methods in Applied Mechanics and Engineering,1992,94(1):63~92.
    [61]史同瑞,吴强,许腊梅等.蒽诺沙星混悬液的研制及质量控制[J].黑龙江畜牧兽医,2004(12):57~58.
    [62]张萍,张南平,林瑞超.多指标正交实验法优选杜仲药材最佳炮制工艺[J].药物分析杂志,2009,29(11):1817~1820.
    [63]邢旭东,杨琼,廖森泰等.采用响应面法优化白僵蚕草酸铵的提取工艺[J].蚕业科学,2009,35(4):902~906.
    [64]刘钟栋,李坤,高莉等.蔗糖多脂合成工艺的响应面法优化[J].农业机械学报,2008,39(2):85~88.
    [65]侯翠红,张宝林,王世龙.复混肥料结块因素实验研究[J].化工矿物与加工,2007,(2):29~31.
    [66]刘冬水,曾焕友.4号岩石粉状铵梯油炸药结块原因分析及对策[J].爆破器材,2000,29(1):16~17.
    [67]夏志国,杨俊睿.BDK防结块剂在硝酸钱生产中的应用[J].黑龙江石油化工,2001,12(3):25~26.
    [68]蒙增辉.DAP结块原因分析及采取的措施[J].磷肥与复肥,2006,21(1):39~40.
    [69]靳玄烨,杨合乐.肥料结块原因与防结块研究进展[J].河北化工,2006,29(10):23~24.
    [70]资学民,杨先,李艳华.粉状磷酸—铵结块原因及抗结块试验研究[J].磷肥与复肥,2001,16(2):29~31.
    [71]孔卓.复混肥结块原因及防范措施[J].化肥工业,2000,28(1):10~13.
    [72]陈明良,梁济,葛建国.复混肥料的结块和防结块[J].化肥工业,2004,31(6):22~38.
    [73]李贤明.复混肥料的结块因素分析及防结块技术[J].云南化工,2001,28(1):24~41.
    [74]赵海燕.国内外硝酸铵防结块剂的开发研究[J].中氮肥,2002,(3):1~4.
    [75]赵雨田,黄梅丽,曾宪文.复混肥结块原因及防结块措施[J].磷肥与复肥,2000,15(4):46~51.
    [76]王岩编译,许秀成校.肥料结块及其防止对策[J].磷肥与复肥,2003,18(3):73~76.
    [77]沈丽英.针对尿基复合肥的一种新的防结块技术[J].磷肥与复肥,2006,21(5):50~51.
    [78]郑世华,唐云,李平等.针对高氮尿基复合肥的液体防结剂[J].磷肥与复肥,2006,21(4):62~63.
    [79]肖辉,杜翠凤.新型高聚物阻化剂的阻化效果研究[J].工业安全与环保,2006,32(3):6~8.
    [80]唐成标,陈荐.新型环保复合肥防结块剂的开发和利用[J].磷肥与复肥,2004,19(2):54~55.
    [81]张一甫,张罡.硝酸钾结块原因探讨[J].海湖盐与化工,2003,33(2):11~12.
    [82]刘金河,高仁孝,陈智群等.硝酸铵防吸湿性和防结块特性研究[J].含能材料,2000,8(4):145~148.
    [83]卢勤斌.硝酸铵防结块添加剂及其工业运用[J].云南化工,2005,32(1):47~49.
    [84]宋文利.硝酸铵防结块技术应用[J].化工技术与开发,2005,34(2):44~46.
    [85]蔡敏敏,陈天云,黄建祯等.无机盐添加剂对硝酸钱晶变及结块特性的影响[J].南京理工大学学报,2000,24(1):76~79.
    [86]陈绍寿,刘世国,罗文红.硝酸铵防结块及松散型硝酸铵的生产[J].化肥工业,2000,27(4):41~44.
    [87]黄艳芹.硝酸铵的结块原因及防范措施[J].平原大学学报,2002,19(4):41~42.
    [88]刘哲峰,李旭祥,邹忠良.硝酸铵的结块与防止[J].应用化工,2006,35(6):464~473.
    [89]刘继森,张宗森.复合肥防结块剂的现状及前景[J].四川化工与腐蚀控制,1999,2(5):50~51.
    [90]刘瞻.防结块剂的结构特点与应用[J].怀化学院学报,2004,23(5):33~37.
    [91]俞马宏,崔学军,杨世伟.防结块剂对氯酸钠晶体防结块特性能的影响[J].日用化学工业,2004,34(2):87~90.
    [92]宋海香,吴应霞,张春霞等.防结块剂/聚合物混合物对硝酸钠的防结块效果研究[J].日用化学工业,2005,35(2):126~129.
    [93]张春霞,张应军,徐扬等.防结块剂在化肥防结块剂中的应用[J].日用化学工业,2002,32(6):44~48.
    [94]汤建伟,张宝林.防结块剂在化肥生产中的应用[J].化肥工业,2000,28(3):3~8.
    [95]沈玉龙.防结块剂在无机盐防结块中的应用[J].日用化学工业,2002,32(4):48~49.
    [96]危有良,欧长炎.浅孔留矿法在回采结块特性矿体中的应用[J].中国矿业,1999,8(47):92~94.
    [97]朱晓红,刘东译.混凝土应变软化性能的单轴抗压测试方法[J].水利水电快报,2001,22(6):9~12.
    [98]汤中斌,徐绯,李玉龙MEMS材料力学性能的测试方法[J].机械强度,2007,29(3):409~418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700