用户名: 密码: 验证码:
生物质乙醇制乙烯过程节能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国乙烯的表观消费量已超过10Mt。但从石油资源考虑,仅通过改建扩大现有乙烯装置或兴建新石油裂解装置不现实。中国秸秆资源丰富,若通过生物化工技术将其转化为乙醇,乙醇再脱水生产乙烯,是一条解决中国乙烯产量缺口、可持续发展的良策。目前,应对乙醇脱水生产技术,对其进行扩大改造以及过程集成化,提高能源综合利用效率,降低生产成本,使生物乙烯的价格能够与当前石油制乙烯的价格持平或更具有经济效益,因此对于生物质乙醇制乙烯过程的节能研究更具有实际意义。
     安徽丰原集团于2004年投资新建了一套17kt/a乙醇制乙烯装置,其工艺流程包括两个部分:乙醇精馏段和乙醇脱水反应段。由生物质制得的乙醇在精馏段除去二氧化碳、杂醇油等杂质,精馏后的乙醇经过预热汽化在气相状态下进入反应器进行脱水反应。
     由于现有的乙醇脱水制乙烯装置是建立在燃料乙醇后继生产线之上的,工艺路线比较陈旧,能耗过高。为了降低乙烯成本,提高生物乙烯的市场竞争力,本文结合生物质乙醇制乙烯流程自身的特点,在现有流程基础上进行了一系列的节能改进。同时,乙醇脱水段将会采用一种反应温度低,空速大的分子筛催化剂,并对该工艺流程进行模拟研究,提出改进方案,并且比较两种催化剂的经济效益。
     本文应用ASPEN PLUS软件对乙醇精馏段和乙醇脱水反应段的设计工况及改造后的工况进行了详细、严格的模拟运算,在模拟结果与设计工况数据吻合良好的基础上,利用ASPEN PLUS强大的灵敏度分析、参数优化等功能,对现有流程存在的问题进行分析,找出节能的关键并提出节能改进方案,使改进后的流程在脱水段不需添加中压蒸汽作为载气,同时能耗较现有流程节省达21.7%;若脱水段采用反应温度更低的分子筛催化剂,过程节能达28.5%。
The apparent consumption of ethylene in China is over 10Mt. But considering the petroleum resources, it is unpractical to rebuild and extend the current ethylene facilities or construct the new petroleum cracking facilities. China is rich in crop straw resources. It will be a good plan to solve ethylene product shortage and also be sustainable development, if we get ethylene through ethanol which produces by crop straw fermentation. At present, rebuilding extension and process integration of the ethanol dehydration technology are beneficial to improve comprehensive utilization rate of energy and reduce production cost. The price of bio-ethylene with petro-ethylene will be equal or have better economic efficiency. The study on energy-saving process of ethylene from biomass ethanol would have more realistic significance.
     AnHui Feng Yuan Group newly builted a 17,000t/a ethanol dehydration unit in 2004. The process flow contains two parts: ethanol distillation process and ethanol dehydration process. The ethanol from biomass removes impurities, for example carbon dioxide, fusel oil ect, in ethanol distillation process, and then goes into the reactors for dehydration reaction in gaseous state after preheating vaporization.
     The current ethylene production from ethanol dehydration facilities, which was build after the fuel ethanol facilities, was dated and high energy consumption. In order to save costs and improve bio-ethylene's competitive power in market, a series of energy-saving measures based on current facilities have been presented combining ethylene from biomass ethanol unit self characteristics. At the same time, a new molecular sieve catalyst which has lower reaction temperature and higher space velocity would be used in the process of ethanol dehydration. A new process suitable for this catalyst will be proposed and simulated, and then the economic efficiency of the two catalysts will be compared.
     Process simulation of both design condition and reconstruction condition of ethanol distillation and ethanol dehydration processes have been completed by using ASPEN PLUS software. Based on the results of simulation fitted with design data very well, the problem of current process will be analysed using the powerful functions of sensitivity analysis, parameter optimization of ASPEN PLUS. Then the key of process energy saving is found out and energy saving schemes are proposed. There is no stream added in the improved dehydration process, and 21.7% heat consumption is reduced comparing with the current process. If a molecular sieve catalyst is used, no stream added and the heat consumption reduced by 28.5%.
引文
[1]陈曦,韩志群,孔繁华等.生物质能源的开发与利用.化学进展,2007,19(7/8):1091-1097.
    [2]潘泽江,曹明宏.我国生物质能源产业发展的制约因素及其对策.安徽农业科学,2006,34(10):2228-2229.
    [3]袁振宏,吴创之,马隆龙等.生物质能利用原理与技术.北京:化学工业出版社,2005.
    [4]王小孟,谭江林,陈金珠.我国生物质能源开发利用的现状.江西林业科技,2006,(5):45-57.
    [5]姚向君,田宜水.生物质能资源清洁转化利用技术.北京:化学工业出版社,2005.
    [6]谭天伟,王芳,邓利.生物能源的研究现状及展望.现代化工,2003,23(9):8-12.
    [7]李盛贤,贾树彪,顾立文.利用纤维素原料生产燃料酒精的研究进展.酿酒,2005,32(2):13-16.
    [8]于斌,齐鲁.木质纤维素生产燃料乙醇的研究现状.化工进展,2006,25(3):244-249.
    [9]钱伯章,王祖纲.精细化工技术进展与市场分析.北京:化学工业出版社,2005.
    [10]钱伯章,夏磊.国外生物化工的新进展.现代化工,2002,22(9):53-57.
    [11]黄兴山.发展生物乙烯,前景甚为光明.合成技术及应用,2006,(2):57.
    [12]潘锋,吴玉龙,张建安等.生物发酵乙醇催化脱水制乙烯发展状况.现代化工,2006,26:27-31.
    [13]孙春艳.吉林18个省院合作资金项目启动,可增效逾百亿元.吉林日报,2005-11-28.
    [14]潘履让.乙醇脱水制乙烯催化剂发展综述.精细石油化工,1986,(4):41-50.
    [15]Marwil S J.Dehydration of alcohols.US,A,4234752.1980-11-18.
    [16]Rho S B.The conversion of ethanol to ethylene using a gas-phase catalytic reaction,including the effects of cyclic operation.International chemical engineering.1984,24(3):567-577.
    [17]Kochar N K.Ethylene from ethanol.Chemical Engineering,1980,28(1):80-81.
    [18]Pearson D E.Phosphoric acid systems.2.catalytic conversion of fermentation ethanol to ethylene.Industrial & Engineering Chemistry Research,1981,20(4):734-740.
    [19]郝彤.乙醇稀水溶液在ZSM-5分子筛催化剂上脱水制乙烯.石油化工,1985,14(2):92-93.
    [20]Mao R L V.Catalytic conversion of aqueous ethanol to ethylene.US,A,4873392.1989-10-10.
    [21]Mao R L V,Nguyen T M.Superacidic catalysts for low temperature conversion of aqueous ethanol to ethylene.US,A,4847223.1989-7-11.
    [22]Talukdar A K,Bhattacharyya K G,Sivasanker S.HZSM-5 catalysed conversion of aqueous ethanol to hydrocarbons.Applied Catalysis,1997,148(2):357-371.
    [23]潘履让,蒋瑞芸,李赫晅.HZSM-5分子筛上CO_2和NH_3吸附及乙醇脱水反应选择性的研究.催化学报,1985(6):353-356.
    [24]Pearson D E.Process for catalytic dehydration of ethanol vapor to ethylene.US,A,4423270.1983-12-27.
    [25]顾志华.乙醇制乙烯技术现状及展望.化工进展,2006,25(8):847-851.
    [26]Barrocas H V V,Castro J B,Assis R C.Process for preparing ethane.US,A,4232179.1980-11-4.
    [27]胡铁刚,程可可,张建安等.生物乙醇催化制备乙烯的研究进展.现代化工,2007,27:96-99.
    [28]徐晓育,谢安君.乙醇脱水制取乙烯的工业生产.日用化学工业,1988,(5):23-28.
    [29]宗婉贞.国外动态.石油化工,1984,13:302.
    [30]Barrocas H V,Fernando B J.Process for dehydration of a low molecular weight alcohol.US,A,4396789.1983-8-2.
    [31]曲平,俞裕国.化工过程模拟与优化.大连:大连理王大学化工学院内部教材,1998.
    [32]姚平经.《过程系统分析与综合》.大连理工大学出版社,2004.2
    [33]胡克林,罗金生.化工过程模拟技术进展与趋势.新疆工学院学报,1997,12(18):254-261.
    [34]冯权莉.通用化工流程模拟技术进展与应用.云南工业大学学报,1996,12(1):52-57.
    [35]唐宏青.合成氨流程模拟与分析系统SAPROSS(Ⅱ)(上).化工设计.1995,(1):29-32.
    [36]陆恩锡,张慧娟.化工过程模拟及相关高新技术(Ⅰ)化工过程稳态模拟.化工进展,1999.4:63-64.
    [37]杨友麒.化工过程模拟.化工进展,1996,3:1-8.
    [38]Tracy E,Casavan T,Raymond P.Using chemical process simulation to design industrial ecosystems.Journal of Cleaner Production,2004,12:901-908.
    [39]雷培德,李端阳等.化工过程模拟技术及HYSIM模拟系统在化工生产中的应用.湖北化工,2002,6:4-6.
    [40]陆恩锡,张慧娟.化工过程模拟及相关高新技术(Ⅱ)化工过程动态模拟.化工进展,2000,1:76-78.
    [41]Smith F G,Dimenna R A.Simulation of a batch chemical process using parallel computing with PVM and Speedup.Computers and Chemical Engineering,2004,28:1649-1659.
    [42]Smejkal Q,Soos M.Comparison of computer simulation of reactive distillation using ASPEN PLUS and HYSYS software.Chemical Engineering and Processing,2002,41:413-418.
    [43]Sotuden-Gharebaagh R,Legros R.Simulation of circulating fluidized bed reactors using ASPEN PLUS.Fuel,1998,77(4):327-337.
    [44]Ong'iro A O,Ugursal V I.Simulation of combined cycle power plants using the ASPEN PLUS shell.Heat Recovery System & CHP,1995,15(2):105-113.
    [45]Ong'iro A O,Ugusal I.Thermodynamic simulation and evaluation of a steam CHP plant using ASPEN PLUS.Applied Thermal Engineering,1996,16(3):263-271.
    [46]ASPEN Technology Inc.ASPEN PLUS User Guide Version 10.1.1994.
    [47]赵琛琛.工业系统流程模拟利器-ASPEN PLUS.电站系统工程.2003,19(2):57-59.
    [48]谢安俊,刘世华等.大型化工流程模拟软件-ASPEN PLUS.石油与天然气化工,1995,24(4):247-253.
    [49]谢扬,沈庆扬等.ASPEN PLUS化工模拟系统在精馏过程中的应用.化工生产与技术,1999,6(3):17-24.
    [50]章克昌等.酒精与蒸馏酒工艺学.北京:轻工业出版社,1995.
    [51]Aspen Technology Inc.ASPEN PLUS 11.1 Unit Operation Models.US:Aspen Technology Inc,2002.
    [52]朱自强,徐讯.化工热力学(第二版).北京:化学工业出版社,1997
    [53]吴冠京等.ASPEN PLUS物性方法和模型.大庆:大庆石化总厂计算机开发公司,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700