用户名: 密码: 验证码:
层合板壳振动和声辐射预测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合板壳在航空航天、船舶与海洋工程中有广泛的应用。研究复合板壳的振动和声辐射特性对于设计新型船舶和潜艇至关重要。本文以潜艇的振动与声辐射为背景,给出了五种板壳的结构振动和声辐射预测方法:两组筋加强层合板、环肋加强约束阻尼层合圆柱壳、多周期筋加强层合圆柱壳、层合圆锥壳和轴向矩形板加强圆柱壳。加筋层合板和多周期筋加强层合圆柱壳可以用来研究水下航行器的声辐射。环肋加强约束阻尼层合圆柱壳可以用来研究覆盖有约束阻尼层的潜艇和鱼雷的声辐射。层合圆锥壳的振动与声辐射可以用来研究艇体艉部的振动与声辐射。轴向矩形板加强圆柱壳可以用来研究带龙骨或长基座的艇体的声辐射。本文所做的工作如下:
     (1)本文从理论上研究了剪切变形加筋层合板的声辐射,基于一阶剪切变形理论推导了复合层合板的运动方程。两组平行筋仅仅通过法向线力同层合板相互作用。利用波数变换和稳相法,解析描述了远场声压。对比了一阶剪切变形理论和经典层合板理论给出的声压,对于一块各向同性板,在中高频范围表现出声压的差异。本文利用声压和横向位移谱来研究力的位置、筋和角铺设层的影响,同时研究了多种载荷作用下的对称和反对称铺设层合板的声辐射,给出了加筋层合板的声辐射功率。
     (2)理论研究了两组环肋加强带约束阻尼层合圆柱壳的声辐射,基于Sanders薄壳理论推导了约束阻尼层圆柱壳的控制方程。两组环肋仅仅通过法向线力同主壳相互作用。在波数域,利用稳相法得到远场声压的解析表达式。分析了粘弹性核心层、约束层和多种载荷对声压的影响。声压和径向位移的螺旋波谱清晰地揭示了加筋约束阻尼层合圆柱壳的振动和声辐射特性,约束阻尼层能有效地抑制径向振动和减少声辐射。
     (3)理论研究了多周期筋加强剪切变形层合圆柱壳的声辐射。两组环肋和一组纵桁分别均匀分布在圆柱壳的轴向和周向。这种典型结构广泛地用来建造水下航行器的外壳。两种模型用来研究加筋层合圆柱壳声辐射。一种是简化的模型,仅仅用在低频段,稠密纵桁加强的条件下。另外一个是耦合模型,需要数值求解,在全频段范围内使用。利用径向位移和声压的螺旋波谱本文发现轴向波数转换由环肋引起,周向波数转换由纵桁产生。这可以理解为轴向波和周向波会被加强筋调制,并且多周期加强筋抑制了圆柱壳的径向位移和声压。对于反对称层合圆柱壳,径向位移和表面声压的螺旋波谱揭示出了这些现象,合适设计的多周期加强筋将减少圆柱壳的振动和声辐射。在环频率以上时,大型圆柱壳结构的远场声辐射在波数域上的特性被一个声椭圆节制,只有声椭圆内部的波才具备声辐射能力。周向纵桁能减少圆柱壳的声辐射功率和输入功率,但从输入功率到声辐射功率的能量转化效率会在很大的程度上提升。
     (4)本文详细研究了一个正交铺设层合圆锥壳的声辐射模型,基于Reissner-Naghdi薄壳理论,推导了圆锥壳的控制方程。作用在锥壳上的流体载荷通过将层合圆锥壳分割成小圆柱段近似。圆锥壳的位移场通过波传播法和Galerkin法求解,远场声压在波数域内通过两端带有无限长圆柱障板的小圆柱声辐射的迭加得到,研究了层合圆锥壳的振动和声学特性。
     (5)以研究带龙骨或长基座面板的潜艇声辐射为背景,本文建立了轴向矩形板加强圆柱壳的声辐射模型。各向同性矩形板的横向运动通过经典的薄板理论描述,平板的面内运动采用二维弹性理论表达,矩形板对圆柱壳的作用力通过圆柱壳的位移表示。由于结构在圆周方向表现出非均匀性,周向方向的波数是耦合的。在波数域内求解耦合系统的控制方程,得到了圆柱壳的位移场。在径向载荷和轴向载荷作用下,研究了矩形板对圆柱壳振动和声辐射特性的影响。
     最后,本文对板壳结构声的进一步研究工作进行总结。指出以后工作的研究重点。
Composite plates and shells have wide applications in aeronautic and astronautic,marine engineering. Study on the vibrational and acoustic characteristics is critical todesigning new ships and submarines. The present research contents are in the contextof the vibrational and acoustic behavior of submarine. Structural and acousticcharacteristics of five kinds of plates and shells are analyzed, such as laminatedcomposite plates with two sets of stiffeners, constrained layer damping cylindricalshells with ring stiffeners, laminated composite shells with multiple stiffeners,laminated conical shells and circular cylindrical shells with an axial rectangle plate.Laminated composite plate with stiffeners and laminated composite shells withmultiple stiffeners can be used to investigate acoustic radiation from underwatervehicles. Constrained layer damping cylindrical shell with ring stiffeners can beemployed to study acoustic radiation from submarine and torpedo hulls. Laminatedconical shell can be used to explore sound radiation from the stern of submarine.Circular cylindrical shells with an axial rectangle plate can be employed to examineacoustic radiation from submarine with the rib plate or complicated long base. Thepresent studies are given as follows:
     (1) Sound radiation from shear deformable stiffened laminated plates is studiedtheoretically. The equations of motion for the composite laminated plate are derivedon the basis of the first-order shear deformation plate theory. Two sets of parallelstiffeners interact with the laminated plate only through the normal line forces. Byusing the Fourier wavenumber transform and the stationary phase method, thefar-field sound pressure is described analytically. Sound pressure given by thefirst-order shear deformation plate theory and the classical thin plate theory iscompared, and the differences of sound pressure are shown in the high frequencyrange for an isotropic plate. Sound pressure and the transverse displacement spectraare presented to illustrate the effects of force location, stiffeners and angle-ply layers.Sound radiation from symmetric and antisymmetric composite plates with multiple loadings is investigated and the acoustic power of the stiffened laminated cylindricalshell is also presented.
     (2) Acoustic radiation from cylindrical shells stiffened by two sets of rings, withconstrained layer damping, is investigated theoretically. The governing equations ofmotion for the cylindrical shell with constrained layer damping are derived on thebasis of Sanders thin shell theory. Two sets of rings interact with the host cylindricalshell only through the normal line forces. The solutions are derived in thewavenumber domain and the stationary phase method is used to find an analyticalexpression of the far-field sound pressure. The effects of the viscoelastic material core,constrained layer and multiple loadings on sound pressure are demonstrated. Thehelical wave spectra of sound pressure and the radial displacement clearly show thevibration and acoustic characteristics of the stiffened cylindrical shell withconstrained layer damping. Constrained layer damping can effectively suppress theradial vibration and reduce acoustic radiation.
     (3) Acoustic radiation from shear deformable laminated cylindrical shells withmultiple periodic stiffeners is explored theoretically. Two sets of rings and one set ofcircumferential stringers are uniformly distributed along the inner surface of thelaminated cylindrical shell in the axial and circumferential directions. These structuresare widely used for the construction of the hulls for underwater vehicles. Two kindsof models are proposed to investigate acoustic radiation from stiffened laminatedcylindrical shells in the present work. One is a simplified method and only employedin the low frequency range in a condition of dense stringers. The other used in allfrequency range is a coupled model and needs to be solved numerically. It transpiresthat the axial wavenumber conversion is caused by the rings and the circumferentialwavenumber conversion is produced by the stringers, which is clearly identified bythe helical wave spectra of the radial displacement and sound pressure. Therefore, it isunderstandable that the axial waves and the circumferential waves would bemodulated, and the radial displacement and sound pressure would be suppressed oncethe cylindrical shell is reinforced by two sets of rings and circumferential stringers.The helical wave spectra of the radial displacement and the surface sound pressure for the antisymmetric laminated cylindrical shell just show these phenomena. Theproperly designed cylindrical shell with multiple periodic stiffeners will reduce thevibration and acoustic radiation. Above the ring frequency, the characteristic in thewavenumber domain of far-field acoustic radiation from a large cylindrical shell isconfined by an ellipse and only the waves inside the ellipse can radiate sound into thefar field. The circumferencial sringers can reduce the acoustic power and the inputpower of the laminated cylindrical shell, but the energy transformation efficiencyfrom the input power to the acoustic power is increased to great extent.
     (4) A model of acoustic radiation from conical shells is explored in detail and theequations of motion for the conical shell are described on the basis ofReissner-Naghdi thin shell theory. Fluid loadings acting on the conical shell aretackled by the approximation of dividing the laminated conical shell into smallcylindrical segments. The displacement field of conical shell is solved by using thewave propagation approach and Galerkin method. The far-field sound pressure isfound in the wavenumber domain by the superposition of acoustic radiation from eachcylinder with infinite circular cylindrical baffles at the two ends. Vibration andacoustic characteristics of laminated cone are studied.
     (5) A model of acoustic radiation from circular cylindrical shell with an axialrectangle plate is presented in the context of studying acoustic radiation fromsubmarine with a rib plate or long base panel. Transverse motion of the isotropicrectangle plate is described by using the classical thin plate theory and the equationsof in-plane motion for the plate are expressed on the basis of the two-dimensinalelastic theory. The reactive forces of the plate acting on the cylindrical shell aredetermined by using the displacements of the cylindrical shell. Due to the structuralnon-uniformity in the circumferential direction, the circumferential waves are coupled.The coupling systematic equations are solved in the wavenumber domain, and thenthe displacement field of the structure is obtained. The effects of the rectangle plate onthe vibrational and acoustic behavior of the cylindrical shell are studied under radialand axial loadings.
     In the end, the further studies of the structural acoustics for the plates and shellsare summarized and the future key points of the researches are pointed out.
引文
1. M. J. Lighthill, On sound generated aerodynamically. I. General theory, Proceedings of theRoyal Society of London. Series A, Mathematical and Physical Sciences211(1952), no.1107,564-587.
    2. D. J. Mead, Wave propagation in continuous periodic structures: Research contributions fromsouthampton,1964-1995, Journal of Sound and Vibration190(1996), no.3,495-524.
    3. M. C. Junger and D. Feit, Sound, structures, and their interactions, Cambridge, MIT press(1986).
    4. C. Wang and J. C. S. Lai, The sound radiation efficiency of finite length acoustically thickcircular cylindrical shells under mechanical excitation i: Theoretical analysis, Journal ofSound and Vibration232(2000), no.2,431-447.
    5. F. J. Fahy, Sound and structural vibration: Radiation, transmission and response, AmsterdamBoston Elsevier Academic (2007).
    6. D. J. Mead and K. K. Pujara, Space-harmonic analysis of periodically supported beams:Response to convected random loading, Journal of Sound and Vibration14(1971), no.4.
    7. B. R. Mace, Periodically stiffened fluid-loaded plates, ii: Response to line and point forces,Journal of Sound and Vibration73(1980), no.4,487-504.
    8. B. R. Mace, Periodically stiffened fluid-loaded plates, i: Response to convected harmonicpressure and free wave propagation, Journal of Sound and Vibration73(1980), no.4,473-486.
    9. D. J. Mead, Plates with regular stiffening in acoustic media: Vibration and radiation, Journalof the Acoustical Society of America88(1990), no.1,391-401.
    10. M. B. Xu, X. M. Zhang and W. H. Zhang, Space-harmonic analysis of input power flow in aperiodically stiffened shell filled with fluid, Journal of Sound and Vibration222(1999), no.4,531-546.
    11. J. Yan, T. Y. Li, T. G. Liu and J. X. Liu, Characteristics of the vibrational power flowpropagation in a submerged periodic ring-stiffened cylindrical shell, Applied Acoustics67(2006), no.6,550-569.
    12. J. Yan, T. Y. Li, J. X. Liu and X. Zhu, Space harmonic analysis of sound radiation from asubmerged periodic ring-stiffened cylindrical shell, Applied Acoustics67(2006), no.8,743-755.
    13. B. R. Mace, Sound radiation from a plate reinforced by two sets of parallel stiffeners, Journalof Sound and Vibration71(1980), no.3,435-441.
    14. J. E. Greenspon, Sound radiation from an orthotropic plate supported by a double set ofstiffeners, J.G. Engineering Research Associates0-75-1(1975).
    15. B. A. Cray, Acoustic radiation from periodic and sectionally aperiodic rib-stiffened plates,Journal of the Acoustical Society of America95(1994), no.1,256-264.
    16. X. W. Yin, X. J. Gu, H. F. Cui and R. Y. Shen, Acoustic radiation from a laminated compositeplate reinforced by doubly periodic parallel stiffeners, Journal of Sound and Vibration306(2007), no.3-5,877-889.
    17. L. Maxit, Wavenumber space and physical space responses of a periodically ribbed plate to apoint drive: A discrete approach, Applied Acoustics70(2009), no.4,563-578.
    18. X. Cao, H. Hua and Z. Zhang, Sound radiation from shear deformable stiffened laminatedplates, Journal of Sound and Vibration330(2011), no.16,4047-4063.
    19. B. R. Mace, Sound radiation from fluid loaded orthogonally stiffened plates, Journal of Soundand Vibration79(1981), no.3,439-452.
    20. F. X. Xin and T. J. Lu, Sound radiation of orthogonally rib-stiffened sandwich structures withcavity absorption, Composites Science and Technology70(2010), no.15,2198-2206.
    21. D. Takahashi, Sound radiation from periodically connected double-plate structures, Journal ofSound and Vibration90(1983), no.4,541-557.
    22. M. Yairi, K. Sakagami, E. Sakagami, M. Morimoto, A. Minemura and K. Andow, Soundradiation from a double-leaf elastic plate with a point force excitation: Effect of an interiorpanel on the structure-borne sound radiation, Applied Acoustics63(2002), no.7,737-757.
    23. C. B. Burroughs, Acoustic radiation from fluid-loaded infinite circular cylinders with doublyperiodic ring supports, Journal of the Acoustical Society of America75(1984), no.3,715-722.
    24. X. W. Yin, L. J. Liu, H. X. Hua and R. Y. Shen, Acoustic radiation from an infinite laminatedcomposite cylindrical shell with doubly periodic rings, Journal of Vibration and Acoustics,Transactions of the ASME131(2009), no.1,0110051-0110059.
    25. B. M. Efimtsov and L. A. Lazarev, Forced vibrations of plates and cylindrical shells withregular orthogonal system of stiffeners, Journal of Sound and Vibration327(2009), no.1-2,41-54.
    26. B. M. Efimtsov and L. A. Lazarev, Sound pressure in cylindrical shells with regularorthogonal system of stiffeners excited by a random fields of forces, Journal of Sound andVibration330(2011), no.15,3684-3697.
    27. A. J. Hull and J. R. Welch, Elastic response of an acoustic coating on a rib-stiffened plate,Journal of Sound and Vibration329(2010), no.20,4192-4211.
    28. J. Legault and N. Atalla, Sound transmission through a double panel structure periodicallycoupled with vibration insulators, Journal of Sound and Vibration329(2010), no.15,3082-3100.
    29. F. X. Xin, T. J. Lu and C. Q. Chen, Sound transmission through simply supported finitedouble-panel partitions with enclosed air cavity, Journal of Vibration and Acoustics,Transactions of the ASME132(2010), no.1,0110081-01100811.
    30. J. Alba, J. Ramis and V. J. Sáchez-Morcillo, Improvement of the prediction of transmissionloss of double partitions with cavity absorption by minimization techniques, Journal of Soundand Vibration273(2004), no.4-5,793-804.
    31. A. Mejdi and N. Atalla, Dynamic and acoustic response of bidirectionally stiffened plates witheccentric stiffeners subject to airborne and structure-borne excitations, Journal of Sound andVibration329(2010), no.21,4422-4439.
    32. J. H. Lee and J. Kim, Analysis and measurement of sound transmission through adouble-walled cylindrical shell, Journal of Sound and Vibration251(2002), no.4,631-649.
    33. S. Yoshikawa, E. G. Williams and K. B. Washburn, Vibration of two concentric submergedcylindrical shells coupled by the entrained fluid, Journal of the Acoustical Society of America95(1994), no.6,3273-3286.
    34. J. H. Lee and J. Kim, Sound transmission through periodically stiffened cylindrical shells,Journal of Sound and Vibration251(2002), no.3,431-456.
    35. D. Kamran, N. Ali and T. Roohollah, Analytical model of sound transmission throughlaminated composite cylindrical shells considering transverse shear deformation, AppliedMathematics and Mechanics(English Edition)29(2008), no.9,1165-1177.
    36. K. Daneshjou, A. Nouri and R. Talebitooti, Analytical model of sound transmission throughorthotropic cylindrical shells with subsonic external flow, Aerospace Science and Technology13(2009), no.1,18-26.
    37. L. Ji, B. R. Mace and R. J. Pinnington, A hybrid mode/fourier-transform approach forestimating the vibrations of beam-stiffened plate systems, Journal of Sound and Vibration274(2004), no.3-5,547-565.
    38. A. G. Pathak and P. R. Stepanishen, Acoustic harmonic radiation from fluid-loaded infinitecylindrical elastic shells using elasticity theory, Journal of the Acoustical Society of America96(1994), no.1,573-582.
    39. D. C. Gazis, Three-dimensional investigation of the propagation of waves in hollow circularcylinders. I. Analytical foundation, J. Acoust. Soc. Am.31(1959), no.5,568-573
    40. C. Lecable, J. M. Conoir and O. Lenoir, Acoustic radiation of cylindrical elastic shellssubjected to a point source: Investigation in terms of helical acoustic rays, Journal of theAcoustical Society of America110(2001), no.4,1783-1791.
    41. F. G. Mitri, Theoretical calculation of the acoustic radiation force acting on elastic andviscoelastic cylinders placed in a plane standing or quasistanding wave field, EuropeanPhysical Journal B44(2005), no.1,71-78.
    42. F. G. Mitri and Z. E. A. Fellah, Theoretical calculation of the acoustic radiation force onlayered cylinders in a plane standing wave-comparison of near-and far-field solutions,Journal of Physics A: Mathematical and General39(2006), no.20,6085-6096.
    43. M. K. Kwak and S. B. Han, Effect of fluid depth on the hydroelastic vibration of free-edgecircular plate, Journal of Sound and Vibration230(2000), no.1,171-185.
    44. Y. W. Kim and Y. S. Lee, Coupled vibration analysis of liquid-filled rigid cylindrical storagetank with an annular plate cover, Journal of Sound and Vibration279(2005), no.1-2,217-235.
    45. H. Lee and R. Singh, Acoustic radiation from out-of-plane modes of an annular disk using thinand thick plate theories, Journal of Sound and Vibration282(2005), no.1-2,313-339.
    46. D. G. Gorman, I. Trendafilova, A. J. Mulholland and J. Horácek, Vibration analysis of acircular plate in interaction with an acoustic cavity leading to extraction of structural modalparameters, Thin-Walled Structures46(2008), no.7-9,878-886.
    47. F. H. Ellington and F. D. Hart, Acoustic radiation efficiency of truncated conical shells, NASATechnical report (1969), no. NASA-CR-111840,1-65.
    48. W. Luo and H. Schmidt, Three-dimensional propagation and scattering around a conicalseamount, Journal of the Acoustical Society of America125(2009), no.1,52-65.
    49. M. Caresta and N. J. Kessissoglou, Vibration of fluid loaded conical shells, Journal of theAcoustical Society of America124(2008), no.4,2068-2077.
    50. Y.P.Guo, Fluid-loading effects on waves on conical shells, Journal of Acoustical Society ofAmeric97(1994), no.2,1061-1066.
    51. J. E. Boisvert and A. L. Van Buren, Acoustic radiation impedance and directional response ofrectangular pistons on elliptic cylinders, Journal of the Acoustical Society of America118(2005), no.1,104-112.
    52. S. M. Hasheminejad and R. Sanaei, Acoustic radiation force and torque on a solid ellipticcylinder, Journal of Computational Acoustics15(2007), no.3,377-399.
    53. S. M. Hasheminejad and R. Sanaei, Ultrasonic scattering by a fluid cylinder of elliptic crosssection, including viscous effects, IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control55(2008), no.2,391-404.
    54. S. I. Hayek and J. E. Boisvert, Vibration of elliptic cylindrical shells: Higher order shell theory,Journal of the Acoustical Society of America128(2010), no.3,1063-1072.
    55. I. K. Chatjigeorgiou and S. A. Mavrakos, An analytical approach for the solution of thehydrodynamic diffraction by arrays of elliptical cylinders, Applied Ocean Research32(2010),no.2,242-251.
    56. R. W. Scharstein and A. M. J. Davis, Acoustic scattering by a rigid elliptic cylinder in aslightly viscous medium, Journal of the Acoustical Society of America121(2007), no.6,3300-3310.
    57. P. A. Chinnery and V. F. Humphrey, Fluid column resonances of water-filled cylindrical shellsof elliptical cross section, Journal of the Acoustical Society of America103(1998), no.3,1296-1305.
    58. R. Barakat, Diffraction of plane waves by an elliptic cylinder Journal of the Acoustical Societyof America35(1963), no.12,1990-1996
    59. Y. K. Lou and T. C. Su, Free oscillations of submerged spherical shells, journal of AcousticalSociety of America63(1978), no.5,1402-1408.
    60. S. M. Hasheminejad and Y. Mirzaei, Exact3d elasticity solution for free vibrations of aneccentric hollow sphere, Journal of Sound and Vibration330(2011), no.2,229-244.
    61. S. M. Hasheminejad and N. Safari, Acoustic scattering from viscoelastically coated spheresand cylinders in viscous fluids, Journal of Sound and Vibration280(2005), no.1-2,101-125.
    62. T. K. Kapoor and H. Schmidt, Spherical coordinate green's functions for ring tractions in asolid unbounded medium, Journal of the Acoustical Society of America98(1995), no.5I,2783-2791.
    63. H. Schmidt, Numerically stable global matrix approach to radiation and scattering fromspherically stratified shells, Journal of the Acoustical Society of America94(1993), no.4,2420-2430.
    64. T. K. Kapoor and H. Schmidt, Acoustic scattering from a three-dimensional protuberance on athin, infinite, submerged elastic plate, Journal of the Acoustical Society of America102(1997),no.1,256-265.
    65. W. H. Lin and A. C. Raptis, Acoustic scattering by elastic solid cylinders and spheres inviscous fluids, Journal of the Acoustical Society of America73(1983), no.3,736-748.
    66. J. Chen and Y. Huang, Vibration and acoustic radiation from submerged stiffened sphericalshell with deck-type internal plate, Acta Mechanica Solida Sinica16(2003), no.3,210-219.
    67. H. Huang and G. C. Gaunaurd, Acoustic scattering of a plane wave by two spherical elasticshells, Journal of the Acoustical Society of America98(1995), no.4,2149-2156.
    68. S. M. Hasheminejad and M. Azarpeyvand, Sound radiation from a liquid-filled underwaterspherical acoustic lens with an internal eccentric baffled spherical piston, Ocean Engineering31(2004), no.8-9,1129-1146.
    69. F. D. Timothv Yen, Forced vibrations of submerged spheroidal shells, The Journal of theAcoustical Society of Americ41(1966), no.3,618-626.
    70. B. R. Rapids and G. C. Lauchle, Vector intensity field scattered by a rigid prolate spheroid,Journal of the Acoustical Society of America120(2006), no.1,38-48.
    71. J. Yahner and C. B. Burroughs, Frequencies of resonance of axisymmetric modes of openprolate spheroidal shells, Journal of the Acoustical Society of America94(1993), no.1,213-220.
    72. J. E. Boisvert and A. L. Van Buren, Acoustic radiation impedance of rectangular pistons onprolate spheroids, Journal of the Acoustical Society of America111(2002), no.2,867-874.
    73. J. E. Boisvert and A. L. Van Buren, Acoustic directivity of rectangular pistons on prolatespheroids, Journal of the Acoustical Society of America116(2004), no.4I,1932-1937.
    74. S. I. Hayek and J. E. Boisvert, Vibration of prolate spheroidal shells with shear deformationand rotatory inertia: Axisymmetric case, Journal of the Acoustical Society of America114(2003), no.5,2799-2811.
    75. G. C. Gaunaurd and H. Uberall, Resonance theory of the effective properties of perforatedsolids, Journal of the Acoustical Society of America71(1982), no.2,282-295.
    76. M. Tao, W. L. Tang and H. X. Hua, Noise reduction analysis of an underwater decouplinglayer, Journal of Vibration and Acoustics, Transactions of the ASME132(2010),061001-061007.
    77. D. C. Ricks and H. Schmidt, A numerically stable global matrix method for cylindricallylayered shells excited by ring forces, Journal of the Acoustical Society of America95(1994),no.6,3339-3349.
    78. A. M. Prospathopoulos, G. A. Athanassoulis and K. A. Belibassakis, Underwater acousticscattering from a radially layered cylindrical obstacle in a3d ocean waveguide, Journal ofSound and Vibration319(2009), no.3-5,1285-1300.
    79. S. M. Hasheminejad and A. Ahamdi-Savadkoohi, Vibro-acoustic behavior of a hollow fgmcylinder excited by on-surface mechanical drives, Composite Structures92(2010), no.1,86-96.
    80. S. H. Ko, Reduction of structure-borne noise using an air-voided elastomer, Journal of theAcoustical Society of America101(1997), no.6,3306-3312.
    81. A. Berry, O. Foin and J. P. Szabo, Three-dimensional elasticity model for a decoupling coatingon a rectangular plate immersed in a heavy fluid, Journal of the Acoustical Society of America109(2001), no.6,2704-2714.
    82. O. Foin, A. Berry and J. Szabo, Acoustic radiation from an elastic baffled rectangular platecovered by a decoupling coating and immersed in a heavy acoustic fluid, Journal of theAcoustical Society of America107(2000), no.5I,2501-2510.
    83. B. Laulagnet and J. L. Guyader, Sound radiation from a finite cylindrical shell covered with acompliant layer, Journal of Vibration and Acoustics113(1991), no.2,267-272.
    84. B. Laulagnet and J. L. Guyader, Sound radiation from finite cylindrical shells, partiallycovered with longitudinal strips of compliant layer, Journal of Sound and Vibration186(1995), no.5,723-742.
    85. J. M. Cuschieri and D. Feit, Influence of circumferential partial coating on the acousticradiation from a fluid-loaded shell, Journal of the Acoustical Society of America107(2000),no.6,3196-3207.
    86. B. Laulagnet and J. L. Guyader, Sound radiation from finite cylindrical coated shells, bymeans of asymptotic expansion of three-dimensional equations for coating, Journal of theAcoustical Society of America96(1994), no.1,277-286.
    87. S. H. Ko, W. Seong and S. Pyo, Structure-borne noise reduction for an infinite, elasticcylindrical shell, Journal of the Acoustical Society of America109(2001), no.4,1483-1495.
    88. S. M. Ivansson, Sound absorption by viscoelastic coatings with periodically distributedcavities, Journal of the Acoustical Society of America119(2006), no.6,3558-3567.
    89. S. M. Ivansson, Numerical design of alberich anechoic coatings with superellipsoidal cavitiesof mixed sizes, Journal of the Acoustical Society of America124(2008), no.4,1974-1984.
    90. H. Zhao, Y. Liu, D. Yu, G. Wang, J. Wen and X. Wen, Absorptive properties ofthree-dimensional phononic crystal, Journal of Sound and Vibration303(2007), no.1-2,185-194.
    91. H. Zhao, Y. Liu, J. Wen, D. Yu and X. Wen, Tri-component phononic crystals for underwateranechoic coatings, Physics Letters A367(2007), no.3,224-232.
    92. J. P. Groby, A. Wirgin and E. Ogam, Acoustic response of a periodic distribution ofmacroscopic inclusions within a rigid frame porous plate, Waves in Random and ComplexMedia18(2008), no.3,409-433.
    93. X. Sagartzazu, L. Hervella-Nieto and J. M. Pagalday, Review in sound absorbing materials,Archives of Computational Methods in Engineering15(2008), no.3,311-342.
    94. M. R. Haberman, Y. H. Berthelot, J. Jarzynski and M. Cherkaoui, Micromechanical modelingof viscoelastic voided composites in the low-frequency approximation, Journal of theAcoustical Society of America112(2002), no.5I,1937-1943.
    95. M. R. Haberman, Y. H. Berthelot and M. Cherkaoui, Transmission lose of viscoelasticmaterials containing oriented ellipsoidal coated microinclusions, Journal of the AcousticalSociety of America118(2005), no.5,2984-2992.
    96. S. M. Hasheminejad and S. Kazemirad, Dynamic viscoelastic effects on sound wave scatteringby an eccentric compound circular cylinder, Journal of Sound and Vibration318(2008), no.3,506-526.
    97. S. M. Hasheminejad and M. Rajabi, Acoustic resonance scattering from a submergedfunctionally graded cylindrical shell, Journal of Sound and Vibration302(2007), no.1-2,208-228.
    98. K. Daneshjou, M. M. Shokrieh, M. G. Moghaddam and R. Talebitooti, Analytical model ofsound transmission through relatively thick fgm cylindrical shells considering third ordershear deformation theory, Composite Structures93(2010), no.1,67-78.
    99. W. Q. Chen and Z. G. Bian, Wave propagation in submerged functionally graded piezoelectriccylindrical transducers with axial polarization, Mechanics of Advanced Materials andStructures18(2011), no.1,85-93.
    100. J. Hu, Z. Qiu and T. C. Su, Axisymmetric vibrations of a piezoelectric spherical shellsubmerged in a compressible viscous fluid medium, Journal of Vibration and Acoustics,Transactions of the ASME132(2010), no.6,061002-061001,061002-061011.
    101. J. Cai, W. Chen, G. Ye and H. Ding, Natural frequencies of submerged piezoceramic hollowspheres, Acta Mechanica Sinica16(2000), no.1,55-62.
    102. S. S. Mackertich and S. I. Hayek, Acoustic radiation from an impulsively excited elastic plate,Journal of the Acoustical Society of America69(1981), no.4,1021-1028.
    103. H. Huang, Y. P. Lu and Y. F. Wang, Transient interaction of spherical acoustic waves, acylindrical elastic shell, and its internal multidegree-of-freedom mechanical systems, Journalof the Acoustical Society of America56(1974), no.1,4-10.
    104. J. Li and H. Hua, Transient vibrations of laminated composite cylindrical shells exposed tounderwater shock waves, Engineering Structures31(2009), no.3,738-748.
    105. H. Huang, An exact analysis of the transient interaction of acoustic plane waves with acylindrical elastic shell, Journal of Applied Mechanics37(1970), no.4,1091-1099.
    106. S. Iakovlev, Influence of a rigid coaxial core on the stress-strain state of a submergedfluid-filled circular cylindrical shell subjected to a shock wave, Journal of Fluids andStructures19(2004), no.7,957-984.
    107. S. Iakovlev, Interaction between a submerged evacuated cylindrical shell and a shockwave--part i: Diffraction-radiation analysis, Journal of Fluids and Structures24(2008), no.7,1077-1097.
    108. S. Iakovlev, Interaction between a submerged evacuated cylindrical shell and a shockwave--part ii: Numerical aspects of the solution, Journal of Fluids and Structures24(2008),no.7,1098-1119.
    109. P. Zhang and T. L. Geers, Excitation of a fluid-filled, submerged spherical shell by a transientacoustic wave, Journal of the Acoustical Society of America93(1993), no.2,696-705.
    110. M. R. Peterson and D. E. Boyd, Free vibrations of circular cylinders with longitudinal, interiorpartitions, Journal of Sound and Vibration60(1978), no.1,45-62.
    111. L. D. Pope, E. G. Wilby, C. M. Willis and W. H. Mayes, Aircraft interior noise models:Sidewall trim, stiffened structures, and cabin acoustics with floor partition, Journal of Soundand Vibration89(1983), no.3,371-417.
    112. J. Missaoui, L. Cheng and M. J. Richard, Free and forced vibration of a cylindrical shell witha floor partition, Journal of Sound and Vibration190(1996), no.1,21-40.
    113. J. Missaoui and L. Cheng, Vibroacoustic analysis of a finite cylindrical shell with internalfloor partition, Journal of Sound and Vibration226(1999), no.1,101-123.
    114. Y. S. Lee, M. H. Choi and J. H. Kim, Free vibrations of laminated composite cylindrical shellswith an interior rectangular plate, Journal of Sound and Vibration265(2003), no.4,795-817.
    115. T. Irie, G. Yamada and Y. Kobayashi, Free vibration of non-circular cylindrical shells withlongitudinal interior partitions, Journal of Sound and Vibration96(1984), no.1,133-142.
    116. T. Irie, G. Yamada and Y. Muramoto, Free vibration of joined conical-cylindrical shells,Journal of Sound and Vibration95(1984), no.1,31-39.
    117. A. Baillard, J. Chiumia, D. Décultot, G. Maze, A. Klauson and J. Metsaveer, Surface waveconversion analysis on a lengthwise soldered circular cylindrical shell, Journal of theAcoustical Society of America124(2008), no.4,2061-2067.
    118. A. Harari and B. E. Sandman, Radiation and vibrational properties of submerged stiffenedcylindrical shells, Journal of the Acoustical Society of America88(1990), no.4,1817-1830.
    119. Y. P. Guo, Sound scattering by bulkheads in cylindrical shells, Journal of the AcousticalSociety of America95(1994), no.5I,2550-2559.
    120. Y. P. Guo, Acoustic radiation from cylindrical shells due to internal forcing, Journal of theAcoustical Society of America99(1996), no.3,1495-1505.
    121. Y. P. Guo, Acoustic scattering from cylindrical shells with deck-type internal plate at obliqueincidence, Journal of the Acoustical Society of America99(1996), no.5,2701-2713.
    122. J. Bjarnason, J. D. Achenbach and T. Igusa, Acoustic radiation from a cylindrical shell with aninternal plate, Wave Motion15(1992), no.1,23-41.
    123. Y. P. Guo, Sound scattering from an internally loaded cylindrical shell, Journal of theAcoustical Society of America91(1991), no.2,926-938.
    124. J. M. Ho, Structural and acoustic response of mass-spring loaded cylindrical shells: Spectralformulation and ray synthesis, Journal of the Acoustical Society of America99(1996), no.2,659-671.
    125. J. D. Achenbach, J. Bjarnason and T. Igusa, Effect of a vibrating substructure on acousticradiation from a cylindrical shell, Journal of Vibration and Acoustics, Transactions of theASME114(1992), no.3,312-318.
    126. Y. M. Huang and C. R. Fuller, The effects of dynamic absorbers on the forced vibration of acylindrical shell and its coupled interior sound field, Journal of Sound and Vibration200(1997), no.4,401-418.
    127.张敬东,何祚镛,传递矩阵-边界元方法预报水下旋转薄壳振动和声辐射,哈尔滨船舶工程学院学报10(1989), no.4,435-444.
    128.张敬东,何祚镛,有限元+边界元——修正的模态分解法预报水下旋转薄壳的振动和声辐射,声学学报15(1990), no.1,12-19.
    129.沈顺根,李琪华,王大云,程贯一,加肋旋转壳结构噪声声辐射水弹性研究,中国造船(1992), no.2,55-64.
    130.谭林森,骆东平,加筋双层壳流固耦联振动数值分析,华中理工大学学报20(1992), no.5,93-99.
    131.谢官模,骆东平,环肋圆柱壳在流场中辐射声场压力的解析解,应用数学和力学16(1995), no.12,1061-1066.
    132.谢官模,骆东平,环肋柱壳在流场中声辐射性能分析,中国造船131(1995), no.4,37-45.
    133.张明敏,何祚镛.有限长开口圆柱薄壳声辐射计算的新方法,哈尔滨工程大学学报17(1996), no.2,42-50.
    134.罗斌,骆东平,肋骨断面形式对圆柱壳体声辐射性能的影响,舰船科学技术(1997), no.6,8-14.
    135.沈顺根,冷文浩,程贯一,带有复合结构的多层隔振系统振动传递及声辐射研究,船舶力学1(1997), no.2,49-60.
    136.吴成军,黄协清,陈花玲,复合圆柱形薄壳在重质流体中声辐射的建模与理论预估(I),西安交通大学学报32(1998), no.7,78-81.
    137.陈越澎,文丽,骆东平,吴崇健,流场中壳间充液双层壳体声辐射性能研究,华中理工大学学报27(1999), no.7,83-85.
    138.文丽,骆东平,,陈越澎,陈美霞,流场中有限长纵横加筋圆柱壳声辐射,华中理工大学学报27(1999), no.8,54-56.
    139.吴文伟,冷文浩,沈顺根,具有等间距相同加强筋板的声辐射,中国造船(1999), no.3,72-81.
    140.陈炜,骆东平,张书吉,陈晓宁,敷设阻尼材料的环肋柱壳声辐射性能分析,声学学报25(2000), no.01,27-32.
    141.汤渭霖,何兵蓉,水中有限长加肋圆柱壳体振动和声辐射近似解析解,声学学报26(2001), no.01,1-5.
    142.陈军明,黄玉盈,曾革委,水中正交加筋无限长圆柱壳的振动和声辐射,中国海洋工程(英文版)16(2002), no.4,437-452.
    143.吴文伟,吴崇健,沈顺根,双层加肋圆柱壳振动和声辐射研究,船舶力学6(2002), no.1.
    144.曾革委,黄玉盈,马运义,舱壁和环肋加强的无限长圆柱壳声弹耦合模型及其声特性,固体力学学报23(2002), no.3,269-279.
    145.曾革委,黄玉盈,陈军明,托板式双层加筋平板的水下声辐射,华中科技大学学报(自然科学版)30(2002), no.12,98-106.
    146.陈美霞,骆东平,彭旭,罗斌,敷设阻尼材料的双层圆柱壳声辐射性能分析,声学学报28(2003), no.06,486-493.
    147.刘涛,汤渭霖,何世平,数值/解析混合方法计算含复杂结构的有限长圆柱壳体声辐射,船舶力学7(2003), no.4,99-104.
    148.曾革委,黄玉盈,谢官模,外壳板采用纵骨加强的双层加肋圆柱壳水下声辐射分析,中国造船44(2003), no.2,45-52.
    149.骆东平,肖邵予,曹钢,郭华林,甲板刚度和垂向位置对环肋圆柱壳声辐射性能的影响,哈尔滨工程大学学报25(2004), no.5,605-609.
    150.陈美霞,关珊珊,骆东平,杨叔子,曹钢,具有内部甲板的环肋柱壳振动和声学试验分析,舰船科学技术27(2005), no.6,19-25.
    151.谢基榕,叶明,沈顺根,螺旋桨脉动压力激励艉部结构引起的辐射噪声计算方法,船舶力学8(2004), no.4,101-107.
    152.周锋,骆东平,蔡敏波,王祖华,陈美霞,有限长环肋圆柱壳低阶模态声辐射性能分析,应用科技31(2004), no.9,38-41.
    153.陈美霞,骆东平,杨叔子,壳间连接形式对双层壳声辐射性能的影响,振动与冲击24(2005), no.5,77-80.
    154.毛云,谢官模,水下部分覆盖阻尼材料圆柱壳的声辐射性能,武汉理工大学学报27(2005), no.5,21-23.
    155.魏强,朱英富,张国良,阻尼处理多向加筋板的振动响应及声辐射,中国造船46(2005),no.2,35-42.
    156.何祚镛,水声作用下矩形弹性-粘弹性复合板的振动和散射声近场(ⅰ)——矩形复合板的振动分析,声学学报10(1985), no.6,344-357.
    157.金广文,姜荣俊,陈美霞,何.琳,不同参数下的单、双层圆柱壳体速度场研究,振动与冲击25(2006), no.3,169-171.
    158.张文平,曹贻鹏,推进轴系振动对潜艇尾部结构水下辐射噪声的影响分析,舰船科学技术28(2006), no. Z2,54-59.
    159.严谨,李天匀,刘土光,张维衡,水下周期环肋圆柱壳声辐射的空间简谐分析,华中科技大学学报(自然科学版)35(2007), no.1,96-98.
    160.陶猛,范军,汤渭霖,覆盖多柔性层的有限长圆柱壳声辐射特性,声学学报(中文版)33(2008), no.3,220-225.
    161.王斌,汤渭霖,范军,一种辐射声场近似计算方法——单元辐射叠加法,声学学报(中文版)33(2008), no.3,226-230.
    162.姚熊亮,钱德进,张爱国,张阿漫,内部含基座的加筋双层壳振动与声辐射计算,中国舰船研究3(2008), no.1,.31-36
    163.曹雷,马运义,黄玉盈,基于riccati传递矩阵法分析水下有限长环肋圆柱壳的声辐射性能,振动与冲击28(2009), no.9,149-154.
    164.陈美霞,金家坤,彭旭,骆东平,内、外壳对水下双层圆柱壳声振性能影响分析,船舶力学13(2009), no.4.
    165.冯国平,谌勇,黄修长,华宏星,舰艇艉部纵向激励传递特性分析,噪声与振动控制29(2009), no.6,132-135.
    166.廖长江,蒋伟康,王云,段.浩,水中有限长纵向加肋圆柱壳体振动与声辐射影响因素研究,振动与冲击28(2009), no.5,74-79.
    167.吴培荣,范.军,有限长双层加肋圆柱壳体的声辐射特性,船舶工程31(2009), no.4,13-15.
    168.姚熊亮,计方,钱德进,明.磊,壳间连接介质对双层壳声辐射性能的影响,声学技术28(2009), no.3,312-317.
    169.殷学文,丁旭杰,华宏星,沈荣瀛,具有浮筏的有限圆柱壳体的尺度对其振动和声辐射的影响,振动与冲击28(2009), no.4,47-50.
    170.殷学文,王贡献,华宏星,沈荣瀛,通过周期环板和附连流体的两同心圆柱壳体间的振动耦合效应,声学学报(中文版)34(2009), no.01,87-95.
    171.赵芝梅,王敏庆,连接件特性对双层板声学性能影响研究,第十二届船舶水下噪声学术讨论会论文集,2009.
    172.骆东平,两端完全自由的圆柱壳体的振动分析,华中工学院学报12(1984), no.5,31-38.
    173. C. B. Burroughs and J. E. Hallander, Acoustic radiation from fluid-loaded, ribbed cylindricalshells excited by different types of concentrated mechanical drives, Journal of the AcousticalSociety of America91(1992), no.5,2721-2739.
    174. M. N. Ichchou, J. Berthaut and M. Collet, Multi-mode wave propagation in ribbed plates: Parti, wavenumber-space characteristics, International Journal of Solids and Structures45(2008),no.5,1179-1195.
    175. J. N. Reddy, Mechanics of laminated composite plates: Theory and analysis CRC Press,BocaRaton (1997).
    176. W. Soedel, Vibrations of shells and plates Marcel Dekker,New York (1981).
    177. N. J. Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates,Journal of Composite Materials4(1970),20-34.
    178. E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, ASMEJournal of applied mechanics12(1945),69-77.
    179. R. D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elasticplates, ASME Journal of applied mechanics18(1951),31-38.
    180. J. M. Whitney, The effect of transverse shear deformation on bending of laminated plate,Journal of Composite Materials3(1969),534-547.
    181. A. A. Khdeir, Comparison between shear deformable and kirchhoff theories for bending,buckling and vibration of antisymmetric angle-ply laminated plates, Composite Structures13(1989), no.3,159-172.
    182. J. N. Reddy, Simple higher-order theory for laminated composite plates, Journal of AppliedMechanics, Transactions ASME51(1984), no.4,745-752.
    183. J. N. Reddy and C. F. Liu, A higher-order shear deformation theory of laminated elastic shells,International Journal of Engineering Science23(1985), no.3,319-330.
    184. J. N. Reddy and A. A. Khdeir, Dynamic response of cross-ply laminated shallow shellsaccording to a refined shear deformation theory, Journal of the Acoustical Society of America85(1989), no.6,2423-2431.
    185. T. Kant and K. Swaminathan, Analytical solutions for free vibration of laminated compositeand sandwich plates based on a higher-order refined theory, Composite Structures53(2001),no.1,73-85.
    186. R. Plunkett and C. T. Lee, Length optimization of constrained viscoelastic layer damping,Journal of the Acoustical Society of America48(1970), no.2,150-161.
    187. D. J. Mead and S. Markus, The forced vibration of a three-layer, damped sandwich beam witharbitrary boundary conditions, Journal of Sound and Vibration10(1969), no.2,163-175.
    188. X. Cao, Z. Zhang and H. Hua, Free vibration of circular cylindrical shell with constrainedlayer damping, Applied Mathematics and Mechanics (English Edition)32(2011), no.4,495–506.
    189. Y. Xiang, Y. Y. Huang, J. Lu, L. Y. Yuan and S. Z. Zou, New matrix method for analyzingvibration and damping effect of sandwich circular cylindrical shell with viscoelastic core,Applied Mathematics and Mechanics (English Edition)29(2008), no.12,1587-1600.
    190. Y. C. Chen and S. C. Huang, An optimal placement of cld treatment for vibration suppressionof plates, International Journal of Mechanical Sciences44(2002), no.8,1801-1821.
    191. Gao Jianxin and SHEN Ya-peng, Vibration and damping analysis of a composite plate withactive and passive damping layer, Applied Mathematics and Mechanics(English Edition)20(1999), no.10,1075-1086.
    192. L. H. Chen and S. C. Huang, Vibrations of a cylindrical shell with partially constrained layerdamping (cld) treatment, International Journal of Mechanical Sciences41(1999), no.12,1485-1498.
    193. D. K. Rao, Frequency and loss factors of sandwich beams under various boundary conditions,International Journal of Mechanical Engineering Science20(1978), no.5,271-282.
    194. A. K. Lall, N. T. Asnani and B. C. Nakra, Damping analysis of partially covered sandwichbeams, Journal of Sound and Vibration123(1988), no.2,247-259.
    195. S. W. Kung and R. Singh, Vibration analysis of beams with multiple constrained layerdamping patches, Journal of Sound and Vibration212(1998), no.5,781-805.
    196. H. Zheng, X. M. Tan and C. Cai, Damping analysis of beams covered with multiple pcldpatches, International Journal of Mechanical Sciences48(2006), no.12,1371-1383.
    197. L. C. Hau and E. H. K. Fung, Effect of acld treatment configuration on damping performanceof a flexible beam, Journal of Sound and Vibration269(2004), no.3-5,549-567.
    198. D. J. McTavish and P. C. Hughes, Modeling of linear viscoelastic space structures, Journal ofvibration and acoustics115(1993), no.1,103-110.
    199. D. F. Golla and P. C. Hughes, Dynamics of viscoelastic structures—a time-domain, finiteelement formulation, Journal of Applied Mechanics52(1985), no.4,897–906.
    200. M. Enelund and G. A. Lesieutre, Time domain modeling of damping using anelasticdisplacement fields and fractional calculus, International Journal of Solids and Structures36(1999), no.29,4447-4472.
    201. G. A. Lesieutre and U. Lee, A finite element for beams having segmented active constrainedlayers with frequency-dependent viscoelastics, Smart Materials and Structures5(1996), no.5,615-627.
    202. G. A. Lesieutre and E. Bianchini, Time domain modeling of linear viscoelasticity usinganelastic displacement fields, Journal of Vibration and Acoustics, Transactions of the ASME117(1995), no.4,424-430.
    203. M. A. Trindade, A. Benjeddou and R. Ohayon, Modeling of frequency-dependent viscoelasticmaterials for active-passive vibration damping, Journal of Vibration and Acoustics,Transactions of the ASME122(2000), no.2,169-174.
    204. M. A. Trindade, Reduced-order finite element models of viscoelastically damped beamsthrough internal variables projection, Journal of Vibration and Acoustics, Transactions of theASME128(2006), no.4,501-508.
    205. T. Liu, H. Hua and Z. Zhang, Robust control of plate vibration via active constrained layerdamping, Thin-Walled Structures42(2004), no.3,427-448.
    206. S. Panda and M. C. Ray, Control of nonlinear vibrations of functionally graded plates using1-3piezoelectric composite, AIAA Journal47(2009), no.6,1421-1434.
    207. S. Panda and M. C. Ray, Active control of geometrically nonlinear vibrations of functionallygraded laminated composite plates using piezoelectric fiber reinforced composites, Journal ofSound and Vibration325(2009), no.1-2,186-205.
    208. S. Li and D. Zhao, Numerical simulation of active control of structural vibration and acousticradiation of a fluid-loaded laminated plate, Journal of Sound and Vibration272(2004), no.1-2,109-124.
    209. M. C. Ray, A. Faye, S. Patra and R. Bhattacharyya, Theoretical and experimentalinvestigations on the active structural-acoustic control of a thin plate using a verticallyreinforced1-3piezoelectric composite, Smart Materials and Structures18(2009), no.1.
    210. S. Assaf, M. Guerich and P. Cuvelier, Vibration and acoustic response of damped sandwichplates immersed in a light or heavy fluid, Computers and Structures88(2010), no.13-14,870-878.
    211. T. C. Ramesh and N. Ganesan, Finite element analysis of conical shells with a constrainedviscoelastic layer, Journal of Sound and Vibration171(1994), no.5,577-601.
    212. T. C. Ramesh and N. Ganesan, Finite element analysis of cylindrical shells with a constrainedviscoelastic layer, Journal of Sound and Vibration172(1994), no.3,359-370.
    213. T. C. Ramesh and N. Ganesan, Orthotropic cylindrical shells with a viscoelastic core: Avibration and damping analysis, Journal of Sound and Vibration175(1994), no.4,535-555.
    214. M. C. Ray, J. Oh and A. Baz, Active constrained layer damping of thin cylindrical shells,Journal of Sound and Vibration240(2001), no.5,921-935.
    215. I. K. Oh, Dynamic characteristics of cylindrical hybrid panels containing viscoelastic layerbased on layerwise mechanics, Composites Part B: Engineering38(2007), no.2,159-171.
    216. Z. Ling, Z. Dongdong and W. Yi, Vibration and damping characteristics of cylindrical shellswith active constrained layer damping treatments, Smart Materials and Structures20(2011),no.2,025008.
    217. M. Ruzzene and A. Baz, Finite element modeling of vibration and sound radiation fromfluid-loaded damped shells, Thin-Walled Structures36(2000), no.1,21-46.
    218. W. Laplante, T. H. Chen, A. Baz and W. Shields, Active control of vibration and noiseradiation from fluid-loaded cylinder using active constrained layer damping, JVC/Journal ofVibration and Control8(2002), no.6,877-902.
    219. J. Oh, M. Ruzzene and A. Baz, Passive control of the vibration and sound radiation fromsubmerged shells, JVC/Journal of Vibration and Control8(2002), no.4,425-449.
    220. B. Vamsi Krishna and N. Ganesan, Studies on fluid-filled and submerged cylindrical shellswith constrained viscoelastic layer, Journal of Sound and Vibration303(2007), no.3-5,575-595.
    221. O. Foin, J. Nicolas and N. Atalla, An efficient tool for predicting the structural acoustic andvibration response of sandwich plates in light or heavy fluid, Applied Acoustics57(1999), no.3,213-242.
    222. EI-Raheb M and W. P., Damped response of shells by a constrained viscoelastic layer, Journalof Applied Mechanics53(1986), no.4,902-908.
    223. L. Yuan, Y. Xiang, Y. Huang and J. Lu, A semi-analytical method and the circumferentialdominant modal control of circular cylindrical shells with active constrained layer dampingtreatment, Smart Materials and Structures19(2010), no.2,1-14.
    224. J. Lu, Y. Xiang;, Y. Huang;, X. L.; and Q. Ni, Transfer matrix method for analyzing vibrationand damping characteristics of rotational shell with passive constrained layer dampingtreatment, Acta Mechanica Solida Sinica23(2010), no.04,297-311.
    225. Y. Xiang, L. Yuan, Y. Huang and Q. Ni, A novel matrix method for coupled vibration anddamping effect analyses of liquid-filled circular cylindrical shells with partially constrainedlayer damping under harmonic excitation, Applied Mathematical Modelling35(2011), no.5,2209-2220.
    226. L. H. Chen and S. C. Huang, Vibration attenuation of a cylindrical shell with constrained layerdamping strips treatment, Computers and Structures79(2001), no.14,1355-1362.
    227. A. C. Nilsson, Wave propagation in and sound transmission through sandwich plates, Journalof Sound and Vibration138(1990), no.1,73-94.
    228. D. J. Mead and Y. Yaman, The harmonic response of rectangular sandwich plates withmultiple stiffening: A flexural wave analysis, Journal of Sound and Vibration145(1991), no.3,409-428.
    229. C. H. Park and A. Baz, Newtonian and variational formulations of the dynamics of plates withactive constrained layer damping treatments, JVC/Journal of Vibration and Control10(2004),no.3,399-421.
    230. H. H. Pan, Axisymmetrical vibrations of a circular sandwich shell with a viscoelastic corelayer, Journal of Sound and Vibration9(1969), no.2,338-348.
    231. A. Baz and T. Chen, Control of axi-symmetric vibrations of cylindrical shells using activeconstrained layer damping, Thin-Walled Structures36(2000), no.1,1-20.
    232. E. G. Williams, B. H. Houston and J. A. Bucaro, Experimental investigation of the wavepropagation on a pointdriven, submerged capped cylinder using k-space analysis, Journal ofthe Acoustical Society of America87(1990), no.2,513-522.
    233. S. H. Choi, T. Igusa and J. D. Achenbach, Nonaxisymmetric vibration and acoustic radiationof a submerged cylindrical shell of finite length containing internal substructures, Journal ofthe Acoustical Society of America98(1995), no.1,353-362.
    234. D. Kamran, A. Nouri and R. Talebitooti, Sound transmission through laminated compositecylindrical shells using analytical model, Archive of Applied Mechanics77(2007), no.6,363-379.
    235. X. W. Yin, H. F. Cui and S. G. Shen, Acoustic radiation from two concentric cylindrical shellswith periodic supports and a viscoelastic perforated outer coating, Acta Acustica united withAcustica95(2009), no.5,823-832.
    236. J. N. Reddy, Mechanics of laminated composite plates and shells: Theory and analysis, CRCPress, Boca Raton (2004).
    237. B. P. Belinskii, Diffraction of a plane wave by an infinite elastic plate stiffened by a doublyperiodic set of rigid ribs, Journal of Applied Mathematics and Mechanics47(1983), no.6,767-774.
    238. M. L. Rumerman, Vibration and wave propagation in ribbed plates, Journal of the AcousticalSociety of America57(1975), no.2,370-373.
    239. B. Laulagnet and J. L. Guyader, Sound radiation by finite cylindrical ring stiffened shells,Journal of Sound and Vibration138(1990), no.2,173-191.
    240. M. Talebitooti, M. Ghayour, S. Ziaei-Rad and R. Talebitooti, Free vibrations of rotatingcomposite conical shells with stringer and ring stiffeners, Archive of Applied Mechanics(2009),1-15.
    241. F. M. Li, K. Kishimoto and W. H. Huang, The calculations of natural frequencies and forcedvibration responses of conical shell using the rayleigh-ritz method, Mechanics ResearchCommunications36(2009), no.5,595-602.
    242. K. Y. Lam and L. Hua, Vibration analysis of a rotating truncated circular conical shell,International Journal of Solids and Structures34(1997), no.17,2183-2197.
    243. K. Y. Lam and L. Hua, Influence of boundary conditions on the frequency characteristics of arotating truncated circular conical shell, Journal of Sound and Vibration223(1999), no.2,171-195.
    244. K. Y. Lam and L. Hua, On free vibration of a rotating truncated circular orthotropic conicalshell, Composites Part B: Engineering30(1999), no.2,135-144.
    245. L. Hua, Influence of boundary conditions on the free vibrations of rotating truncated circularmulti-layered conical shells, Composites Part B: Engineering31(2000), no.4,265-275.
    246. L. Hua, Frequency characteristics of a rotating truncated circular layered conical shell,Composite Structures50(2000), no.1,59-68.
    247. C. Shu, Free vibration analysis of composite laminated conical shells by generalizeddifferential quadrature, Journal of Sound and Vibration194(1996), no.4,587-604.
    248. K. M. Liew, Ng, T.Y., Zhao, X., Free vibration analysis of conical shells via the element-freekp-ritz method Journal of Sound and Vibration281(2005), no.3-5,627-645.
    249. O. E. Crenwelge Jr and D. Muster, Free vibrations of ring-and-stringer-stiffened conicalshells, journal of Acoustical Soc America46(1969), no.1pt2,176-185.
    250. X. Zhao, K. M. Liew and T. Y. Ng, Vibrations of rotating cross-ply laminated circularcylindrical shells with stringer and ring stiffeners, International Journal of Solids andStructures39(2001), no.2,529-545.
    251. Z. Mecitoglu, Vibration characteristics of a stiffened conical shell, Journal of Sound andVibration197(1996), no.2,191-206.
    252. Z. Mecitoglu, Governing equations of a stiffened laminated inhomogeneous conical shell,AIAA Journal34(1996), no.10,2118-2125.
    253. Y. Goldfeld, Elastic buckling and imperfection sensitivity of generally stiffened conical shells,AIAA Journal45(2007), no.3,721-729.
    254. L. Tong, Free vibration of composite laminated conical shells, International Journal ofMechanical Sciences35(1993), no.1,47-61.
    255. M. Caresta and N. J. Kessissoglou, Free vibrational characteristics of isotropic coupledcylindrical-conical shells, Journal of Sound and Vibration329(2010), no.6,733-751.
    256. T. Irie, G. Yamada and K. Tanaka, Natural frequencies of truncated conical shells, Journal ofSound and Vibration92(1984), no.3,447-453.
    257. B. P. Patel, M. Ganapathi and S. Kamat, Free vibration characteristics of laminated compositejoined conical-cylindrical shells, Journal of Sound and Vibration237(2000), no.5,920-930.
    258. G. R. Buchanan and F. I. Wong, Frequencies and mode shapes for thick truncated hollowcones, International Journal of Mechanical Sciences43(2001), no.12,2815-2832.
    259. A. A. El Damatty, M. S. Saafan and A. M. I. Sweedan, Dynamic characteristics of combinedconical-cylindrical shells, Thin-Walled Structures43(2005), no.9,1380-1397.
    260. A. H. Sofiyev, A. Deniz, I. H. Akcay and E. Yusufoglu, The vibration and stability of athree-layered conical shell containing an fgm layer subjected to axial compressive load, ActaMechanica183(2006), no.3-4,129-144.
    261. A. H. Sofiyev, N. Kuruoglu and H. M. Halilov, The vibration and stability ofnon-homogeneous orthotropic conical shells with clamped edges subjected to uniformexternal pressures, Applied Mathematical Modelling34(2010),1807–1822.
    262. M. X. Xie, H. L. Chen, J. H. Wu and F. G. Sun, Application of energy finite element method tohigh-frequency structural-acoustic coupling of an aircraft cabin with truncated conical shape,CMES-Computer Modeling in Engineering and Sciences61(2010), no.1,1-22.
    263. X. M. Zhang, G. R. Liu and K. Y. Lam, Coupled vibration analysis of fluid-filled cylindricalshells using the wave propagation approach, Applied Acoustics62(2001), no.3,229-243.
    264. X. M. Zhang, Frequency analysis of submerged cylindrical shells with the wave propagationapproach, International Journal of Mechanical Sciences44(2002), no.7,1259-1273.
    265. L. Gan, X. Li and Z. Zhang, Free vibration analysis of ring-stiffened cylindrical shells usingwave propagation approach, Journal of Sound and Vibration326(2009), no.3-5,633-646.
    266. D. E. S. Parry Moon, Field theory handbook,(1988).
    267. Y. Xiang and Y. Huang, A novel semi-analytical method for solving acoustic radiation fromlongitudinally stiffened infinite non-circular cylindrical shells in water, Acta MechanicaSolida Sinica18(2005), no.1,1-12.
    268. D. S. Li, L. Cheng and C. M. Gosselin, Optimal design of pzt actuators in active structuralacoustic control of a cylindrical shell with a floor partition, Journal of Sound and Vibration269(2004), no.3-5,569-588.
    269. D. S. Li and L. Cheng, The design of synthesized structural acoustic sensors for active controlof interior noise with experimental validation, Journal of Sound and Vibration329(2010), no.2,123-139.
    270. A. Klauson, G. Maze and J. Metsaveer, Acoustic scattering by submerged cylindrical shellstiffened by an internal lengthwise rib, Journal of the Acoustical Society of America96(1994),no.3,1575-1581.
    271. A. Klauson, J. Metsaveer, D. Décultot, G. Maze and J. Ripoche, Identification of theresonances of a cylindrical shell stiffened by an internal lengthwise rib, Journal of theAcoustical Society of America100(1996), no.5,3135-3143.
    272. A. Baillard, J. M. Conoir, D. Décultot, G. Maze, A. Klauson and J. Metsaveer, Acousticscattering from fluid-loaded stiffened cylindrical shell: Analysis using elasticity theory,Journal of the Acoustical Society of America107(2000), no.6,3208-3216.
    273. Y. P. Guo, Sound scattering from cylindrical shells with internal elastic plates, Journal of theAcoustical Society of America93(1993), no.4I,1936-1946.
    274.殷学文,(多层复合)圆柱壳体的振动和声辐射研究,上海交通大学博士论文(2008).
    275.殷学文,敷设消声瓦的双层加肋圆柱壳体的振动和声辐射研究,中国船舶科学研究中心硕士论文(2001).
    276. A. P. Mouritz, E. Gellert, P. Burchill and K. Challis, Review of advanced composite structuresfor naval ships and submarines, Composite Structures53(2001), no.1,21-24.
    277. S. W. Boyd, J. I. R. Blake, R. A. Shenoi and J. Mawella, Optimisation of steel-compositeconnections for structural marine applications, Composites Part B: Engineering39(2008), no.5,891-906.
    278. N. Z. Chen and C. Guedes Soares, Longitudinal strength analysis of ship hulls of compositematerials under sagging moments, Composite Structures77(2007), no.1,36-44.
    279. F. M. Santos, P. Temarel and C. Guedes Soares, Modal analysis of a fast patrol boat made ofcomposite material, Ocean Engineering36(2009), no.2,179-192.
    280. N. Z. Chen and C. G. Soares, Ultimate longitudinal strength of ship hulls of compositematerials, Journal of Ship Research52(2008), no.3,184-193.
    281. C. D. Jang, H. K. Kim and H. C. Song, Optimum structural design of high-speed surface effectships built of composite materials, Marine Technology40(2003), no.1,42-48.
    282. C. D. Eamon and M. Rais-Rohani, Structural reliability analysis of composite advanced sailfor virginia class submarine, Journal of Ship Research52(2008), no.3,165-174.
    283. X. Cao, H. Hua and C. Ma, Acoustic radiation from shear deformable stiffened laminatedcylindrical shells, Journal of Sound and Vibration331(2012), no.3,651-670.
    284. S. N. Chatterjee and S. V. Kulkarni, Shear correction factors for laminated plates, AIAAjournal17(1979), no.5,498-499.
    285. E. A. Magliula and J. G. McDaniel, Directionality of flexural intensity in orthotropic plates,Journal of the Acoustical Society of America129(2011), no.2,701-706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700