用户名: 密码: 验证码:
煤系高岭土制备分子筛的工艺及其在催化裂化催化剂中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤系高岭土资源丰富,储量大,分布范围广,品质好,并且易于开发利用。特别是近三十年来,随着工业的发展、工艺流程的改进,工业上对高岭土的需求不断增长,更高品质、更规范的高岭土产品使得高岭土的应用在传统领域的基础上得到了进一步扩展。在石油炼制催化剂中,以高岭土为主要组分的FCC催化剂已经发展成为石油化工工业的主体催化剂。
    内蒙古高岭土多属煤系高岭土,资源丰富、层位稳定。针对如何利用大量闲置的煤系高岭土资源这个开发利用高岭土中的研究重点,本文以苏州非煤系高岭土作为比较标准,对内蒙古高岭土的化学组成、晶体结构、煅烧性质等方面进行了理论研究。利用XRD、SEM、TEM、热分析等技术表征了该土的晶体特征。证明该土样具有结晶好、纯度高、品质优良等特点,为进一步开发利用提供了一定的理论依据。特别地,对高岭土的煅烧过程进行了详细的研究,为根据合成分子筛的要求确定高岭土的焙烧温度提供了一定的理论依据。
    然后通过水热晶化分别合成了NaA沸石分子筛和大晶粒的NaY分子筛,通过向晶化体系中加入铝络合剂合成了小晶粒NaY分子筛,并采用XRD、TEM手段对合成样品进行了表征,表明合成产品均具有较完整的晶体结构和较高的纯度,并且小晶粒分子筛具有小于100nm的粒径。
    最后采用半合成法制备流化催化裂化催化剂,小型固定床催化裂化评价结果表明,煤系高岭土作为基质合成的催化剂相对非煤系高岭土,强度较低,容易破碎,裂化产生气体较多,汽油产量低;煤系高岭土合成分子筛作为活性组分合成的催化剂,催化裂化结果表明,Y型分子筛催化剂催化性能明显优于A型分子筛催化剂,特别是小晶粒NaY分子筛催化剂在提高大分子转化能力,减小产物的二次裂化,改善产物选择性以及降低催化剂积炭等方面,表现出比常规晶粒尺寸NaY分子筛更为良好的性能。
    对比工业用的REUHY分子筛,由煤系高岭土合成的分子筛在催化裂化性能方面尚且存在不足之处,在以后的实验中可以通过对分子筛合成工艺进行改进或者对合成分子筛进行改性来提高分子筛合成催化剂的催化裂化性能
Coal-based kaolin mineral source of China has an abundance reserves, a widedistribution, an excellent characteristic and is easy to exploit and develop. Especiallyrecent years, the industrial need of kaolin increases gradually with the development ofindustry and the improvement of technics. At the same time, higher quality and morestandard of kaolin products make the traditional application gone step further. Fluidcatalytic cracking catalyst with kaolin as primary component has developed to mainbody catalyst of oil chemistry industry.
    Most of the kaolin of Inner Mongolia is coal-based kaolin which is abundance andsteady. How to utilize these unused resource is the emphasis of the research. Firstly,we studied chemical component, crystal structure and calcination character of thekaolin of Inner Mongolia compared with none coal-based kaolin of Suzhou. Results ofXRD, SEM, TEM and Differential Thermal Analysis indicated that the kaolin samplehas full crystal, high purify and good quality. Detailed research of calcined processprovided academic foundation to synthesis of zeolite molecular.
    Then this paper studies on the technics of synthesizing zeolite molecular withcoal-based kaolin mineral. The effect of chemical composition, crystal structure andcalcinated properties of kaolin of Inner Mongolia to synthesize molecular sieves havebeen studied. It is concluded that the whiteness of the product was increased butcalcium ion exchange capacity of the product was decreased with the calcinatedtemperature increased.
    NaA zeolite and NaY zeolite with normal size were successfully synthesizedthrough hydrothermal method. NaY zeolite with nanosize was successfullysynthesiezed by adding citrate as complexing agent to synthesis batch. XRD and TEMresults indicated that all of these products had full crystal structure and high purify,and the crystal zeolite product had an average size under 100nm.
    Fluid catalytic cracking catalysts was prepared respectively from kaolin clays andthese zeolites. FCC Test results found that coal-based kaolin used as matrix showedlower mechanic strength and easier breakage and produced more gas and less gasolinethen Suzhou kaolin. We found that Y zeolites has higher cracking activity than Azeolites. Compared with catalyst containing conventionally hydrothermal synthesizedNaY zeolite, catalyst containing nanosized zeolite exhibited good big moleculecracking performance and excellent selectivity.
引文
[1] 徐峰,国外高岭土加工技术综述,建材工业信息,1999,2:30~31
    [2] 戴长禄,高岭土,北京:中国建筑工业出版社,1983
    [3] 李伟东,黄建国,许承晃,高岭土-聚丙烯酰胺夹层复合物的合成,复合材料学报,1994,11(1):23~28
    [4] 孔浩,高岭土改性与层柱插层材料的制备与表征,硕士学位论文,天津大学,2002
    [5] 李贺,关毅等,煤系高岭土改性的研究现状与进展,天津化工,2004,18(2):3~6
    [6] 刘伯元,李宝智,刘饮甫,煤系高岭土在橡胶、塑料等高分子材料中的应用,中国粉体技术,2002,8(1):33~38
    [7] 陈丽昆,吴鹤兴,聚酯切片用高岭土填料研究,非金属矿,1999,22(5):20~22
    [8] 刘英俊,煅烧煤系高岭土在农用塑料薄膜中的应用,塑料科技,2002,2(148):22~26
    [9] 赵增立,高峰,张济宇等,煤系高岭岩深加工利用的研究进展,煤炭转化,1998,21(2):38~45
    [10] 吴棱,康遥,李兆基等,高岭土碱熔法合成 4A 分子筛,中国专利,128797,2001-03-21
    [11] 吴棱,康遥,李兆基等,普通高岭土制备高白度 4A 分子筛的新方法,中国专利,1287970,2001-03-21
    [12] 陈晶,孙德坤,董少春,微波法煅烧高岭土及合成洗涤助剂 4A 沸石,无机化学学报,2000,16(5):769~774
    [13] Lussier R J.,Acid-reacted metakaolin catalyst and catalyst support compositions,US4843052, 1989-06-27
    [14] 刘从华,刘育,酸碱改性高岭土性能的研究,石油炼制与化工,1999,3(5):30~40
    [15] 刘从华,刘育,改性高岭土性能研究,石油炼制与化工,1999,3(4):32~38
    [16] 曾清华,王栋知,王淀佐,粘土-无机层间化合物的制备、表征和应用,非金属矿,1998,3:8~11
    [17] 冯启明,张宝述,彭同江等,几种非金属矿粉体的硅烷偶联剂表面改性研究,非金属矿,1999,22:68~69
    [18] 高斌,徐什艳,王晓蓉,有机粘土在工业废水处理中的应用,工业水处理,2002,22(4):29~31
    [19] 王林江,吴大清,高岭石有机插层反应的影响因素,IM&P 化工矿物与加工,2001,5:29~32
    [20] KOMORIY , SUGAHARA Y. A. , kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite,J Mater Res,1998,13(4):930~934
    [21] 王林江,吴大清,袁鹏等,高岭石-甲酰胺插层的 1 H魔角旋转核磁共振谱,科学通报,2001,46(22):1910~1914
    [22] RAY L. FROST,JANOS KRISTOF,ERZSEBET HORVATH,J.THEO KLOPROGGE,Effect of water on the formamide-intercalation of kaolinite,Spectrochimica Acta Part,2005,56:1711~1729
    [23] 李学强,夏华,高岭土-乙酸钾夹层复合物制备,非金属矿,2002,25(4):22~24
    [24] RAY L. FROST,JANOS KRISTOF,JOLENE M.SCHMIDT,J.THEO KLOPROGGE,Raman spectroscopy of potassium acetate-intercalated kaolinites at liquid nitrogen temperature,Spectrochimica Acta Part A,2001,57:603~609
    [25] 张其美,叶巧明,高岭土煅烧制白炭黑,应用化学,1999,16(5):91~93
    [26] 闵恩泽,工业催化剂的研制与开发,北京:中国石化出版社,1997.295
    [27] Van Bekkum,分子筛科学与实践的简介,阿姆斯特丹:Elsevier,1991.201~239
    [28] Lussier R J.,A novel clay-based catalytic material-preparation and propertier,J. Catalysis,1991,129:225~237
    [29] 刘岩,朱涛,催化剂及其助剂在催化裂化中的应用,石油化工高等学校学报,2003,16(2):52~54
    [30] 肖扬,朱和清,CA-1 助剂在南充炼油厂的应用,天然气与石油,1999,17(4):23~28
    [31] Ellison J W.,Enhanced bottoms cracking using a solid particle additive in a commercial FCC unit,NPRA annual meeting,1993
    [32] 李文杰,FCC 汽油辛烷值的影响因素及改进方法,催化裂化,1997,16(1):39~44
    [33] 张正义,甘俊,刘希民,提高汽油辛烷值催化剂 DOCP(ji)配方设计及工业应用,工业催化,2000,8(2):47~53
    [34] 张继光,ZRP 分子筛在 FCC 中的工业应用,工业催化,1999,7(2):38~42
    [35] 俞祥麟,刘守军,张美超等,大庆蜡油掺炼渣油催化裂化多产柴油的工业开发,石油炼制与化工,1998,29(4):13~16
    [36] 田辉平,杨建,陆友宝等,MLC 系列催化裂化多产柴油催化剂的研究开发,石油炼制与化工,2000,31(8):41~44
    [37] 郑淑琴等,全白土型抗重金属助剂的研究与开发,工业催化,2003,9:34~38
    [38] 张剑波,李会欣,抗重金属 FCC 催化剂的研究进展,石油化工,2000,29:368~372
    [39] Kugler E. L., Nickel and vanadium on equilibrium cracking catalysts by imaging secondary ion mass spectrometry,J Catal.,1988,109:31~37
    [40] William P.,Hettinger Jr. Ph. D.,Catalysis challenges in fluid catalytic cracking: a 49 year personal account of past and more recent contributions and some possible new and future directions for even further improvement,Catalysis Today 53 (1999) 367~384
    [41] 郑淑琴,张永明,唐容容等,新一代白土型 FCC 催化剂 LB-2 的研究与开发,工业催化,1999,7(2):32~37
    [42] 沸石分子筛,中国科学院大连化学物理研究所分子筛组编,大连:科学出版社,1978,5
    [43] 哈特日耶夫,石油馏分的分子筛催化裂化,北京:烃加工出版社,1986.23
    [44] 苏品书,超微粒子材料科学,武汉:武汉出版社,1989
    [45] 张立德,牟季美,开拓原子和物质的中间领域-纳米微粒与纳米固体,物理,1992,21(3):167
    [46] 陈国周,小晶粒 NaY 分子筛合成探索,硕士学位论文,厦门大学,2001
    [47] Pu SB,Inui Tomoyuki,Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2,7-dimethylnaphthalene isomerization,Zeolites,1996,17:334~339
    [48] Persson A.E.,Schoeman B.J.,Sterte J,Synthesis of discrete colloidal particles of TPA-silicalite-1,Zeolites,1994,14(7):557~567
    [49] Schoeman B.J.,Sterte J,Collidal zeolite suspensions,Zeolites,1994,14(2):110~116
    [50] Tsapatsis Michael,Okubo Tatsuya,Lovallo Mark,Synthesis and structure of ultrafine zeolite KL (LTL) crystallites and their use for thin film zeolite processing,Materials Research Society Symposium-Proceedings,1995,371:21~26
    [51] Schoeman,Sterte Johan,Otterstedt,Jan-Erik Synthesis of colloidal suspensions of zeolite ZSM-2,Journal of Colloid and Interface Science, 1995,170(2):449~456
    [52] Persson A.E.,Schoeman B.J.,Sterte J.,Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA)ZSM-5 crystals,Zeolites, 1995,15(7):611~619
    [53] Bo Wang,Hongzhu Ma,Factors affecting the synthesis of microsized NaY zeolite,Microporous and Mesoporous Materials,1996,25(3):131~136
    [54] 马跃龙,陈诵英,小颗粒 NaY 分子筛透明液相导向剂的制备及其性能,催化学报,1995,16(5):411~414
    [55] Bown,Fluid catalytic cracking catalyst comprising microspheres containing more than about 40 percent by weight Y-faujasite and methods for making,US4493902,1985-02-15
    [56] 张永明,唐荣荣,刘宏海等,一种全白土型流化催化裂化催化剂及其制备方法,中国专利,9810157,1999-10-27
    [57] Lerner,Modified microsphere FCC catalysts and manufacture thereof,US5559067, 1996-09-24
    [58] 苏建明等,高活性流化催化裂化催化剂的制备方法,中国专利,1429883,2001-12-31
    [59] 刘欣梅等,由煤系高岭土原位合成 NaY 分子筛,石油大学学报,2002,Vol.26 No.5
    [60] 袁树来,中国煤系高岭岩及加工利用,中国:中国建材工业出版社,2001.186~207
    [61] 冯亚云,化工基础实验,北京:化学工业出版社,2000.93~144
    [62] 晁自胜,中国石油化学工业总公司北京石油化工科学研究院博士后研究工作报告,1998,68
    [63] LINDNER T.,LECHERT H.,Chelate ligands as mineralizing agents in hydrothermal synthesis of faujasite-type zeolites: A kinetic study,Zeolites, 1996,16:196~206
    [64] LECHERT H.,KACIREK H.,Investigations on the crystallization of X-type zeolites,Zeolites,1991,11:720~728

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700