用户名: 密码: 验证码:
细长杆多腔模注塑成型工艺多因素多目标集成优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多腔模细长杆类零件产品质量品质的不一致是笔类企业难以克服的技术瓶颈,设计一种基于平衡布置的一模四腔圆珠笔笔弹模具,借鉴传统注塑成型中熔体充模流动理论的研究方法,引入合理的假设与必要的简化,构建了细长杆注塑成型中熔体充模流动的数学模型。在此基础上分析了平衡设计的流道中,引起不平衡填充的各种因素,尤其是剪切力导致熔体在平衡流道中不平衡流动的机理。基于数值模拟技术以Y向最大变形作为流动不平衡的评价目标,通过改变模具温度、熔体温度、注射时间、保压压力等工艺参数,使得流动达到可以接受的平衡,并通过实验验证了理论分析和优化设计的结果,提出通过优化工艺参数组合直接或间接地优化多腔模产品质量的思路。
     本文确定相关产品质量的两个冲突目标—最大体积收缩率R1和最大轴向变形R2作为优化对象,首先比较了普通正交设计和基于噪音比的噪音设计在通过极差和方差设计在寻求最优工艺参数水平组合和因素显著性的差异,通过实验证明,运用稳健技术的Taguchi方法在单目标问题上不论从AVONA分析显著性,还有工艺参数最优水平组合,都优于普通的正交实验。相互冲突的双目标运用直观分析折中后的方案依然是稳健技术的Taguchi方法较优。
     在分析精度和各因素之间的交互作用上,提出基于CCD中心组合设计通过细长杆的响应面(RSM)回归模型,建立起设计变量与设计响应之间的非线性关系,求出了连续空间的最优工艺参数组合,并基于加权进行双目标的优化。与基于噪音比的正交实验相比较,响应面的精度更高,通过对细长杆Y向最大变形考察填充不平衡,基于响应面的最优工艺参数的填充平衡性更好。
     发展了一种基于遗传算法和神经网络的集成优化设计方法,使用GA优化BP神经网络的权值和阈值,种群中的每个个体都包含了一个网络所有权值和阈值,个体通过适应度函数计算个体适应度值,个体对应的最优适应度值由GA算法通过选择、交叉和变异操作找到BP神经网络预测用GA所得最优个体对网络初始权值和阈值赋值,网络经训练后预测函数输出。优化结果表明:遗传算法和神经网络集成的优化设计收敛速度快,对全局最优解的逼近程度高,可以迅速给出塑料制件期望值的工艺参数组合,通过训练好的网络获得了多腔模细长杆选用不同成型材料时模具温度、熔体温度、保压时间和保压压力等工艺参数对最大体积收缩率和最大轴向变形的影响规律。
     最后,针对注塑成形优化普通存在的多目标特性,首次提出了基于灰色关联分析(GCA)的多腔模细长杆注塑成形多目标优化方法。针对望目、望大、望小特征的目标函数,提出了不同的目标数据预处理方法。为了得到最佳的优化参数组合,对多目标的灰色关联度进行方差分析,并建立了显著影响变量的响应函数,从而得到最佳值。改进了传统的多目标灰色关联度寻优方法,研究结果表明,利用灰关联和理想解法的注射工艺多目标优化的改进优化措施进行多目标优化,可以获得最佳效果。
     模拟和优化的结果经过企业的实验验证,与生产实际吻合。
The quality inconsistency of multi-cavity pen rod parts is the technical weakness for the pen companies to overcome. Based on the balanced arrangement, this paper designed a kind of one-mold-four-cavity ballpoint pen rod mold, which referred research methods melt filling flow theory in the traditional of the injection molding, introduced reasonable assumptions and necessary simplifications, and constructed the mathematical model of melt filling flow in the slender pen rod injection molding. Various factors of the unbalance filling in the runner in the balanced design were analyzed, especially the mechanism of shear-induced imbalance in the balanced flow channels. In the numerical simulation, Y-direction maximum deformation was determined as the evaluation objective of mobile unbalance. Through changing the process parameters such as mold temperature, melt temperature, injection time, holding pressure and so on, the flow filling and Y-direction maximum deformation reached the acceptable balance. On this basis, the theoretical analysis and design optimization results were experimentally proposed.
     It is determined two conflicting objectives on the quality of related product—the maximum volume shrinkage(R1) and the maximum axial deformation(R2) as the optimization objects, and the difference of normal orthogonal design and the Taguchi design based on the noise ratio was compared to seek the optimal process parameter combination and factor significance through the range and variance analysis. The experiment can show that Taguchi method with robust technology was better than the common orthogonal experiment at the single-objective problem no matter from AVONA analysis significance or the process parameter optimal level combination. After using the intuitive analysis, the conflicting bi-objective still preferred to use the Taguchi method with robust technology.
     Concerning the analysis on the interaction between the accuracy and factors, it was proposed to design the response surface (RSM) regression model based on Central composite design (CCD) of slender pen rod, the non-linear relationship was established between the design variable and design response, the optimal process parameter combination in the continuous space was sought, and the bi-objective optimization based on weighing was conducted. Compared with the orthogonal experiment based on the noise ratio, the accuracy of RSM was higher. With the inspection on the unbalance analysis of the Y-direction maximum deformation, the filling balance of the optimal process parameter based on RSM was better.
     A kind of integrated optimization design method based on the genetic algorithm and neural network was developed. GA was used to optimize the weight and threshold of BP neural network:Each individual in the population contains a BP network ownership value and threshold, and the individual calculates the fitness value through the fitness function. The individual corresponding optimal fitness value of BP network was found by GA algorithm selected, crossed and mutated. The network initial weight and threshold on the best individual assigned BP were obtained with GA. After training, the BP network would predict the function output. The optimization result can show that the optimized design method integrated by the genetic algorithm and neural network (GA-BP) has a fast convergence speed, higher approaching degree on the global optimal solution. It can quickly offer the process parameter combination of expected plastic part value. With the trained network, the influence rules of mold temperature, melt temperature, holding time and holding pressure and other process parameters on^l and^2were obtained when the multi-cavity mold slender rod was selected different materials.
     Finally, aiming at the multi-objective feature commonly existed in the injection molding and optimization, the multi-cavity slender pen rod injection molding multi-objective optimization method based on the analysis of gray correlation analysis (GCA) was firstly proposed. Concerning the objective functions of target-the-better, larger-the-better and smaller-the-better features, different target data preprocessing methods were proposed. In order to obtain the best optimal parameter combination, it conducted the variance analysis on the multi-objective gray correlation degree, established the response function significantly influencing the variable, and obtained the best value. The improved traditional research result can show that conducting the multi-objective optimization with the improved optimized measures on the injection process multi-objective optimization by use of the gray correlation analysis and ideal solution can obtain the best result.
     After simulation and verification of enterprises experimental, the results were consistent with the actual production.
引文
[1]李德群,陈兴.多刑腔注塑模浇注系统的平衡计算与研究[J].中国塑料,1994,8(3):55-63.
    [2]唐明真,胡青春,姜晓平.多型腔注塑模浇注系统设计及CAE分析[J].塑料工业,2009,37(6):32-35.
    [3]王波,王震,田志飞,等.组合型腔注塑模浇注系统的平衡设计与优化[J].塑料工业,201 1,39(8):62-64.
    [4]杨方洲,杨晓东.基于SIM的多型腔注塑模具流动平衡优化[J].工程塑料应用,2012,40(9):44-47.
    [5]陈静波,陆宜清,祁东霞.多型腔注塑模的流动平衡计算与分析[J][J].工程塑料应用,2004,32(9):54-57.
    [6]余晓容,中长雨,陈静波,等.多型腔注射模浇注系统优化设计[J].工程塑料应用,2004,4:49-52.
    [7]陆建军,袁国定,韩阳飞.注塑模多型腔流道优化设计[J].农机化研究,2005,5:132-133.
    [8]Lee B H, Kim B H. Automated design for the runner system of injection molds based on packing simulation [J]. Polymer-Plastics Technology and Engineering,1996,35(1):147-168.
    [9]余磊,刘斌,陈静波.影响多型腔注射模不平衡充填因素的模拟研究[J].塑料,2011,40(1):109-113.
    [10]姜开宇,段飞,田净娜.注射成型过程中复合材料在型腔内流动行为的可视化实验[J].高分子材料科学与工程,2012,28(011):129-132.
    [11]孟瑞艳.注塑成型中一些流动与传热问题的解析分析[D].郑州大学,2010.
    [12]陈静波,中长雨.多型腔注射模充填不平衡试验[J].机械工程学报,2007,43(10):170-174.
    [13]Chen C S. Determination of the injection molding process parameters in multicavity injection molds [J]. Journal of reinforced plastics and composites,2006,25(13):1367-1373.
    [14]Chien C, Peng Y H, Yang W L, et al. Effects of melt rotation on warpage phenomena in injection molding[C].ANTEC-CONFERENCE PROCEEDINGS-.2007,1:571.
    [15]Sai K M. Runner design to improve quality of plastic optical lens [J]. The International Journal of Advanced Manufacturing Technology,2013:1-14.
    [16]Rose D M. Flash Free Molding and Reduced Cure Times by Using In-Mold Rheological Control Systems [J].
    [17]Hoffman D A. Hoffman D A. Reducing mold commissioning &lead times in thermoset plastic molding. [J]. Lehigh University, Doctor.2007
    [18]Rhyu Kevin Takarada. An experimental investigation of runner based flow imbalanced during injection molding processes in multicavity molds,Lehigh University,Master,2006.
    [19]Lin C M, Cheng C H, Shyu S H, et al. Filling Imbalances Analysis of Multi-Cavity Injection Molding Based on the Taguchi Method[J]. Advanced Science Letters,2012,8(1):529-533.
    [20]Low M L H, Lee K S. Mould data management in plastic injection mould industries [J]. International Journal of Production Research,2008,46(22):6269-6304.
    [21]Bozdana A T, Eyercil loglu O. Development of an expert system for the determination of injection moulding parameters of thermoplastic materials:EX-PIMM [J]. Journal of materials processing technology,2002,128(1):113-122.
    [22]Cardozo D. Three models of the 3D filling simulation for injection molding:a brief review [J]. Journal of Reinforced Plastics and Composites,2008,27(18):1963-1974.
    [23]Chang T C, Faison E. Shrinkage behavior and optimization of injection molded parts studied by the Taguchi method [J]. Polymer Engineering & Science,2001,41(5):703-710.
    [24]I'andbook of plastic optics [M]. Wiley-VCH,2011.
    [25]Shen Y K, Liu J J, Chang C T, Chiu C Y. Comparison of the results for semisolid and plastic injection molding process [J]. International Communications in Heat and Mass Transfer, 2002,29(1):97-105.
    [26]Mehat N M, Kamaruddin S. investigating the effects of injection molding parameters on the mechanical properties of recycled plastic parts using the Taguchi method [J]. Materials and Manufacturing Processes,2011,26(2):202-209.
    [27]Bharti P K, Khan M I and Singh H. "Six Sigma Approach for Quality Management in Plastic Injection Molding Process:A Case Study and Review" International Journal of Applied Engineering Research,2011,6(3):303-314.
    [28]Zhao J, Mayes R H, Chen G E, Xie H. Effects of process parameters on the micro molding process [J]. Polymer Engineering & Science,2003,43(9):1542-1554.
    [29]Huang M C, Tai C C. The effective factors in the warpage problem of an injection-molded part with a thin shell feature [J]. Journal of Materials Processing Technology,2001,110(1): 1-9.
    [30]Chiang K T. The optimal process conditions of an injection-molded thermoplastic part with a thin shell feature using grey-fuzzy logic:A case study on machining the PC/ABS cell phone shell [J]. Materials & design,2007,28(6):1851-1860.
    [31]Chen W C, Fu G L, Tai P H. Process parameter optimization for MIMO plastic injection molding via soft computing[J]. Expert Systems with Applications,2009,36(2):1114-1122.
    [32]Kurtaran H, Ozcelik B, Erzurumlu T. Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm [J]. Journal of materials processing technology, 2005,169(2):314-319.
    [33]Ozcelik B, Erzurumlu T. Comparison of the warpage optimization in the plastic injection molding using AN OVA, neural network model and genetic algorithm [J]. Journal of materials processing technology,2006,171(3):437-445.
    [34]Liao S J, Chang D Y, Chen H J, et al. Optimal process conditions of shrinkage and warpage of thin-wall parts [J], Polymer Engineering & Science,2004,44(5):917-928.
    [35]Tsai K M, Hsieh C Y, Lo W C. A study of the effects of process parameters for injection molding on surface quality of optical lenses [J]. Journal of materials processing technology, 2009,209(7):3469-3477.
    [36]Shie J R. Optimization of injection molding process for contour distortions of polypropylene composite components by a radial basis neural network [J]. The International Journal of Advanced Manufacturing Technology,2008,36(11-12):1091-1103.
    [37]Lam Y C, Zhai L Y, Tai K, Fok S C. An evolutionary approach for cooling system optimization in plastic injection moulding [J]. International journal of production research, 2004,42(10):2047-2061.
    [38]Chen W C, Fu G L, Tai P H, et al. Process parameter optimization for MIMO plastic injection molding via soft computing[J]. Expert Systems with Applications,2009,36(2): 1114-1122.
    [39]Mok S L, Kwong C K, Lau W S. Review of research in the determination of process parameters for plastic injection molding[J]. Advances in polymer technology,1999,18(3): 225-236.
    [40]Dowlatshahi S. An application of design of experiments for optimization of plastic injection molding processes [J]. Journal of Manufacturing Technology Management,2004,15(6): 445-454.
    [41]Park K, Ahn J H. Design of experiment considering two-way interactions and its application to injection molding processes with numerical analysis [J]. Journal of materials processing technology,2004,146(2):221-227.
    [42]Islam M T, Thulasiraman P, Thulasiram R K.A parallel ant colony optimization algorithm for all-pair routing in MANETs[C]//Parallel and Distributed Processing Symposium,2003. Proceedings. International. IEEE,2003:8 pp.
    [43]Rao R S, Kumar C G, Prakasham R S, et al. The Taguchi methodology as a statistical tool for biotechnological applications:a critical appraisal [J]. Biotechnology journal,2008,3(4): 510-523.
    [44]Kirby E D, Zhang Z, Chen J C, et al. Optimizing surface finish in a turning operation using the Taguchi parameter design method [J]. The International Journal of Advanced Manufacturing Technology,2006,30(11-12):1021-1029.
    [45]Kamaruddin S, Khan Z A, Foong S H. Application of Taguchi method in the optimization of injection moulding parameters for manufacturing products from plastic blend [J]. IACSIT International Journal of Engineering and Technology,2010,2(6):574-580.
    [46]Mahfouz A, Hassan S A, Arisha A. Practical simulation application:Evaluation of process control parameters in Twisted-Pair Cables manufacturing system [J]. Simulation Modelling Practice and Theory,2010,18(5):471-482.
    [47]Shim H J, Kim J K. Cause of failure and optimization of a V-belt pulley considering fatigue life uncertainty in automotive applications [J]. Engineering Failure Analysis,2009,16(6): 1955-1963.
    [48]Mohan N S, Ramachandra A, Kulkarni S M. Influence of process parameters on cutting force and torque during drilling of glass-fiber polyester reinforced composites [J]. Composite structures,2005,71(3):407-413.
    [49]Ariffin M K A M, Ali M I M, Sapuan S M, et al. An optimise drilling process for an aircraft composite structure using design of experiments [J]. Scientific Research and Essays,2009, 4(10):1109-1116.
    [50]Datta S, Bandyopadhyay A, Pal P K. Grey-based Taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding [J]. The International Journal of Advanced Manufacturing Technology,2008,39(11-12):1136-1143.
    [51]Liu S J, Chang J H. Application of the Taguchi method to optimize the surface quality of gas assist injection molded composites [J]. Journal of reinforced plastics and composites,2000, 19(17):1352-1362.
    [52]Ozcelik B, Ozbay A, Demirbas E. Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding[J]. International Communications in Heat and Mass Transfer,2010,37(9):1359-1365.
    [53]Li H, Guo Z, Li D. Reducing the effects of weldlines on appearance of plastic products by Taguchi experimental method [J]. The International Journal of Advanced Manufacturing Technology,2007,32(9-10):927-931.
    [54]Wu C H, Liang W J. Effects of geometry and injection-molding parameters on weld-line strength [J]. Polymer Engineering & Science,2005,45(7):1021-1030.
    [55]Liu S J, Lin C H, Wu Y C. Minimizing the sinkmarks in injection-molded thermoplastics[J]. Advances in polymer technology,2001,20(3):202-215.
    [56]Lan T S, Chiu M C, Yeh L J. An approach to rib design of injection molded product using finite element and taguchi method [J]. Information Technology Journal,2008,7(2):299-305.
    [57]Erzurumlu T, Ozcelik B. Minimization of warpage and sink index in injection-molded thermoplastic parts using Taguchi optimization method [J]. Materials & design,2006,27(10): 853-861.
    [58]Shen C, Wang L, Cao W, et al. Investigation of the effect of molding variables on sink marks of plastic injection molded parts using Taguchi DOE technique[J]. Polymer-Plastics Technology and Engineering,2007,46(3):219-225.
    [59]Song M C, Liu Z, Wang M J, et al. Research on effects of injection process parameters on the molding process for ultra-thin wall plastic parts [J]. Journal of materials processing technology,2007,187:668-671.
    [60]Ozcelik B, Sonat I. Warpage and structural analysis of thin shell plastic in the plastic injection molding [J]. Materials & Design,2009,30(2):367-375.
    [61]Ho N C, Lee S S G, Loh Y L, et al. A two-stage approach for optimizing simulation experiments [J]. CIRP Annals-Manufacturing Technology,1993,42(1):501-504.
    [62]Chen R S, Lee H H, Yu C Y. Application of Taguchi's method on the optimal process design of an injection molded PC/PBT automobile bumper [J]. Composite Structures,1997,39(3): 209-214.
    [63]Mathivanan D, Nouby M, Vidhya R. Minimization of sink mark defects in injection molding process-Taguchi approach [J]. International Journal of Engineering, Science and Technology, 2010,2(2):13-22.
    [64]Deng J L. Introduction to grey system theory [J]. The Journal of grey system,1989,1(1): 1-24.
    [65]Fung C P. Manufacturing process optimization for wear property of fiber-reinforced polybutylene terephthalate composites with grey relational analysis [J]. Wear,2003,254(3): 298-306.
    [66]Fung C P, Huang C H, Doong J L. The study on the optimization of injection molding process parameters with gray relational analysis [J]. Journal of reinforced plastics and composites,2003,22(1):51-66.
    [67]Yang Y K. Optimization of injection-molding process of short glass fiber and polytetrafluoroethylene reinforced polycarbonate composites via design of experiments method:A case study [J]. Materials and manufacturing processes,2006,21(8):915-921.
    [68]Kuo C F J, Su T L. Optimization of injection molding processing parameters for LCD light-guide plates [J]. Journal of Materials Engineering and Performance,2007,16(5): 539-548.
    [69]Chiang K T, Chang F P. Application of grey-fuzzy logic on the optimal process design of an injection-molded part with a thin shell feature [J]. International Communications in Heat and Mass Transfer,2006,33(1):94-101.
    [70]Chiang K T. The optimal process conditions of an injection-molded thermoplastic part with a thin shell feature using grey-fuzzy logic:A case study on machining the PC/ABS cell phone shell [J]. Materials& design,2007,28(6):1851-1860.
    [71]Chang S H, Hwang J R, Doong J L. Optimization of the injection molding process of short glass fiber reinforced polycarbonate composites using grey relational analysis[J]. Journal of Materials Processing Technology,2000,97(1):186-193.
    [72]Shen Y K, Chien H W, Lin Y. Optimization of the micro-injection molding process using grey relational analysis and moldflow analysis[J]. Journal of reinforced plastics and composites,2004,23(17):1799-1814.
    [73]Altan M. Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods [J]. Materials & Design,2010,31(1):599-604.
    [74]Shie J R. Optimization of injection-molding process for mechanical properties of polypropylene components via a generalized regression neural network [J]. Polymers for Advanced Technologies,2008,19(1):73-83.
    [75]Kuo C F J, Su T L. Multiple quality characteristics optimization of precision injection molding for LCD light guide plates [J]. Polymer-Plastics Technology and Engineering,2007, 46(5):495-505.
    [76]Deng Y M, Lam Y C, Britton G A。Optimization of injection moulding conditions with user-definable objective functions based on a genetic algorithm [J]. International journal of production research,2004,42(7):1365-1390.
    [77]Mok S L, Kwong C K, Lau W So A hybrid neural network and genetic algorithm approach to the determination of initial process parameters for injection moulding [J]. The International Journal of Advanced Manufacturing Technology,2001,18(6):404-409.
    [78]Shen C, Wang L, Li Q. Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method[J]. Journal of Materials Processing Technology,2007,183(2):412-418.
    [79]Chiang K T, Chang F P. Analysis of shrinkage and warpage in an injection-molded part with a thin shell feature using the response surface methodology [J]. The International Journal of Advanced Manufacturing Technology,2007,35(5-6):468-479.
    [80]Ozcelik B, Erzurumlu T. Determination of effecting dimensional parameters on warpage of thin shell plastic parts using integrated response surface method and genetic algorithm [J]. International Communications in Heat and Mass Transfer,2005,32(8):1085-1094.
    [81]Mathivanan D, Parthasarathy N S. Prediction of sink depths using nonlinear modeling of injection molding variables [J]. The International Journal of Advanced Manufacturing Technology,2009,43(7-8):654-663.
    [82]Mathivanan D, Parthasarathy N S. Sink-mark minimization in injection molding through response surface regression modeling and genetic algorithm [J]. The International Journal of Advanced Manufacturing Technology,2009,45(9-10):867-874.
    [83]Kurtaran H, Erzurumlu T. Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm [J]. The International Journal of Advanced Manufacturing Technology,2006,27(5-6):468-472.
    [84]姜开宇.注射成型过程熔体前沿充填不平衡现象的试验研究[J].机械工程学报,2009,45(2):294-300.
    [85]Takarada R K. An experimental investigation of runner based flow imbalances during injection molding processes in multicavity molds [J].2006.
    [86]Chien C, Peng Y H, Yang W L, et al. Effects of melt rotation on warpage phenomena in injection molding[C]//ANTEC-CONFERENCE PROCEEDINGS-.2007,1:571.
    [87]Rose D M. Flash Free Molding and Reduced Cure Times by Using In-Mold Rheological Control Systems [J].
    [88]Fratila D, Caizar C. Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg< sub> 3 [J]. Journal of Cleaner Production, 2011,19(6):640-645.
    [89]R.N.Karekar, Off-line quality control, Parameter design, and the Taguchi method, Journal of Quality Technology,1985,17:176-188.
    [90]M.S. Phadke, Quality engineering using robust design. Prentice-hall, New Jesery,1989. 168-19.
    [91]V.N.Nair, Taguchi's Parameter design:A Panel discussion, Technimetrics,1992, 34:127-161.
    [92]V.N.Nair, D.pregibon, Discussion of "Signal-to-noise ratios, Performance criteria, and transformations", Technimetrics,1988,30:24-30.
    [93]陈立周.稳健设计[M].机械工业出版社,2000,23-45.
    [94]Maneeboon T, Vanichsriratana W, Pomchaitaward C, Kitpreechavanich.Optimization of lactic acid production by pellet-form Rhizopus oryzae in 3-L airlift bioreactor using response surface Methodology. Appl Biochem Biotechnol,2010,161, pages 137-146.
    [95]王万中.试验的设计与分析[M].高等教育出版社,2004.
    [96]Bas D, Boyaci I H. Modeling and optimization Ⅰ:Usability of response surface methodology [J]. Journal of Food Engineering,2007,78(3):836-845.
    [97]Bezerra M A, Santelli R E, Oliveira E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry [J]. Talanta,2008,76(5):965-977.
    [98]Liyana Pathirana C, Shahidi F. Optimization of extraction of phenolic compounds from wheat using response surface methodology [J]. Food chemistry,2005,93(1):47-56.
    [99]Mathivanan D, Parthasarathy N S. Prediction of sink depths using nonlinear modeling of injection molding variables [J]. The International Journal of Advanced Manufacturing Technology,2009,43(7-8):654-663.
    [100]Liao S J, Chang D Y, Chen H J, Tsou L S, Ho J R, Yau H T. Optimal process conditions of shrinkage and warpage of thin-wall parts. Polym Eng Sci 2004,44(5):917-28.
    [101]Chen C C, Su P L, Lin Y C. Analysis and modeling of effective parameters for dimension shrinkage variation of injection molded part with thin shell feature using response surface methodology [J]. The International Journal of Advanced Manufacturing Technology,2009, 45(11-12):1087-1095.
    [102]Box G E P, Behnken D W. Some new three level designs for the study of quantitative variables. Technometrics,1960,2:455-475.
    11031孙骏,秦宗慧.基于响应面模型的注塑件工艺参数混合优化[J].中国塑料,2012(11):79-82.
    [104]Plackett R L, Burman J P. The design of optimum multifactorial experiments[J]. Biometrika, 1946,33(4):305-325.
    [105]李吉泉,黄志高,崔树标等.塑料特性对注射成形工艺的影响[J].上海交通大学学报,2009(5):847-850.
    [106]李吉泉,姜少飞,李德群.GPPS材料特性对注塑制品尺寸的影响分析[J].高分子材料科学与工程,2010,12:046.
    [107]马宝胜.响应面方法在多种实际优化问题中的应用[D].北京工业大学,2007.
    [108]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].中国科学技术大学出版社,1998.
    [109]阎平凡,张长水.人工神经网络与模拟进化计算[M].清华大学出版社有限公司,2005.
    [110]王万良.人工智能及其应用[M].高等教育出版社,2008.
    [111]王宏,王文辉.人工神经元网络原理与应用[M].东北大学出版社,2000.
    [112]Hornik K. Approximation capabilities of multilayer feedforward networks [J]. Neural networks,1991,4(2):251-257.
    [113]贾晓亮,米增.神经元网络控制[J].数字技术与应用,2011,6:103.
    [114]Wang C H, Tong L I. Optimization of dynamic multi-response problems using grey multiple attribute decision making [J]. Quality Engineering,2004,17(1):1-9.
    [115]Huang S J, Chiu N H, Chen L W. Integration of the grey relational analysis with genetic algorithm for software effort estimation[J]. European Journal of Operational Research,2008, 188(3):898-909.
    [116]Kuo Y, Yang T, Huang G W. The use of grey relational analysis in solving multiple attribute uecision-making problems[J]. Computers & Industrial Engineering,2008,55(1):80-93.
    [117]Ding C, He X. K-means clustering via principal component analysis[C]//Proceedings of the twenty-first international conference on Machine learning. ACM,2004:29.
    [118]Yeung K Y, Ruzzo W L. Principal component analysis for clustering gene expression data[J]. Bioinformatics,2001,17(9):763-774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700