用户名: 密码: 验证码:
液氮温区大功率斯特林型脉管制冷机回热器温度不均匀性及性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液氮温区大功率低温制冷机在能源电力、国防军事、气体液化、医疗、交通运输和低温物理等领域有着重要应用。斯特林型脉管制冷机具有可靠、高效、紧凑、轻质等突出优点,可望满足日益增长的高温超导应用要求,因此逐渐成为低温制冷机领域的研究热点。近年来,大功率斯特林型脉管制冷机虽然已取得一定进展,但是与商业化的大功率低温制冷机如G-M制冷机和斯特林制冷机相比在制冷效率和稳定性上仍有不少差距。研究表明大功率脉管制冷机并非小功率脉管制冷机的简单放大,回热器内的温度与流动不均匀性、大功率换热器设计等仅属于大功率斯特林脉管制冷机的复杂科学问题严重制约了其发展。本文将以进一步提高脉管制冷机在液氮温区的制冷性能为目标,着重研究大尺寸、大功率高频回热器的传热与流动特性,揭示回热器温度不均匀的形成及损失机理,探索在高频大功率条件下实现高效回热的方法,进而提高脉管制冷机在液氮温区的制冷效率,最终为拓展低温制冷机的大规模工业应用奠定基础。为此本文开展了以下三方面的理论和实验的研究工作:
     1.开发了液氮温区单级大功率斯特林型脉管制冷机数值模拟程序,并对大功率斯特林型脉管制冷机工作机理进行了深入的理论分析:
     为了更全面、正确地把握大尺寸、大功率高频脉管制冷机的制冷及损失机理,本文基于数值软件Sage建立了单级大功率斯特林型脉管制冷整机模型,在仿真计算基础上研究了回热器、脉管等主要部件的几何尺寸,回热器填料等对制冷机内部传热流动特性与制冷性能的影响。为提高制冷机效率,大功率斯特林型脉管制冷机应采用小长径比的回热器,以保证声功耗散能力的同时减少流阻损失。制冷温度越高,以制冷量为优化目标所对应的最佳回热器长度越短,因此本文对回热器长度进行优化从而提升制冷机在液氮温区的制冷性能。另外,分析了充气压力和运行频率对制冷性能的影响,可为单级斯特林型脉管制冷机的性能优化提供参考。经模拟计算,制冷机能达到31.5K的最低无负荷制冷温度,在80K可以获得508W制冷量。
     2.对大功率脉管制冷机回热器温度不均匀性进行了理论研究,推导了回热器温度不均匀性引起的相对直流解析式,发展了并联回热器整机数值模拟程序:
     回热器温度不均匀性造成了严重的直流损失,制约了大功率脉管制冷机的性能优化。本文对回热器内温度不均匀性产生的机理,对回热器性能的影响以及抑制方法进行了系统归纳和总结。回热器内微弱的直流即可诱发回热器内径向温度不均匀性,而径向温度不均匀性又会进一步促进直流的产生。基于热力学理论推导了回热器内相对直流解析式。指出不均匀孔隙率或径向温度分布均可以导致直流的产生,另外对轴向温度梯度、回热器长度、回热器填料特性和充气压力等对回热器内直流的影响进行了分析。建立了并联回热器数值模拟程序讨论了不均匀孔隙率对回热器温度不均匀性和制冷性能的影响,为进一步抑制回热器直流损失,优化制冷机性能提供了理论指导。
     3.发展了回热器高热导率复合填料结构,深入研究了其工作机制,在此基础上对复合填料的结构进行了优化:
     为抑制大功率斯特林型脉管制冷机回热器内的温度不均匀性,减小回热器直流损失,提出了回热器高热导率复合填料结构,将原有的部分不锈钢丝网替换为具有更高热导率的紫铜或黄铜填料。对比研究了七种不同的回热器高热导率复合填料,实验结果表明强化回热器填料径向导热对于抑制回热器内温度不均匀性具有显著作用。通过优化复合填料结构,斯特林型脉管制冷机可以达到41.3K的最低无负荷制冷温度。在8.9kW输入功率下78.2K可以提供424.5W制冷量,相对卡诺效率为13.5%,这是目前国内公开报道的同类脉管制冷机最好水平。
Cryocoolers working at liquid nitrogen temperatures have played important role in the fields of power grids, military, medical applications, transportation and low-temperature physics. The Stirling pulse tube cryocooler (SPTC) has a high potential to fulfill the increasing demands of High temperature superconducting (HTS) applications due to its advantages of high reliability, high efficiency, compactness, and low mass, thus gradually become a hot topic in the filed of cryocooler. The high power SPTC has already made some progress in the past few years. Nevertheless, comparing with the commercial high power cryocooler like G-M cooler and Stirling cooler, the SPTC has still to be further improved both on efficiency and reliability. Extending SPTCs to high cooling capacity is not a simple matter of scaling up the existing small-scale SPTCs. There are several stubborn problems only related to high power SPTCs, such as flow inhomogeneity and temperature inhomogeneity in the regenerator, impedance matching between compressor and cooler, the design of high power heat exchanger. These problems restrict the developments of high power SPTCs. With the aim of further improving the cooling performance of SPTC working at liquid nitrogen temperatures, in this paper, the flow and heat transfer characteristics of large-scale high power high frequency regenerators has been studied, the mechanism of temperature non-uniformity and related losses in the regenerator has been revealed, the methods to realize high efficient regeneration under the condition of high power and high frequency has been investigated. Based on the efforts listed above, the cooling efficiency of SPTC working at liquid temperatures is supposed to be improved, thus to brandly extend the use of cryocoolers in industry applications. In this paper, the theoretical and experimental research include three parts as listed below:
     1. Developed a numerical model of single-stage high power SPTC working at liquid nitrogen temperatures, and further investigated the working mechanism of high power SPTC:
     In order to fully and correctly understand the refrigeration and losses mechanism of large scale high power SPTC. A single stage SPTC numerical model was established based on simulation software Sage. The influence of regenerator and pulse tube dimensions together with regenerator matrix on the flow and heat transfer characteristics inside the SPTC were investigated on the basis of simulation. The high power SPTCs are supposed to adopt regenerators with small length to diameter ratio in order to guarantee the dissipation ability of acoustic power and simultaneously reduce the friction losses. The higher the refrigeration temperature is, the shorter the optimum regenerator is with respect to the object of cooling power. Therefore, the length of regenerator was optimized in this paper to improve the cooling performance at liquid nitrogen temperatures. Moreover, the effect of charge pressure and operating frequency on the cooling performance was also studied to guide the experimentally optimization of SPTC. Based on calculation, the SPTC can reach a no-load refrigeration temperature of31.5K and provide a cooling power of508W at80K.
     2. Theoretically investigated the temperature non-uniformity in the regenerator of SPTC, derived the analytical governing equation of relative DC flow caused by temperature non-uniformity, and developed a simulation model with parallel regenerators to numerically study the effect of temperature non-uniformity:
     Temperature non-uniformity in the regenerator will introduce significant DC flow losses, thus to reduce the cooling performance of high power SPTC. In this paper, the mechanism of temperature non-uniformity, the influence of temperature non-uniformity on the regenerator performance and the method of inhibiting temperature non-uniformity was comprehensively concluded and summarized. Theoretical study shows that even tiny DC flow occurred in the regenerator will skew the temperature profile and lead to transverse temperature non-uniformity. On the other hand, the transverse temperature non-uniformity will enlarge the amount of DC flow. Based on thermodynamic analysis, the governing equation of relative DC flow was derived. The result illustrates that either non-uniform temperature profile or porosity can generate DC flow. The effect of axial temperature gradient, the regenerator length, the regenerator matrix and charge pressure on the DC flow were also discussed. A numerical model with parallel regenerator was built to investigate the influence of non-uniformity porosity on the temperature non-uniformity and the cooling performance, which will guide the inhibition of DC flow losses and improvement of cooling performance.
     3. Developed the hybrid regenerator fillings with enhanced thermal conductance, further investigated the working mechanism of hybrid fillings, and optimized the composition of the regenerator fillings:
     In order to degrade the regenerator temperature non-uniformity in the SPTC and reduce the DC flow losses, the hybrid regenerator fillings with enhanced thermal conductance was proposed. Part of the original stainless steel screens were replaced by materials with higher thermal conductance like copper and brass. Seven different hybrid fillings were tested and compared, the experimental results revealed that the temperature non-uniformity in the regenerator was significantly reduced by enhancing the thermal conductance of regenerator fillings. By optimizing the composition of hybrid fillings, the SPTC can reach a no-load refrigeration temperature of41.3K. A cooling power of424.5W can be obtained at78.2K with an input power of8.9kW, the relative Carnot efficiency is13.5%, which is the best among the domestic reported similar SPTCs.
引文
1. R, R., Status and Recent Trends in Cryocooler Research, in ICCR 2008, Z.P. Wang R, Editor 2008, Science Press:Beijing, p.11-12.
    2. 能源科学学科发展战略研究组,2011-2020年我国能源科学学科发展战略报告(第4稿),2010年05月25日.
    3. Mulholland, J., T.P. Sheahen, and B. McConnell, Analysis of future prices and markets for high temperature superconductors, unpublished report to US Dept. of Energy,(March 2000),2001.
    4. M. J. Gouge, B.W.M., J. A. Demko and T. Sheahen, Cryogenic System Assessment,2002, Report at DOE Wire Development Workshop.
    5. Gifford, W.E. and R.C. Longsworth, Pulse tube refrigeration. Journal of Engineering for Industry-Transactions of the ASME (J Eng Ind Trans ASME),1964.86:p.264-270.
    6. Mikulin, E.I., Tarasov, A.A.,Shkrebyonock, M.P., Low-temperature expansion pulse tubes. Adv. Cryo. Eng.,1984.29:p.629-637.
    7. Radebaugh, R., Zimmerman, J., Smith, D.R.,Louie, B., Comparison of Three Types of Pulse Tube Refrigerators:New Methods for Reaching 60K. Adv. Cryo. Eng.,1986.31:p. 779-789.
    8. Zhu, S.W., Wu, P.Y.,Chen, Z.Q., Double inlet pulse tube refrigerators:an important improvement. Cryogenics,1990.30(6):p.514-520.
    9. Zhu SW, W.P., Chen ZQ, Zhu WX, Zhou YA., A Single Stage Double Inlet Pulse Tube Refrigerator Capable of Reaching 42k. Cryogenics,1990.30:p.257-261.
    10. Yang, L., Y. Zhou, and J. Liang, DC flow analysis and second orifice version pulse tube refrigerator. Cryogenics,1999.39(3):p.187-192.
    11. Kanao, K.-i., N. Watanabe, and Y. Kanazawa, A miniature pulse tube refrigerator for temperatures below 100K. Cryogenics,1994.34, Supplement 1(0):p.167-170.
    12. Gardner, D.L. and G.W. Swift, Use of inertance in orifice pulse tube refrigerators. Cryogenics,1997.37(2):p.117-121.
    13. Chen, G., et al., Experimental study on a double-orifice two-stage pulse tube refrigerator. Cryogenics,1997.37(5):p.271-273.
    14. Gan, Z.H., et al., A single-stage GM-type pulse tube cryocooler operating at 10.6 K. Cryogenics,2009.49(5):p.198-201.
    15. Cai, J.H., et al., Experimental analysis of the multi-bypass principle in pulse tube refrigerators. Cryogenics,1994.34(9):p.713-715.
    16. Ju, Y.L., C. Wang, and Y. Zhou, Dynamic experimental investigation of a multi-bypass pulse tube refrigerator. Cryogenics,1997.37(7):p.357-361.
    17. Godshalk, K.M., Jin, C.,Kwong, Y.K., et al., Characterization of 350 Hz thermoacoustically driven orfice pulse tube refrigerator with measurements of the phase of the mass flow and pressure. Advance in Cryogenics Engineering,1996.41 (B):p. 1411-1418.
    18. Matsubara Y, M.A., Alternative methods of the orifice pulse tube refrigerator. Cryocoolers 5,1989:p.127-135.
    19. Ishizaki, Y., Experimental Performance of Modified Pulse Tube Refrigerator Below 80 K Down 23 K, in Proc.7th. Int. Cryo. Con.1993, Air Force Phillips Laboratory Report PL-CP-93-1001:Santa Fe, USA.
    20. Matsubara, Y., Tanida, K.,Gao, J.L., Four-valve pulse tube refrigerator. JSJS-4, Beijing, 1994.4:p.54-59.
    21. Li, R., Kanao, K., Watanabe, N.,Kanazawa, Y.A., A Single Stage Four-valve Pulse Tube Cryocooler with a Cooling Power Over 30 W at 80 K. JSJS-5. Japan:Osaka,1997:p. 60-65.
    22. Gao JL, M.Y., An inter-phasing pulse tube refrigerator for high refrigeration efficiency. Proceedings ICEC 16,1996:p.295-298.
    23. Jeffrey, R., Olson, S.M., Cold inertance tube for multi stage pulse tube cryocooler,2005: United States Patent.
    24. Vanapalli, S., et al.,120 Hz pulse tube cryocooler for fast cooldown to 50 K. Applied Physics Letters,2007.90(7):p.072504.
    25.王晓涛等,300Hz级电驱动脉冲管制冷机特性研究.中国工程热物理会议论文集,2012.
    26. Radebaugh R., M.K.M., Swift G.W., Martin R.A., Development of a thermoacoustically driven orifice pulse tube refrigerator. Proceedings of the Fourth Interagency Meeting on Cryocoolers,1990:p.205-220.
    27. Wollan J J, S.G.W., Development of a thermoacoustic natural gas liquefier. Proceedings of American Gas Association Operations Conference, Denver,2000:p.1-10.
    28. W, S.G., Thermoacoustic natural gas liquefier. DOE Natural Gas Conference, Houston, 1997:p.1-5.
    29. Qiu, L.M., et al., Investigation on a thermoacoustically driven pulse tube cooler working at 80 & #xa0;K. Cryogenics,2005.45(5):p.380-385.
    30. Tang, K., et al., Thermoacoustically driven pulse tube cooler below 60 & #xa0;K. Cryogenics,2007.47(9-10):p.526-529.
    31. Yu, G.Y., E.C. Luo, and W. Dai, Advances in a 300 Hz thermoacoustic cooler system working within liquid nitrogen temperature range. Cryogenics,2010.50(8):p.472-475.
    32. Wang, X.T., et al., Influence of acoustic pressure amplifier tube on a 300 Hz thermoacoustically driven pulse tube cooler. Journal of Applied Physics,2010.108(7).
    33. Dai, W., et al.,300 Hz thermoacoustically driven pulse tube cooler for temperature below 100 K. Applied Physics Letters,2007.90(2):p.024104.
    34. Dai, W., et al., Detailed study of a traveling wave thermoacoustic refrigerator driven by a traveling wave thermoacoustic engine. The Journal of the Acoustical Society of America, 2006.119(5):p.2686.
    35. Dai, W., E. Luo, and G. Yu, A simple method to determine the frequency of engine-included thermoacoustic systems. Cryogenics,2006.46(11):p.804-808.
    36. Dai, W., et al., A Heat-driven thermoacoustic cooler capable of reaching liquid nitrogen temperature. Applied Physics Letters,2005.86(22):p.224103.
    37. Dai, W., A novel coupling configuration for thermoacoustically-driven pulse tube coolers: Acoustic amplifier. Chinese Science Bulletin,2005.50(18):p.2112.
    38. Yang, L.W., et al., Single-stage high frequency coaxial pulse tube cryocooler with base temperature below 30 K. Cryogenics,2010.50(5):p.342-346.
    39. Jaco, C, T. Nguyen, and E. Tward, HIGH CAPACITY TWO-STAGE COAXIAL PULSE TUBE COOLER. AIP Conference Proceedings,2008.985(1):p.530-537.
    40. Radebaugh, R., Advances in Cryocoolers. Proc. of the ICEC16/ICMC,1996:p.33-44.
    41. Sun, D., et al., Investigation on regenerator temperature inhomogeneity in Stirling-type pulse tube cooler. Chinese Science Bulletin,2009.54(6):p.986-991.
    42. Dietrich, M., L.W. Yang, and G. Thummes, High-power Stirling-type pulse tube cryocooler:Observation and reduction of regenerator temperature-inhomogeneities. Cryogenics,2007.47(5-6):p.306-314.
    43. Ercolani, E., et al., Design and prototyping of a large capacity high frequency pulse tube. Cryogenics,2008.48(9-10):p.439-447.
    44. Potratz, S.A., et al., Stirling-type pulse tube cryocooler with lkw of refrigeration at 77k, in AIP Conference Proceedings2008, AIP. p.42-48.
    45. Imura, J., et al., Optimization of regenerator in high capacity Stirling type pulse tube cryocooler. Physica C:Superconductivity,2008.468(15-20):p.2178-2180.
    46. Radebaugh, R., Modeling and Design of 4 K Pulse Tube Cryocoolers,2008, NIST: Hangzhou.
    47. Gan, Z.H., et al., A single-stage GM-type pulse tube cryocooler operating at 10.6 & #xa0;K. Cryogenics,2009.49(5):p.198-201.
    48. Chen, L., et al.,18.6 K single-stage high frequency multi-bypass coaxial pulse tube cryocooler. Cryogenics,2013(0).
    49. Matsubara, Y. and J.L. Gao, Novel configuration of three-stage pulse tube refrigerator for temperatures below 4 K. Cryogenics,1994.34(4):p.259-262.
    50. Wang, C., G. Thummes, and C. Heiden, Experimental study of staging method for two-stage pulse tube refrigerators for liquid 4He temperatures. Cryogenics,1997.37(12): p.857-863.
    51. Jiang, N., et al., A 3He pulse tube cooler operating down to 1.3 K. Cryogenics,2004. 44(11):p.809-816.
    52. Olson, J.R., et al., Development of a Space-Type 4-Stage Pulse Tube Cryocooler for Very Low Temperature. AIP Conference Proceedings,2006.823(1):p.623-631.
    53. Qiu, L.M., et al., Operating characteristics of a three-stage Stirling pulse tube cryocooler operating around 5 K. Cryogenics,2012.52(7-9):p.382-388.
    54. Longsworth, R.C., Gifford, W.E, Surface Heat Pumping. In:Adv. Cry. Eng.,1996.11:p. 171-179.
    55. Liang, J., A. Ravex, and P. Rolland, Study on pulse tube refrigeration Part 1: Thermodynamic nonsymmetry effect. Cryogenics,1996.36(2):p.87-93.
    56. Liang, J., A. Ravex, and P. Rolland, Study on pulse tube refrigeration Part 2:Theoretical modelling. Cryogenics,1996.36(2):p.95-99.
    57. Liang, J., A. Ravex, and P. Rolland, Study on pulse tube refrigeration Part 3: Experimental verification. Cryogenics,1996.36(2):p.101-106.
    58. R, R., Review of pulse tube refrigeration. Proceedings of the 1989 Cryogenic Engineering Conference Part 2. Los Angeles, CA, USA:Publ by Plenum Publ Corp,1990:p. 1191-1205.
    59. Radebaugh, R., et al., Inertance tube optimization for pulse tube refrigerators. Advances in Cryogenic Engineering,2006.51:p.59-67.
    60. L, R., Theory of Sound. New York:Dover Publications.,1945. Sec.322g and 322h.
    61. Rott, N., Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z Angew. Math. Phys.,1969.20:p.230-240.
    62. Merkli P, T.H., Thermoacoustic effects in a resonance tube. J Fluid Mech,1975.70:p. 161.
    63. Wheatley JC, H.T., Swift GW, Migliori A, An intrinsically irreversible thermoacoustic heat engine. J Acoust Soc Am,1983.74:p.153.
    64. GW, S., Thermoacoustic engines. J Acoust Soc Am,1988.84:p.1145.
    65. Xiao, J.H., Thermoacoustic heat transportation and energy transformation Part 1: Formulation of the problem. Cryogenics,1995.35(1):p.15-19.
    66. Xiao, J.H., Thermoacoustic heat transportation and energy transformation Part 2: Isothermal wall thermoacoustic effects.. Cryogenics,1995.35(1):p.21-26.
    67. Xiao, J.H., Thermoacoustic heat transportation and energy transformation Part 3: Adiabatic wall thermoacoustic effects. Cryogenics,1995.35(1):p.27-29.
    68. Ward WC, S.G., Design evironment for low-amplitude thermoacoustic engines. J Acoust Soc Am,1994.95:p.3671-3672.
    69. 罗二仓,肖家华,周远,脉冲管制冷机的简化热声理论,第一部分双向和多路进气脉冲管制冷机.第三届全国低温工程学术会议论文集,1993:p.84.
    70. 罗二仓,肖家华,周远,脉冲管制冷机的简化热声理论,第二部分双向和多路进气脉冲管制冷机.第三届全国低温工程学术会议论文集,1993:p.90.
    71. Radebaugh, J.G.a.R., An improved model for the calculation of regenerator performance (REGEN3.1). Proc. Fourth Interagency Meeting on Cryocoolers, David Taylor Research Center Technical Report DTRC-91/003,1991:p.165-176.
    72. Wu P, Z.S., Mechanism and numerical analysis of orifice pulse tube refrigerator with a valveless compressor. In:Chen G, Thomas MF (eds) Proceeding of International Cryogenics and Refrigeration Conference International Acadamic Publishers, Beijing, 1989:p.85-90.
    73. Wang C, W.P., Chen Z, Numerical modeling of an orifice pulse tube refrigerator. Cryogenics,1992.33(5):p.648-652.
    74. Wang, C., P.Y. Wu, and Z.Q. Chen, Theoretical and experimental studies of a double-inlet reversible pulse tube refrigerator. Cryogenics,1993.33(6):p.648-652.
    75. Wang, C., Numerical analysis of 4 K pulse tube coolers:Part Ⅰ. Numerical simulation. Cryogenics,1997.37(4):p.207-213.
    76. Wang, C, Numerical analysis of 4 K pulse tube coolers:Part Ⅱ. Performances and internal processes. Cryogenics,1997.37(4):p.215-220.
    77. Zhu, S. W. and Z.Q. Chen, Isothermal model of pulse tube refrigerator. Cryogenics,1994. 34(7):p.591-595.
    78. Zhu, S. and Y. Matsubara, A numerical method of regenerator. Cryogenics,2004.44(2):p. 131-140.
    79. Zhu, S. and Y. Matsubara, Numerical method of inertance tube pulse tube refrigerator. Cryogenics,2004.44(9):p.649-660.
    80. Gedeon, D. Sage:Object orientated Software for Stirling-Type Machine Design, in Proc. 29th Intersociety Energy Conversion and Engineering Conference.1994. Athens OH: American Institute for Aeronautics sand Astronautics:.
    81. de Waele, A.T.A.M., et al., Regenerator dynamics in the harmonic approximation. Cryogenics,1998.38(10):p.995-1006.
    82. de Waele, A.T.A.M., Regenerator dynamics in the harmonic approximation II. Cryogenics, 2001.41(3):p.195-200.
    83. He, Y.L., Y.B. Tao, and F. Gao, A new computational model for entire pulse tube refrigerators:Model description and numerical validation. Cryogenics,2009.49(2):p. 84-93.
    84. Tao, Y.B., et al., Numerical analysis on pressure drop and heat transfer performance of mesh regenerators used in cryocoolers. Cryogenics,2009.49(9):p.497-503.
    85. Ju, Y.L., C. Wang, and Y. Zhou, Numerical simulation and experimental verification of the oscillating flow in pulse tube refrigerator. Cryogenics,1998.38(2):p.169-176.
    86. Smith, W.R., One-dimensional models for heat and mass transfer in pulse-tube refrigerators. Cryogenics,2001.41(8):p.573-582.
    87. Hozumi, Y, M. Shiraishi, and M. Murakami, Simulation of Thermodynamics Aspects about Pulse Tube Refrigerator. AIP Conference Proceedings,2004.710(1):p.1500-1507.
    88. Flake, B. and A. Razani, Modeling Pulse Tube Cryocoolers with CFD. AIP Conference Proceedings,2004.710(1):p.1493-1499.
    89. Cha, J.S., et al., Multi-dimensional flow effects in pulse tube refrigerators. Cryogenics, 2006.46(9):p.658-665.
    90. Zhang, X., et al., CFD study of a simple orifice pulse tube cooler. Cryogenics,2007. 47(5-6):p.315-321.
    91. Banjare, Y.P., R.K. Sahoo, and S.K. Sarangi, CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator. Cryogenics,2010.50(4):p.271-280.
    92. Chen, L., et al., CFD analysis of thermodynamic cycles in a pulse tube refrigerator. Cryogenics,2010.50(11-12):p.743-749.
    93. Gu, C., et al., Experimental discovery and verification of the third type of DC gas flow in pulse tube cryocooler. Cryogenics,2011.51(4):p.157-160.
    94. Gromoll, B., Technical and Economical Demands on 25K -- 77K Refrigerators for Future HTS--- Series Products in Power Engineering. Adv. Cryog. Eng.,2004.710(1):p. 1797-1804.
    95. Gromoll, B., et al., Development of a 25 K Pulse Tube Refrigerator for Future HTS-Series Products in Power Engineering. AIP Conference Proceedings,2006.823(1):p.643-652.
    96. Dietrich, M. and G. Thummes, Two-stage high frequency pulse tube cooler for refrigeration at 25K. Cryogenics,2010.50(4):p.281-286.
    97. Martin, J.L. and C.M. Martin, Pulse tube cryocoolers for industrial applications. AIP Conference Proceedings,2002.613(1):p.662-669.
    98. Sun, D.M., M. Dietrich, and G. Thummes, High-power Stirling-type pulse tube cooler working below 30 K. Cryogenics,2009.49(9):p.457-462.
    99. Yuan, J. and J. Maguire, Development of a single stage pulse tube refrigerator with linear compressor. Cryocoolers,2004.13:p.157-163.
    100. N, L., Large Scale Cryocooler Development for Superconducting Electric Power Applications(HTS-4). Cryocoolers 13,New Orleans, LA,2004:p.173-176.
    101. Zia, J.H., A Commercial Pulse Tube Cryocooler with 200 W Refrigeration at 80 K, in Cryocoolers 13, R.G. Ross, Editor 2005, Springer US. p.165-171.
    102. Zia, J.H., A Pulse Tube Cooler with 300 W Refrigeration at 80 K and an Operating Efficiency of 19% Carnot, in Cryocoolers 142007. p.141-147.
    103. Chen, R.L., et al., Reliability Test Of A 1-Kw Pulse Tube Cryocooler For Hts Cable Application. AIP Conference Proceedings,2010.1218(1):p.727-735.
    104. Tanchon, J., et al. Design of a Very Large Pulse Tube Cryocooler for HTS Cable Application.2006.
    105. Tanchon, J., et al., Prototyping a large capacity high frequency pulse tube cryocooler. Ross, R G. Cryocooler14. Boulder:ICC Inc,2007:p.133-139.
    106. Potratz S A, N.G.F., Maddocks R,et al, Design and Test of a 300 W Pulsetube Refrigerator. Proc. Int. Mech. Eng. Conf:,2004.
    107. Potratz, S.A., Design and Test of a High Capacity Pulse-Tube, in Mech. Eng. Dept., vol. M.S. Thesis. University of Wisconsin Madison,2005.
    108. Lewis M A, T.R.P., Bradley P E,et al, Pulse Tube Cryocooler for Rapid Cooldown of a Superconducting Magnet[Cryocoolers 15,2008:p.167-176.
    109. Garaway R, T.M., Lewis P,et al, Characterizing Flow and Temperature Instabilities within Pulse Tube Cryocoolers using Infrared Imaging. Cryocoolers 15,2008:p.233-240.
    110. Spoor, P.S., Preliminary Results on a Large Acoustic-Stirling ("Pulse Tube") Cooler Designed for 800W at 70K. Cryocoolers 17,2012:p.121-127.
    111. 孙久策,邱利民,甘智华等,单级大功率斯特林型脉管制冷机模拟与实验研究.工程热物理学报,2012.33(8).
    112. 刘冬辉,大功率脉管制冷机回热器温度不均匀性形成机理的初步研究.浙江大学硕士论文,2011.
    113. Hu, J., et al., Design of a large-capacity multi-piston pulse tube cryocooler. AIP Conference Proceedings,2012.1434(1):p.540-546.
    114. 胡剑英,张丽敏,罗二仓等,双作用热声制冷机中的双频率现象.工程热物理会议论文集,2012.
    115. Imura, J., et al., Development of high capacity Stirling type pulse tube cryocooler. PhysicaC:Superconductivity,2007.463-465:p.1369-1371.
    116. Y. Hiratsuka, K.N., Development of Orientation-Free High Power Stirling-Type Pulse Tube Cryocooler. Cryocoolers 17,2012:p.129-137.
    117. Caughley, A.J., D.J. Haywood, and C. Wang, A Low Cost Pressure Wave Generator using Diaphragms. AIP Conference Proceedings,2008.985(1):p.1122-1129.
    118. Caughley, A.J., N. Emery, and N.D. Glasson, Diaphragm Pressure Wave Generator Developments at Industrial Research Ltd. AIP Conference Proceedings,2010.1218(1):p. 695-702.
    119. N. Emery, A.C., N. Glasson, A. Tucker, M. Gschwendtner, Development of a High Frequency Pulse Tube. Cryocoolers 16,2011:p.175-182.
    120. Emery, N., et al., Co-Axial pulse tube for oxygen liquifaction. AIP Conference Proceedings,2012.1434(1):p.183-189.
    121. Raab, J. and E. Tward, Northrop Grumman Aerospace Systems cryocooler overview. Cryogenics,2010.50(9):p.572-581.
    122. So, J.H., G.W. Swift, and S. Backhaus, An internal streaming instability in regenerators. The Journal of the Acoustical Society of America,2006.120(4):p.1898-1909.
    123. 曹强,液氮温区多级斯特林型脉管制冷机理研究.浙江大学,2012.
    124. Sun, J., Dietrich, M., Thummes, G, High-Power Stirling-Type Pulse Tube Cryocooler for Operation near 80 K. Proceedings of the 12th Cryogenics 2012 IIR International conference,2012.
    125. C.S.Kirkconnell, Experimental Investigation of a Unique Pulse Tube Expander Design. Cryocoole 10,1999:p.239-247.
    126. Gedeon, D., DC Gas Flow in Stirling and Pules Tube Cryocoolers. Cryocoolers 9,1997:p. 385-392.
    127. L, R., On the Circulation of Air Observed in Kundt's Tubes, and on some Allied Acoustical Problems. Philos. Trans Roy Soc London Ser A,1883.175:p.1-21.
    128. Gedeon, D., Flow Circulations in Foil-Type Regenerators Produced by Non-Uniform Layer Spacing, in Cryocoolers 13, R.G. Ross, Editor 2005, Springer US. p.421-430.
    129. Andersen, S.K., et al., Numerical study on transverse asymmetry in the temperature profile of a regenerator in a pulse tube cooler. International Journal of Heat and Mass Transfer,2007.50(13-14):p.2795-2804.
    130. D. Gedeon, J.G.W., Oscillating-Flow Regenerator Test Rig:Hardware and Theory With Derived Correlations for Screens and Felts, in NASA Contractor Report 1984421996.
    131. Dietrich, M., Stirling-type pulse tube cooler for energy applications of High temperature superconductivity:Modeling, design and optimization,2012, University of Giessen: Giessen
    132. URL:http://www.lakeshore.com/temp/sen/crtd.html.
    133. Bergman, T.L., et al., Fundamentals of heat and mass transfer, seventh edition2011.
    134. Lewis, M.A. and R. Radebaugh, Measurement of Heat Conduction through Metal Spheres. Cryocoolers 11,2001:p.419-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700