用户名: 密码: 验证码:
熔化极气体保护焊传热与传质过程的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔化极气体保护焊(GMAW)操作方便、生产效率高,被广泛应用于各工业领域的焊接生产中,包括汽车、航空、造船、国防、石油、电子等工业。随着生产自动化要求的提高,选择最佳的操作参数对获得安全、高效、高质量的焊接过程十分重要。本研究数值模拟了不同焊接条件下GMAW中的传热与传质现象,讨论了有关的物理机理。本研究首先利用流体体积法(VOF)和连续介质模型建立了二维非稳态的GMAW统一模型。该模型可用于预测GMAW焊接过程中瞬态的输运现象,包括等离子电弧的结构与变化,焊丝熔化、熔滴形成、脱离、过渡和射入到熔池内,以及熔池输运特性等。利用该二维模型研究了焊丝的熔化现象和合理送丝速度的确定,以及保护气体成分对等离子电弧特性和金属过渡的影响。另外,考虑熔滴过渡、重力、电磁力、电弧压力和表面张力等的作用,建立了三维数值模型预测了GMAW移动焊接过程中复杂的输运现象,以及焊接参数对焊缝表面波纹形成的影响。
     送丝速度必须与焊丝熔化速度保持动态的平衡以获得稳定的焊接过程。由于与其它焊接参数强烈耦合、以及熔滴周期性过渡的影响,送丝速度的确定非常复杂。利用二维数学模型,分析了焊丝中的传热和熔化现象,以及送丝速度对焊接稳定性的影响;得到了不同条件(焊接电流和焊丝直径)下,可获得稳定焊接的送丝速度,计算结果与实验结果相吻合。研究表明,合理的送丝速度为一个窄幅的连续区域,在此范围内可获得稳定的焊接过程。焊丝熔化速度具有一定的自我调整能力,在一定范围内可随送丝速度动态调节,并与之相平衡。在这个区域之外,送丝速度太慢会使焊丝烧导电嘴,太快会伸入到熔池内。
     利用二维模型,数值研究了在连续恒定电能输入和恒定电流强度下,保护气体成分对GMAW焊接过程中瞬态输运现象的影响。模拟了纯Ar,75%Ar+25%He,50%Ar+50%He和25%Ar+75%He气氛下的GMAW过程中电弧区和金属区内的输运现象。研究发现,在Ar保护气体中掺入He,对电弧参数的瞬态分布、熔滴形成和过渡过程、以及焊缝形状和熔深都有重要的影响。结果显示,不同保护气体的热物性(如电离能、电导率、导热系数、比热和粘性系数等)在高温下差别显著,因此其电离产生的电弧具有不同的特性。由于氦的电离能较高,因此,当保护气体中的氦含量增加时,电弧发生显著收缩,电弧的形状由喇叭口形变成锥形。纯Ar气氛下,沿工件表面的电弧压力呈高斯分布;在高氦气氛下,电弧压力不再呈高斯分布,其顶部较平而峰值减小。高氦气氛下,随着电弧的收缩,熔滴底部出现向上的电磁力,延长熔滴悬于焊丝上的时间。因此,形成了扁圆形的熔滴以及更低的过渡频率。预测结果与实验观察到的现象相一致。
     利用三维模型预测了GMAW移动焊接过程中熔池内的速度、温度和浓度的分布及其动态特性,重点研究了各焊接参数对焊波特征的影响。本研究发现焊波形成的机理与熔池表面的振荡幅度和焊接凝固速率有关,得到了不同焊接参数(如焊接电流,熔滴的大小、过渡频率和射入速度,焊接速度等)对焊波形状、间距和高度的影响。计算结果显示,在高焊接电流下,熔滴尺寸变小,过渡频率和射入速度增大,导致熔池内剧烈的对流,凝固速度减小,从而形成更加细密的焊波。
     该研究有助于理解GMAW焊接过程的机理,更好地选择GMAW焊接过程的送丝速度、保护气体成分以及其它焊接参数,以提高焊接生产的质量和效率,从而提高工业过程的生产效率,降低生产成本。
Gas metal arc welding (GMAW) has been applied for jointing of metal in broad industries due to its high productivity, simplicity and ease of use, such as automotive, aerospace, shipbuilding, defense, oil, MEMS, electronics and many other industries. With the increase of mechanization and automation, selection of optimum operating parameters of GMAW becomes increasingly essential for higher weld quality, productivity and safety. This study presents a numerical investigation on the heat and mass transfer occurring in GMAW under various welding conditions. A 2D comprehensive mathematical model employing the volume of fluid (VOF) technique and the continuum formulation is developed, coupling the transient processes of arc plasma's generation and change; droplet formation, detachment, and impingement onto the workpiece; and welding pool dynamics. This model is used to study the electrode melting phenomena and the determination of wire-feed-speed (WFS), and the roles of shielding gas compositions in arc plasma and metal transfer. Furthermore, by considering the combined effects of droplet impingement, gravity, electromagnetic force, plasma arc force and surface tension force, a 3D moving GMAW model is developed to predict the complex transport phenomena and their effect on the formation of ripples on the bead surface.
     In GMAW, the consumable electrode wire must be continuously fed in such a speed that it balances the electrode melting rate in order to achieve a stable welding. Due to the strong interplay with the other welding variables and periodic oscillations induced by the formation and detachment of droplet, the determination of WFS is very complex. The 2D model is used to examine the thermal process and melting phenomena in moving electrode, and the influence of WFS on stability of welding process. Taking into account the effects of welding current and electrode diameter, the equilibrium WFS for stable welding processes under various conditions are presented. It is found that the electrode extension length fluctuates as a function of time in a narrow range in which the electrode melting can "self-adjust" itself leading to an equilibrium WFS for a stable welding; otherwise may lead to either the electrode burn-back or the electrode stick-onto the weld pool. The predicted equilibrium WFS are in good agreements with the published experimental data that were obtained through the trial-and-error procedure.
     Based on the 2D model, the effects of shielding gas compositions on the transient transport phenomena occurring in GMAW of mild steel at a continuously constant electric energy or constant current were studied. The behaviors of plasma arc and metal transfer for GMAW operating in arcs of pure argon,75% Ar+25% He,50% Ar+50% He and 25%Ar+ 75% He are obtained. The results indicate that the arcs in various shielding gases behave very differently due to the significant difference in thermophysical properties, especially the ionization potential. With the more addition of helium content, results in 1) the change of plasma arc shape from bell-like to cone-like and 2) the change of arc pressure distribution along the workpiece surface from Gaussian-like to flat-top with decreasing peak value. In high helium arc, the arc becomes increasingly contracted and produces a more significant upward electromagnetic force near the cathode, leading to the dramatically distorted distributions of arc parameters. The increase of helium content and the resulting arc contraction induce an upward electromagnetic force at the bottom of the droplet that sustains the droplet at the electrode tip. Thus, the more oblate droplet and the longer droplet formation time are produced. The behaviors of the predicted droplet shape and detachment frequency are confirmed by the published results.
     The 3D model is employed to predict the transient distributions of velocity, temperature and species, weld pool dynamics and surface rippling on the solidified weld bead during a GMAW process. It is found that the surface ripples are formed by the interplay between the up-and-down weld pool dynamics, caused mainly by the periodic droplet impingements, and the rate of weld pool solidification. The effects of various welding parameters, including the welding current, droplet size, droplet frequency, droplet impinging velocity, and travel speed on the pitch (distance between two ripples) and height of the ripple are investigated. At high weld current, the impingement of small droplets with very high frequency produces the strong weld pool convection and slow solidification rate, forming fine and dense ripples.
     This study will help to provide a reliable and productive welding technology for a wide range of industrial applications. It will have a much broader impact and benefit as follows:1) the improved fundamental understanding of arc plasma and metal transfer in GMAW; 2) the significant advance in GMAW process with right selection of operating parameters, such as WFS, shielding gas composition and so on, and hence the innovation in metal-joining technique; 3) the advance the industrial productivity of producing high quality welding components, thereby reducing overall production costs.
引文
[1]O'Brien R L. Welding Handbook,8th ed., vol.2 [M]. American Welding Society,1991.
    [2]Nadzam J, Armao F, Byall L, et al. eds. Gas Metal Arc Welding Guidelines [M]. Lincoln Electric Company,1995.
    [3]中国机械工程学会焊接学会编.焊接手册,第1卷:焊接方法及设备(第3版)[M].北京:机械工业出版社,2007.
    [4]Rhee S, Kannatey-asibu E. Observation of metal transfer during gas metal arc welding [J]. Weld. J.,1992,71:381s-386s.
    [5]Jones L A, Eagar T W, Lang J H. Images of steel electrode in Ar-2%02 shielding during constant current gas metal arc welding [J]. Weld. J.,1998, 77:135s-141s.
    [6]Jones L A, Eagar T W, Lang J H. A dynamic model of drops detaching from a gas metal arc welding electrode [J]. J. Phys. D:Appl. Phys.,1998,31:107-123.
    [7]Lin Q, Li X, Simpson S W. Metal transfer measurements in gas metal arc welding [J]. J. Phys. D:Appl. Phys.,2001,34:347-353.
    [8]Kim Y S, Eagar T W. Analysis of Metal. transfer in pulsed current gas metal arc welding [J]. Weld. J.,1993,72:269s-278s.
    [9]Kim Y S, Eagar T W. Metal transfer in pulsed current gas metal arc welding [J]. Weld. J.,1993,72:279s-287s.
    [10]Jacobsen N. Monopulse investigation of drop detachment in puked gas metai arc welding [J]. J. Phys. D:Appl.Phys.,1992,25:783-797.
    [11]Ferraresi V A, Figueiredo K M, Hiap Ong T. Metal transfer in the aluminum gas metal arc welding [J]. J. of the Braz. Soc. of Mech. Sci.& Eng.,2003, XXV: 229-234.
    [12]Karadeniz E, Ozsarac U, Yildiz C. The effect of process parameters on penetration in gas metal arc welding processes [J]. Materials and Design 2007, 28:649-656.
    [13]Mckelliget J, Szekely J. Heat transfer and fluid flow in the welding arc [J]. Metall. Trans.,1986,17A:1139-1148.
    [14]Choo R T C, Szekely J, Westhoff R C. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles:Part Ⅰ. Modeling the welding arc [J]. Metall. Trans.,1992,23B:357-369.
    [15]Goodarzi M, Choo R, Toguri J M. The effect of the cathode tip angle on the GTAW arc and weld pool:I. Mathematical model of the arc [J]. J. Phys. D: Appl. Phys.,1997,30:2744-2756.
    [16]Fan H G, Na S-J, Shi Y W. Mathematical model of arc in pulsed current gas tungsten arc welding [J]. J. Phys. D:Appl. Phys.,1998,30:94-102.
    [17]Fan H G, Shi Y W. Numerical simulation of the arc pressure in gas tungsten arc welding [J]. J. of Material Processing Tech.,1996,61:302-308.
    [18]Zhu P, Lowke J J, Morrow R. A unified theory of free burning arcs, cathode sheaths and cathodes [J]. J. Phys. D:Appl. Phys.,1992,25:1221-1230.
    [19]Lowke J J, Morrow R, Haidar J. A simplified unified theory of arcs and their electrodes [J]. J. Phys. D:Appl. Phys.,1997,30:2033-2042.
    [20]Lowke J J, Kovitya P, Schmidt H P. Theory of free-burning arc columns including the influence of the cathode [J]. J. Phys. D:Appl. Phys.,1992,25: 1600-1606.
    [21]Zhu P, Jowke J J, Morrow R, Haidar J. Prediction of anode temperatures of free burning arcs [J]. J. Phys. D:Appl. Phys.,1995,28:1369-1376.
    [22]Haidar J. Departures from local thermodynamic equilibrium in high-current free burning arcs in argon [J]. J. Phys. D:Appl. Phys.,1997,30:2737-2743.
    [23]Sansonnens L, Haidar J, Lowke J J. Prediction of properties of free burning arcs including effects of ambipolar diffusion [J]. J. Phys. D:Appl. Phys.,2000, 33:148-157.
    [24]Tanaka M, Terasaki H, Ushio M, Lowke J J. A unified numerical modeling of stationary tungsten-inert gas welding process [J]. Metall. Trans.2002,33A: 2002-2043.
    [25]Haidar J. A theoretical model for gas metal arc welding and gas tungsten arc welding. I [J]. J. Appl. Phys.,1998,84:3518-3529.
    [26]Menart J, Heberlein J, Pfender E. Theoretical radiative transport results for a free-burning arc using a line-by-line technique [J]. J. Phys. D:Appl. Phys., 1999,32:55-63.
    [27]Menart J, Malik S, Lin L. Coupled radiative, flow and temperature-field analysis of a free-burning arc [J]. J. Phys. D:Appl. Phys.,2000,33:257-269.
    [28]Nemchinsky V A. Size and shape of the liquid droplet at the molten tip of an arc electrode [J]. J. Phys. D:Appl. Phys.,1994,27:1433-1442.
    [29]Simpson S W, Zhu P Y. Formation of molten droplets at a consumable anode in an electric welding Arc [J]. J. Phys D:Appl. Phys.,1995,28:1594-1600.
    [30]Choi J H, Lee J, Yoo C D. Dynamic force balance model for metal transfer analysis in arc welding [J]. J. Phys. D:Appl. Phys.,2001,34:2658-2664.
    [31]武传松,陈茂爱,李士凯.GMAW焊接熔滴长大和脱离动态过程的数学分析[J].机械工程学报,2006,42(2):76-81.
    [32]李士凯,陈茂爱,武传松.脉冲GMAW熔滴过渡动态过程的解析模型[J].焊接学报,2004,25(2):47-51.
    [33]王广伟,蔡艳,华学明,吴毅雄.GMAW短路过渡过程中瞬时短路现象的分析[J].焊接学报,2007,28(9):43-46.
    [34]Lancaster J F. The Physics of Welding,2nd Ed. [M]. Oxford Pergamon,1986.
    [35]Rhee S, Kannatey A. Analysis of arc pressure effect on metal transfer in gas metal arc welding [J]. Journal of Applied Physics,1991,70:5068-5075.
    [36]Zhang Y M, Liguo E. Numerical analysis of the dynamic growth of droplets in gas metal arc welding [J]. Proc Instn. Mech. Engrs.214 Part C,2000. 1247-1258.
    [37]Zhang Y M, Li P J. Modified active control of metal transfer and pulsed gmaw of titanium [J]. Weld. J.,2001,80:54s-61s.
    [38]Fan H G, Kovacevic R. Dynamic analysis of globular metal transfer in gas metal arc welding-a comparison of numerical and experimental results [J]. J. Phys. D:Appl. Phys.,1998,31:2929-2941.
    [39]Choi S K, Yoo C D, Kim Y S. The dynamic analysis of metal transfer in pulsed current gas metal arc welding [J]. J. Phys. D:Appl. Phys.,1998,31:207-215.
    [40]Choi S K, Kim Y S, Yoo C D. Dimensional analysis of metal transfer in GMA welding [J]. J. Phys. D:Appl. Phys.,1999,32:326-334.
    [41]Choi S K, Yoo C D, Kim Y S. Dynamic simulation of metal transfer in gmaw, part 1:globular and spray transfer modes [J]. Weld. J.,1998,77:38s-44s.
    [42]Choi S K, Yoo C D, Kim Y S. Dynamic simulation of metal transfer in gmaw, part 2:short-circuit transfer mode [J]. Weld. J.,1998,77:45s-51s.
    [43]Wang G, Huang P G, Zhang Y M. Numerical analysis of metal transfer in gas metal arc welding under modified pulsed current conditions [J]. Metall. Trans., 2003,35B:857-866.
    [44]Zhu P, Rados M, Simpson S W. A theoretical study of gas metal arc welding system [J]. Plasma Sources Sci. Technol.,1995,4:495-500.
    [45]Wang F, Hou W K, Hu S J, Kannatey-Asibu E, Schultz W W, Wang P C. Modelling and analysis of metal transfer in gas metal arc welding [J]. J. Phys. D:Appl. Phys.,2003,36:1143-1152.
    [46]Fan H G, Kovacevic R. Droplet formation, detachment, and impingement on the molten pool in gas metal arc welding [J]. Metall. Trans.,1999,30B: 791-801.
    [47]Haidar J, Lowke J J. Predictions of metal droplet formation in arc welding [J]. J. Appl. Phys. D:Appl. Phys.,1996,29:2951-2960.
    [48]Haidar J. An analysis of the formation of metal droplets in arc welding [J]. J. Phys. D:Appl. Phys:,1998,31:1233-1244.
    [49]Haidar J. Prediction of metal droplet formation in gas metal arc welding Ⅱ [J]. J. Appl. Phys.,1998,84:3530-3540.
    [50]Haidar J. An analysis of heat transfer and fume production in gas metal arc welding. Ⅲ [J]. J. Appl. Phys.,1998,85:3448-3459.
    [51]陈茂爱,武传松,廉荣.GMAW焊接熔滴过渡动态过程的数值分析[J].金属学报,2001,40(11):1227-1232.
    [52]Zhu F L, Tsai H L, Marin S P, Wang P C. A comprehensive model on the transport phenomena during gas metal arc welding process [J]. Progress in Computational Fluid Dynamics,2004,4:99-117.
    [53]Fan H G, Kovacevic R. A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool [J]. J. Phys. D: Appl. Phys.,2004,37:2531-2544.
    [54]Kim C H, Zhang W, DebRoy T. Modeling of temperature field and solidified surface profile during gas-metal arc fillet welding [J]. J. Appl. Phys.,2003,94: 2667-2679.
    [55]Subramaniam S, White D R, Scholl D J, Weber W H. In situ optical measurement of liquid drop surface tension in gas metal arc welding [J]. J. Phys. D:Appl. Phys.,1998,31:1963-1967.
    [56]Wang Y, Tsai H L. Impingement of filler droplets and weld pool dynamics during gas metal arc welding process [J]. Int. J. Heat and Mass Transfer,2001, 44:2067-2080.
    [57]Wang Y, Tsai H L. Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding [J]. Metall. Trans.,2001,32B: 501-515.
    [58]Tsao K C, Wu C S. Fluid flow and heat transfer in GMA weld pools [J]. Weld. J.,1988,67:70s-75s.
    [59]Jaidi J, Dutta P. Modeling of transport phenomena in a gas metal arc welding process [J]. Numer. Heat Transfer A,2001,40:543-562.
    [60]Wang Y, Shi Q, Tsai H L. Modeling of the effects of surface-active elements on flow patterns and weld penetration [J]. Metall. Trans.,2001,32B:145-161.
    [61]Zhu F L, Tsai H L, Marin S P, Wang P C. A comprehensive model on the transport phenomena during gas metal arc welding process [J]. Progress in Computational Fluid Dynamics,2004,4:99-117.
    [62]Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding, Part Ⅰ:The arc [J]. Int. J. Heat Mass Transfer,2007,50:833-846.
    [63]Hu J, Tsai H L.Heat and mass, transfer in gas metal arc welding, Part Ⅱ:The metal [J]. Int. J. Heat Mass Transfer,2007,50:808-820.
    [64]Hu J, Tsai H L. Effects of current on droplet generation and arc plasma in gas metal arc welding [J]. J. Applied Physics,2006,100:053304.
    [65]Hu J, Tsai H L. Metal transfer and arc plasma in gas metal arc welding [J]. ASME J. Heat Transfer,2007,129:1025-1035.
    [66]Kim J W, Na S J. A study on the three-dimensional analysis of heat and fluid flow in gas metal arc welding using boundary-fitted coordinates [J]. ASME J. Engineering for Industry,1994,116:78-85.
    [67]Ushio M, Wu C S. Mathematical modeling of three-dimensional heat and fluid flow in a moving gas metal arc weld pool [J]. Metall. Trans.,1997,28B: 509-516.
    [68]Ohring S, Lugt H J. Numerical simulation of a time-dependent 3-D GMA weld pool due to a moving arc [J]. Weld. J.,2000,78:416s-424s.
    [69]Cao Z, Yang Z, Chen X L. Three-dimensional simulation of transient GMA weld pool with free surface [J]. Weld. J.,2004,82:169s-176s.
    [70]孙俊生,武传松.焊接热输入对MIG焊接熔池行为的影响[J].中国科学(E辑),2002,32(4):465-471.
    [71]孙俊生,武传松.MIG焊接熔池表面形状与熔滴热焓量分布的数学模型[J].计算物理,2001,18(6):544-548.
    [72]孙俊生,武传松.熔池表面形状对电弧电流密度分布的影响[J].物理学报,2000,49(12):2427-2432.
    [73]孙俊生,武传松.电弧压力对MIG焊接熔池几何形状的影响[J].金属学报,2001,37(4):435-438.
    [74]孙俊生,武传松,李亚江.GMAW焊接传热及其对HAZ奥氏体晶粒长大过程的影响[J].焊接学报,2000,21(3):27-31.
    [75]孙俊生,魏星,李宁洋.GMAW焊接熔池的流场及其对熔池形状的影响[J].材料科学与工艺,1999,7(4):82-86.
    [76]赵明,翟磊,孙永兴.GMAW三维瞬态焊接热过程的数值模拟[J].焊接,2008,10,28-31.
    [77]岳建锋,李亮玉,武宝林,王天琪.一种新型的GMAW三维温度场解析模型[J].焊接学报,2008,29(4):49-52.
    [78]王振民,赵朋成,薛家祥.双丝GMAW熔滴过渡对焊缝形状的影响[J].华南理工大学学报(自然科学版),2008,36(8):92-97.
    [79]陈姬,武传松.高速GMAW驼峰焊道形成过程的数值分析[J].金属学报,2009,45(9):1070-1076.
    [80]Kothe D B, Mjolsness R C. Ripple:a new model for incompressible flows with free surfaces [R]. LA-UR-91-2818, Los Alamos National Laboratory,1991.
    [81]Diao Q Z, Tsai H L. Modeling of solute redistribution in the mushy zone during solidification of aluminum-copper alloys [J]. Metall. Trans.,1993,24A: 963-973.
    [82]Wilson J L, Claussen G E, Jackson C E. The effect of I2R heating on electrode melting rate [J]. Weld. J.,1956,35:1s-8s.
    [83]Lesnewich A. Control of melting rate and metal transfer in gas-shielded metal-arc welding; Part 1-control of electrode melting rate [J]. Weld. J.,1958, 37:343s-353s.
    [84]Waszink J H, Van Den Heuvel. Measurements and calculations of the resistance of the wire extension in arc welding [C]. Int. conf. Arc Physics and Weld Pool Behavior, The Welding Institute, London, England,1979.227-239.
    [85]Palani P K, Murugan N. Modeling and simulation of wire feed rate for steady current and pulsed current gas metal arc welding using 317L flux cored wire [J]. Int. J. Adv. Manuf. Technol.,2007,34:1111-1119.
    [86]傅希圣,李烨,王夏冰.熔化极气体保护焊焊丝伸出长度和电弧弧长的稳定性[J].焊接学报,1995,16(2):100-105.
    [87]傅希圣,李烨.焊丝熔化率公式研究[J].焊接学报,1995,16(4):226-232.
    [88]Halmoy E. Wire melting rate, droplet temperature, and effective anode melting potential [C]. in Proc. Arc Physics and Weld Pool Behavior Int. Conf., London, U.K.,1979:49-58.
    [89]Halmoy E. Electrode Wire Heating in Terms of Welding Parameters [M]. In The Physics of Welding, ed. J.F. Lancaster, Oxford:Pergamon Press,1986. 330-336.
    [90]Quinn T P, Madigan R B, Siewert T A. An electrode extension model for gas metal arc welding [J]. Weld. J.,1994,73:241s-248s.
    [91]Huismann G, Hoffmeister H. Sensing metal inert gas process by measuring wire feedrate and current [J]. Science and Technology of Welding & Joining,1999,4: 352-356.
    [92]Kim Y S, McEligot D M, Eagar T W. Analysis of electrode heat transfer in gas metal arc welding [J]. Weld. J.,1991,70:20s-30s.
    [93]Nemchinsky V A. Heat transfer in an electrode during arc welding with a consumable electrode [J]. J. Phys. D:Appl. Phys.,1998,31:730-736.
    [94]Nemchinsky V A. The rate of melting of the electrode during arc welding. The influence of discrete removal of the melt [J]. J. Phys. D:Appl. Phys.,1998,31: 1565-1569.
    [95]Bingul Z, Cook G E. A real-time prediction model of electrode extension for GMAW [J]. IEEE/ASME Transaction on Mechatronics,2006,11:47-54.
    [96]Modenesi P J, Reis R I. A model for melting rate phenomena in GMA welding [J]. J. Materials Proc. Tech.,2007,189:199-205.
    [97]Lyttle K A. Shielding gases, ASM Handbook vol 6:Welding, Brazing, and Soldering,9th edn [M]. Metals Park, OH:American Society for Metals, 1993.64-69.
    [98]Waszink J H, Van den Heuvel G J P M. Heat generation and heat flow in the filler metal in GMA welding [J]. Weld. J.,1982,61:269s-282s.
    [99]Jonsson P G, Eagar T W, Szekely J. Heat and metal transfer in gas metal arc welding using argon and helium [J]. Metall. Trans. B,1995,26B:383-395.
    [100]Kennedy C R. Gas mixtures in welding [J]. Aust. Weld. J.,1970,14:38-52.
    [101]Hilton D E, Norrish J. Shielding gases for arc welding [J]. Weld. & Metal Fab., 1988,5:189-196.
    [102]Kuk J M, Jang K C, Lee D G, Kim I S. Effects of temperature and shielding gas mixture on fatigue life of 5083 aluminum alloy [J]. J. Mater. Proc. Techno., 2004,155-156:1408-1414.
    [103]Rothschild G R. Carbon-dioxide shielded consumable-electrode arc welding [J]. Weld. J.,1956,35:19-29.
    [104]Ushio M, Ikeuchi K, Tanaka M., Seto T. Effects of shielding gas on metal transfer [J]. Weld. Int.,1995,9:462-466.
    [105]Smith A A. CO2 Welding of Steel,3rd ed [M]. Cambridge, UK:The Welding Institute,1971.
    [106]Haidar J, Lowke J J. Effect of CO2 shielding gas on metal droplet formation in arc welding [J]. IEEE Transactions on Plasma Science,1997,25:931-936.
    [107]Mechev V S. The thermal and physical-properties of gaseous carbon dioxide and their effects on the welding arc [J]. Automatic Weld. USSR,1982,35: 24-29.
    [108]Lesnewich A. Electrode activation for inert-gas-shielded metal-arc welding [J]. Weld. J.,1955,35:1167-1178.
    [109]Cushman E. Electrode for spatter-free welding of steel in carbon dioxide [J]. Weld. J.,1961,41:14s-21s.
    [110]Needham J C, Carter A W.Arc and transfer characteristics of the steel/CO2 welding process [J]. British Welding Journal,1967,10:533-549.
    [111]Nemchinsky V A. The effect of the type of plasma gas on current contraction at the molten tip of an arc electrode'[J]. J. Phys. D:Appl. Phys.,1996,29: 1202-1208.
    [112]Pires I, Quintino L, Miranda R M. Analysis of the influence of shielding gas mixtures on the gas metal arc welding metal transfer modes and fume formation rate [J]. Materials & Design,2007,28:1623-1631.
    [113]Mukhopadhyay S, Pal T K. Effect of shielding gas mixture on gas metal arc welding of HSLA steel using solid and flux-cored wires [J]. Int J Adv Manuf Technol,2006,29:262-268.
    [114]Soderstrom E J, Mendez P F. Metal transfer during GMAW with thin electrodes and ar-co2 shielding gas mixtures [J]. Weld. J.,2008,87:124s-133s.
    [115]Vaidya V V. Shielding gas mixtures for semiautomatic welds [J]. Weld. J., 2002,81:43-48.
    [116]Francis R E, Jones J E, Olson D L. Effect of shielding gas oxygen activity on weld metal microstructure of GMA welded microalloyed HSLA steel [J]. Weld. J.,1990,69:408s-415s.
    [117]Tusek J, Suban M. Experimental research of the effect of hydrogen in argon as a shielding gas in arc welding of high-alloy stainless steel [J]. Int. J. Hydrogen Energy,2000,25:369-376.
    [118]Gulenc B, Develi K, Kahraman N, Durgutlu A. Experimental study of the effect of hydrogen in argon as a shielding gas in MIG welding of austenitic stainless steel [J]. Int. J. Hydrogen Energy,2005,30:1475-1481.
    [119]Cheever D L, Howden D G. Technical Note:Nature of weld surface ripples [J]. Weld. J.,1969,48:179s-80s.
    [120]Kotechi D J, Cheever D L, Howden D G. Mechanism of ripple formation during weld solidification [J]. Weld. J.,1972,51:386s-391s.
    [121]Nakane K. Ripple formation on the surfaces of GTA welding beads [D]. Memoirs School Sc. Engng., Waseda Univ.,1980.
    [122]Hall A C, Robino C V. Association of microstructural features and rippling phenomenon in 304 stainless steel gas tungsten arc welds [J]. Science and Technology of Welding & Joining,2004,9:103-108.
    [123]Hu J, Guo H, Tsai H L. Weld pool dynamics and the formation of ripples in 3D gas metal arc welding [J]. Int. J. Heat Mass Transfer,2008,51:2537-2552.
    [124]Oreper G M, Szekely J. Heat and fluid-flow phenomena in weld pools [J]. J. Fluid Mech.,1984,147:53-79.
    [125]Kanouff M, Greif R. The unsteady development of a GTA weld pool [J]. Int. J. Heat Mass Transfer,1992,35:967-979.
    [126]Xiao Y H, Den Ouden G. Weld pool oscillation during GTA welding of mild steel [J]. Weld. J.,1993,72:428s-434s.
    [127]Dutta P, Joshi Y, Janaswami R. Thermal modelling of GTAW process with nonaxisymmetric boundary conditions [J]. Numer. Heat Transfer A,1995,27: 499-518.
    [128]Chakraborty N, Chakraborty S, Dutta P. Three-dimensional modeling of turbulent weld pool convection in GTAW processes [J]. Numer. Heat Transfer A,2004,45:391-413
    [129]Kim J W, Na S J. A study on the three-dimensional analysis of heat and fluid flow in gas metal arc welding using boundary-fitted coordinates [J]. ASME J. Engineering for Industry,1994,116:78-85.
    [130]Carman P C. Fluid flow through granular beds [J]. Trans. of the Inst. of Chem. Engs.,1937,15:150-166.
    [131]Kubo K, Pehlke R D. Mathematical modeling of porosity formation in solidification [J]. Metall. Trans.,1985,16A:823-829.
    [132]Beavers G S, Sparrow E M. Non-Darcy flow through fibrous porous media [J]. J. Appl. Mech.,1969,36:711-714.
    [133]Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension [J]. J. of Computational Physics,1992,100:335-354.
    [134]Zacharia T, David S A, Vitek J M. Effect of evaporation and temperature-dependent material properties on weld pool development [J]. Metall. Trans.,1992,22B:233-241.
    [135]Finkelnburg W, Segal S M. The potential field in and around a gas discharge, and its influence on the discharge mechanism [J]. Phys. Rev. Lett.,1951,83: 582-585.
    [136]Granger R A. Fluid mechanics [M]. New York,. CBS College,1985 (Chapter 10).
    [137]Torrey M D, Cloutman L D, Mjolsness R C, Hirt C W. NASA-VOF2D:A computer program for incompressible flows with free surfaces [R]. LA-10612-MS, Los Alamos National Laboratory,1985.
    [138]Patanka S V. Numerical heat transfer and fluid flow [M]. New York: McGraw-Hill,1980.
    [139]Aubreton J, Elchinger M F, Rat V, Fauchais P. Two-temperature transport coefficients in argon-helium thermal plasmas [J]. J. Phys. D:Appl. Phys.,2004, 37:34-41.
    [140]Lick W J, Emmons H W. Thermodynamic properties of helium to 50000 K [R]. Harvard University Press, Cambridge, MA,1962.35-37.
    [141]Lick W J, Emmons H W. Transport properties of helium from 200 to 50000 K [R]. Harvard University Press, Cambridge, MA,1962.87-89.
    [142]Hazlett T B, Gordon G M. Studies of welding arcs using various atmospheres and power supplies [J]. Weld. J.,1957,36:382s-386s.
    [143]Maecker H. Zeitschriftfiir Physik [M].1955,141:198-216.
    [144]Sahoo P, DeBroy T, Mcnallan M J. Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy [J]. Metall. Trans. B,1988,19:483-491.
    [145]Guo H, Hu J, Tsai H L. Formation of weld crater in GMAW of aluminum alloys [J]. Int. J. Heat Mass Transfer,2009,52,5533-5546.
    [146]Torrey M D, Mjolsness R C, Stein L R. NASA-VOF3D:A three-dimensional computer program for incompressible flows with free surfaces [R]. LA-11009-MS, Los Alamos National Laboratory,1987.
    [147]中华人民共和国国家标准,.GB/T 324-2008,焊缝符号表示法[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700