用户名: 密码: 验证码:
微波诱变乳酸高产菌选育及淀粉废水发酵制乳酸工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前淀粉工业废水处理与资源化以及微生物诱变育种技术中存在的问题,基于分子生物学和微波辐照技术,本文进行了用于淀粉工业废水资源化处理的乳酸高产菌微波诱变育种技术及相关基础研究。建立微波诱变选育高产乳酸菌的技术方法,并设计研制了相关实验装置,进行乳酸高产菌株的选育;采用生理生化和分子生物学方法对突变菌种进行表征,深入探讨微波诱变乳酸菌的过程和机制,考查微波场中影响高产乳酸菌选育的主要因素及影响规律,同时,对玉米淀粉工业废水用于发酵制备乳酸工艺进行了研究,并将活性炭纤维(ACF)作为固定乳酸菌载体引入发酵体系,建立了ACF的HNO3-Fe(Ⅲ)改性方法,选择315型阴离子交换树脂对发酵液中的乳酸进行分离提取。
     本研究采用干酪乳杆菌鼠李糖亚种(Lactobacillus casei subsp.)X1-12作为原始出发菌种,自行设计一种功率连续可调水循环冷却式微波辐照育种装置,用以抵消微波辐照时产生的热效应,在低功率微波条件下,对干酪乳杆菌X1-12进行诱变处理,在微波功率400W,辐照时间3min的诱变条件下,筛选得到一株突变株W4-3-9,L-乳酸产量为115.8g/L,比出发菌株提高了58.0%,连续遗传10代,产酸性状稳定。通过对微波辐照前后乳酸菌细胞表面形态和遗传物质DNA形貌的AFM观察对比可知,微波辐照前乳酸菌表面有明显凸起,而辐照后乳酸菌表面光滑,且遗传物质DNA有明显的开环和断裂情况。进一步对出发菌株X1-12和突变株W4-3-9进行了AFLP DNA指纹图谱分析,聚丙烯酰胺凝胶电泳结果显示出差异条带,并对d21差异带进行测序,在GenBank中进行BLAST序列类似性检索,得出该差异序列与乳酸脱氢酶序列相似,说明微波辐照后乳酸脱氢酶的酶切位点发生了变化。
     将选育的高产L-乳酸菌种W4-3-9应用于淀粉工业废水为原料制备乳酸工艺中,其结果表明:玉米浸泡废水与工艺废水体积配比为3:7、葡萄糖添加量70g/L、初始pH 6.8、接种量5%、在温度37℃下厌氧发酵72h,L-乳酸产量可达62.28 g/L,并且发酵过程对废水的COD有45%的去除,NH4+-N去除率75%。
     对淀粉废水中的微生物进行平板稀释法分离,初步鉴定废水中存在酵母菌、霉菌、葡萄球菌、芽孢杆菌四类主要微生物。研究微波辐照对淀粉废水培养基杀菌条件,达到培养基细菌总数为0cfu/mL时,微波功率为500W,辐照时间100s。废水培养基中总糖、还原糖、蛋白质营养成分灭菌后损失率为:11.76%、18.77%和7.42%,优于高压蒸汽灭菌的营养成分损失。
     实验选择315型阴离子交换树脂对发酵液中的乳酸进行分离提取,通过吸附等温线实验及上柱条件与洗脱条件优化,最终确定最佳上柱流速为1.5BV/h、上柱pH1.9、洗脱剂为去离子水、洗脱流速为1BV/h。在实现乳酸与乙酸、柠檬酸、丙酮酸及葡萄糖等良好的分离基础上,乳酸纯度从原发酵液中的72.4%提高到85.3%,从吸附到洗脱,全过程中乳酸提取率为79.2%。
     采用固定化菌体发酵法,研究ACF载体影响乳酸菌固定化的影响因素。实验用浓HCl、H2SO4、HNO3及FeCl3对ACF表面进行改性,并对改性前后的ACF进行XPS射线衍射表征和表面菌膜厚度扫描电镜观察,HNO3-Fe(Ⅲ)协同改性后单丝菌膜厚度为40μm。ACF表面酸性含氧官能团增加,表面正电荷也增加,改性后ACF表面特性能很好地促进乳酸菌的吸附固定,固定乳酸菌的ACF载体用于发酵过程,发酵时间缩短到48h,L-乳酸产量68.6g/L较无载体发酵的L-乳酸量增加了6.4 g/L,同时为后序乳酸发酵液分离提供了良好条件。
     实验表明:玉米淀粉生产废水作为发酵培养基,改性ACF作乳酸菌载体,采用阴离子交换树脂吸分离提取发酵液中乳酸,整个工艺可以实现淀粉废水的资源化、无害化,具有经济与环境的双重效益。
To solve the problems in the treatment and resource recovery of the starch industry wastewater and the mutation breeding of microogranism, this study focuses on the microwave mutation breeding technology of lactic acid bacteria with high L-lactic acid yielding ability, based on molecular biology and microwave irradiation technology. The technology of breeding lactic acid bacteria with high lactic acid yielding ability by microwave mutation was developed, the ralted experimental device was designed and developed, breeding of strain with high lactica acid yielding ability was developed; the mutant strain was characterized by physiological, biochemical and molecular biological methods, the process and mechanism of mutation of lactic acid yielding baceria by microwave was discussed, major influencing factors and rule in microwave field for the strain with high lactic acid yielding ability was investigated. Meanwhile, the technology of fermentation production of L-lactic acid by using wastewater of starch industry was studied, activated carbon fibers (ACF) was introduced into the frementation system as carrier immobilizing lactic acid bacteria, modifying method of HNO3-Fe(Ⅲ) of ACF was consructed. 315 anion exchange resin was used to separate the lactic acid form the fermentation broth.
     Lactobacillus casei subsp, X1-12, was used as the starter strain for mutation, a microwave irradiation breeding device with continuous power and adjustable water circulating cooling was designed to counteract the heating effect produced by the microwave irradiation. Under a microwave power of 400W and irradiation length of 3min, a mutated strain W4-3-9 with high-yielding L-lactic acid was obtained by screening. Compared with the starting strain X1-12,the L-lactic acid production of W4-3-9 was increased by 58.0% to a concentration of 115.8g/L.The strain maintained the ability to produce a high L-lactic acid level after 10 generations. Cell surface morphology and DNA structures of parental and mutated strains were observed by atomic force microscopy (AFM). Amplified fragment length polymorphism (AFLP) DNA fingerprint experiments were conducted on X1-12 and W4-3-9, polyacrylamide gel electrophoresis suggested difference in AFLP band pattern between the mutated and non-mutated strains, and the order of different band of d21 were checked, BLAST sequence similarity index in GenBank was conducted, the results revealed that catalytic site of lactate dehydrogenase (DHL) was changed due to the microwave induced mutation.
     Mutated Strain W4-3-9, which had high L-lactic acid yield, was applied in the technology of producing L-lactic acid from starch industry wastewater. The results showed that when the ratio of corn steep water and waste water was 3:7, glucose was 70g/L, initial pH was 6.8, inoculation was 5%, after anaerobic fermentation at 37℃for 72h, the yield of L-lactic acid was 62.28 g/L, and 45% of the COD of wastewater was removed, the removal of NH4+-N was 75%, B/C was increased, biodegradability.was also improved.
     After separating microorganism in starch wastewater with plate dilution method, four main kinds of microbe including coccus, bacillus, molds, yeast were found by the preliminary identification. Sterilization condition of microwave irradiation for starch wastewater culture medium was studied. When microwave irradiation power reached 500W, microwave irradiation time got 100s, micro-organisms were killed totally, the total number of micro-organisms was 0 cfu/mL. The loss ratio of total sugar, reducing sugar,and protein nutrition in starch wastewater culture medium are 11.76%、18.77%、7.42% , is better than the result of high-pressure steam sterilization.
     315 anion exchange resin was used to separate the lactic acid form the fermentation broth, after adsorption isotherm experiment and the optimization experiment, the optimal conditions were determined as follows: flow rate was 1.5BV/h, pH was 1.9, eluent was deionized water, elution rate was 1BV/h. based on the realization of the separation of lactic acid from acetic acid, citric acid, pyruvic acid and glucose, the purity was improved from72.4% to 85.3%. From adsorption to elution, the extract rate of lactic acid was 79.2%.
     Effect of activated carbon fibers (ACF) carrier on immobilization of lactic acid was studied by biomass immobilization fermentation. ACF surface was modified by HCl, H2SO4, HNO3 and Fe3+ with high concentration, and ACF before and after modification was characterized by XPS and the thickness of the biofilm was observed by scanning electron microscope (SEM). After HNO3-Fe(Ⅲ) co-modification, the thickness of single biofilm was 40μm. The acidic oxygen-containing functional group increased on the surface of ACF, the positive charge also increased, after modification, the surface property of ACF improved the immobilization of lactic acid bacteria. When the ACF carrier immobilizing lactic acid was used to ferment, the fermentation time reduced to 48h, compared with non-carrier, the yield of L-lactic acid increased from 62.2g/L to 68.6 g/L, providing good conditions for the separation of later lactic acid broth.
     Results showed that starch industry wastewater resource recovery and harmlessness can be realized by using wastewater from corn starch as fermentation medium, ACF as lactic acid bacteria carrier, separating lactic acid from fermentation broth by anion exchange resin adsorption, which brought both good economic and environmental benefits.
引文
1中国环境科学院.淀粉工业水污染物排放标准编制说明.北京:中国淀粉工业协会. 2005:30~35
    2杨宝芸.高浓度淀粉废水处理技术的研究.西北师范大学博士论文. 2005: 10~25
    3杨文玲,李海霞,马沛生.白色污染的治理技术.北京:化学工业与工程. 2000, 17(1): 49~55
    4 M. Ajioka. The basic properties of oly lactic acid produced by the direct condensation polymerization of lactic acid. Environmental polymer degradation. 1995, 3(4): 225~234
    5汪进玉.一种可生物降解纤维-聚乳酸纤维.化工新型材料. 2000, 28(3): 25~28
    6王博彦,金其荣.发酵有机酸生产与应用手册.北京:中国轻工业出版社. 2000: 337~389
    7金其荣,金丰秋. L-乳酸衍生物发展应用新动向.山西食品工业. 2002, 15(3): 32~47
    8曹本昌,徐建林.匡群. L-乳酸研究综述.食品与发酵工业. 1993, 9(3): 56~61
    9 N. Niju, P. K. Roychoudhury, A. Srivastava.L-lactic Acid Fermentation and Its Product Polymerization. Electronic Journal of Biotechnology. 2004, (7): 167~ 179
    10 Y. Pein, Y. O. Maokinishina. Enhence Production of L-lactic Acid From Corn Starch in a Culture of Rhizopus oryzae Using an Air-Lift Bioreactor.Ferment Bioeng. 1997, (84): 249~253
    11李豪,车振明.微波诱变微生物育种的研究.山西食品工业. 2005, 2(6): 5~7
    12李浪,周平,杜平定编著.淀粉科学与技术.河北:河北科学技术出版社. 1994: 50~78
    13张凤君,王爽,赵芝清等.玉米淀粉废水回收及处理研究.吉林大学学报(地球科学版). 2004, 34(10): 131~133
    14王圣武,马兆昆.生物膜污水处理技术和生物膜载体.江苏化工. 2004,32(4): 36~38
    15唐受印.食品工业废水处理.北京:化学工业出版社. 2001: 245~251
    16李素玉,李玉,任娟等.多种微生物净化玉米淀粉工业废水的协同效应研究.辽宁师范大学学报. 2003, 24(1): 46~50
    17王宇光,王克明.固定化细胞粉丝废水发酵天然红色素的研究.烟台大学学报(自然科学与工程版). 2001, 14(3): 168~173
    18 M. Poesponegoro. Microbial flocculation in relationship to wastewater treatment processes:isolation and screening of flo-producing microorganisms. Biotechnol Util Biol Resour Trop. 1999, 13: 104~114
    19 S. Deng. Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Applied Microbiology and Biotechnology. 2003, 60(5): 588~593
    20何国庆,朱辉,陈忠明等.小麦淀粉工业废水的水质特征及酶法预处理条件研究.浙江农业学报. 1997, 9(5): 235~239
    21朱辉,何国庆.利用淀粉废水培养食用菌菌丝体的初步研究.中国粮油学报. 1998, 13(6): 35~38
    22胡鸿钧.螺旋藻生物学与生物技术原理.北京:科学出版社. 2000: 35~46
    23杨凤江,李立明.利用水生植物治理淀粉废水.环境保护科学. 1996, 22(2): 24~26
    24杜娟,王宏勋,金红林等.甘薯淀粉废水发酵生产微生物油脂的研究.生物加工过程. 2007, 5(1): 33~36
    25邵荣,许琦,刘珊珊等.以淀粉废水麦芽根制备生物材料-短梗霉多糖.食品科学. 2007, 28(8): 314~317
    26王新春.小麦淀粉废水生物处理生产酵母蛋白的研究.发酵科技通讯. 2008, 37(3): 20~21
    27吕建国,安兴才.膜技术回收马铃薯淀粉废水中蛋白质的中试研究.中国食物与营养. 2008, 10(4): 37~40
    28闫维东,陶德录.马铃薯淀粉生产废水综合利用技术研究.江苏环境科技. 2007, 20(2): 12~14
    29卢娜,王跃强,周顺桂等.微生物转化淀粉废水制备生物灭蚊剂.生态环境. 2008, 17(3): 931~935
    30邓国平,袁宏伟,黄俊生.利用木薯加工废水生产淡紫拟青霉的研究.第二届全国农业环境科学学术研讨会论文集. 2007, 5: 31~35
    31 B. Jin, P. Yin, Y. Ma, et al. Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams. Journal of Industrial Microbiology and Biotechnology. 2005, 32(11): 678~686
    32雷肇祖,钱志良,章健.工业菌种选育述评.工业微生物. 2004, 34(1): 39~51
    33 S. Parekh, V. A. Vinci, R. J. Strobel. Improvement of Microbial Strains and Fermentation Processes. Appl Microbiol Biotechnol. 2000, 54: 287~301
    34 M. R. Blasco, L. Graziantonio, V. Francesca. The Mitochondrial Oxoglutarate Carrier: Structural and Dynamic Propertiesof Transmembrane Segment IVStudied by Site-Directed Spin Labeling. Biochemistry. 2003, 42: 5483~5499
    35俞俊棠,唐孝宣,邬行彦等.新编生物工艺学.北京:化学工业出版社. 2003: 102~108
    36岑沛霖,蔡谨.工业微生物学.北京:化学工业出版社. 2000: 25~27
    37程极济.光生物物理学.北京:高等教育出版社.1987: 54~58
    38杨在富,杨景庚,高光煌等.低强度激光生物效应机理研究.激光生物学报. 2002, 11(5): 388~394
    39陈义光,李铭刚,徐丽华.新型物理诱变方法及其在微生物诱变育种中的应用进展.长江大学学报(自科版). 2005, 2(5): 46~48
    40李永红.离子束的生物效应及诱变机理研究进展.河南农业大学学报. 2002, 36(2): 159~163
    41金钦汉.微波化学.北京:科学出版社. 1999: 7~19
    42李巧玲,李琳,郭祀远等.微波生物效应对细胞的影响.生命科学. 2000, 12(5): 231~234
    43贾红华,周华.微波诱变育种研究及应用进展.工业微生物. 2003, 33(2): 46~50
    44刘银春,尤华明.微波生物非热效应的量子理论及其机理.微波学报. 2005, 21(4): 67~70
    45董新姣,范茂水,金阳邵.染料脱色菌无花果曲霉的微波诱变育种.江西科学. 2006, 24(2): 120~123
    46陈力力,鲁迎新.微波诱变选育井岗霉素高产菌.生物技术. 2003, 13(5): 14~16
    47李永泉,翁醒华,贺筱蓉.微波诱变结合化学诱变选育酸性蛋白酶高产菌.微生物学报. 1999, 39(2): 181~183
    48梁海秋,王端好,杨辉等.衣康酸产生菌的微波育种.广西轻工业. 2006, 22(2): 24~26
    49张久明,黄乐平,裴月湖.利用微波诱变技术提高菌株B1抑菌活性的研究.中国海洋药物杂志. 2005, 24(6): 1~5
    50 S. M. Hong, J. K. Park, Y. Lee. Mechanisms of microwave irradiation involved in the destruction of fecal coliforms frombiosolids.Water Research. 2004, 38(6): 1615~1625
    51 S. M. Hong, J. K. Park, N. Teeradej, et al. Pretreatment of sludge with microwaves for pathogen destruction and imp roved anaerobic digestion performance. Water Research. 2006, 78(1): 825~831
    52李建忠.微波对食品微生物的非热生物效应与微波杀菌技术.西南民族大学学报(自然科学版). 2006, 32(6): 1119~1222
    53 U. Katsufumi. Development of heating method by microwave for sterilizat0ion of bone allografts. Journal of Orthopeadic Science. 2005, 77: 83~85
    54李清明,谭兴和,何煜波等.微波杀菌技术在食品工业中的应用.食品研究与开发. 2004, 25(1): 10~13
    55郭月红,李洪军.微波杀菌技术在食品工业中的应用.保鲜与加工. 2006, 6(1): 42~45
    56殷涌光,刘静波,林松毅.食品无菌加工技术与设备.北京:化学工业出版社. 2006: 90~92
    57吴永年,杨玉清.低温肉禽制品微波杀菌综合保鲜技术的理论与实践.肉类研究. 2003, (1): 38~40
    58聂建红,王瑞,孙葳等.微波灭菌及应用.吉林医学院学报. 2009, 30(1): 5351~5356
    59王晓庆.微波灭菌机理研究.中国农业科学院硕士学位论文. 2008: 39~43
    60刘花林. AFM分子键形成机理.生物技术. 2005, 7(5): 16~28
    61裴德翠. AFLP:DNA指纹分析的有力手段.微生物学免疫学研究进展. 2002, 30(3): 66~70
    62 M. Zabeau, P. Vos. Selective Restriction Fragment Amplification: a General Method for DNA Fingerprinting. European Patent Application 92402629.7 (Publication No.0534858A). European Patent Office Paris.
    63 P. Vos, R. Hogers, M. Bleeker, et al. AFLP: a New Technique for DNAFingerprinting. Nucloic Acids Res. 1995, 23(21): 4407~4414
    64翁曼丽,谢伟武,伏健民等.新一代分子标记技术-AFLP.应用与环境生物学报. 1996, 2(4): 424~429
    65 Y. F. Dufrene. Application of atomic force microscopy to microbial surface from reconstituted cell surface layers to living cells. Micron. 2001, 32: 153~ 165
    66 Y. F. Dufrene. Atomic force microscopy a powerful tool in microbiology. Bacteriology. 2002, 184(19): 5205~5213
    67朱杰.原于力显微镜在分子细胞生物学研究中的应用.现代物理知识. 2004, 18(1): 35~37
    68陈宝安,熊洁,巴龙等.用原子力显微镜表征K562/A02细胞Mdr1基因DNA的实验研究.中国医学物理学杂志. 2006, 23(1): 31~34
    69王岁楼,吴晓宗,郝莉花.超高压对微生物的影晌及其诱效应探讨.微生物学报. 2005, 45(6): 970~973
    70 P. M. Jan, C. Johan, C. Patrick, et al. Physiological and Mathe Matical Aspects in Setting Criteria for Decontamimtion of Foods by Physical Means. International Jounal of Food Mcrobiology. 2002, 78: 57~77
    71 M. Murakami, M. Minamihisamatsu, K. Sato, et al. Structural Analysis of Heavy Ion Radiation-Induced Chromosome Aberrations by Atomic Force Microscopy. Biochem Biophys Methods. 2001, 48(3): 293~301
    72 A .Henn, O. Medalia, S. P. Shi, et al. Visualization of Unwinding Activity of Duplex RNA by DNA, a DEAD Box Helicase,at Singlemolecule Resolution by Atomic Force Microscopy. Proc Natl Acad Sci USA. 2001, 98(9): 507~512
    73 S. D. Jett, D. I .Cherny, V. Subramaniam, et al. Scanning Force Microscopy of the Complexes of p53 Core Domain with Supercoiled DNA. Mol Biol. 2000, 299(3): 585~592
    74 C. Bustamante, J. Vesonka, C. L. Tang. Circules Imanged in Air Byscanning Force Microscopy. Biochemistry. 1992, (31): 22~26
    75李章华,王常勇,张玉富等.原子力显微镜观察间充质干细胞向成骨细胞系分化过程中的表征变化.华中科技大学学报(医学版). 2004, 33(3): 312~319
    76 P. R. Hoyt, M. J. Doktycz, R. J. Warmack, et al. Spin-column Isolation of DNA-Protein Interactions from complex protein mixtures for AFM Imaging.Ultramicroscopy. 2001, 86(1-2): 139~143
    77凌天庭.食品添加剂(第2版).北京:化学工业出版社. 2001: 638~639
    78化工百科全书编委会.化工百科全书.北京:化学工业出版社. 1998:233~341
    79金其荣,张继民,徐勤.有机酸发酵工艺学.北京:中国轻工业出版社. 1989: 339~406
    80黄量,戴众信.性药物的化学与生物学.北京:化学工业出版社. 2002: 204~207
    81 R. Datta, P. T. Sai, B. Patric, et al. International Congress on Chemicals from Biotechnology. Hannover. 1993, (23): 1~8
    82 Y. Pein, Y. O. Maokinishina. Enhence Production of L-lactic Acid From Corn Starch in a Culture of Rhizopus oryzae Using an Air-Lift Bioreactor. Ferment. Bioeng. 1997, (84): 249~253
    83 Y. Z. Wan, Y. L. Wang, L. Y. Zheng, et al. Influence of External Stress on the inVitro Degradation Behavior of C3D/ PLA Composites. J Mater Sci Lett. 2001, 20(21): 1957~1960
    84 P. Linko, S. L. Stenroos, K. O. Istine, et al. App lications of immobilized lactic acid bacteria. Annal New York Academy Sci. 2006, 434(1): 4062~4171
    85 N. Niju, P. K. Roychoudhury, A. Srivastava. L-lactic Acid Fermentation and Its Product Polymerization. Electronic Journal of Biotechnology. 2004, (7): 167~179
    86 Y. Pein, Y. O.Maokinishina.Enhence Production of L-lactic Acid From Corn Starch in a Culture of Rhizopus oryzae Using an Air-Lift Bioreactor . Ferment Bioeng. 1997, (84): 249~253
    87 K. Zhang, Y. B. Wang, M. A. Hillmyer, et al. Processing and Properties of Porous Poly(L-Iactide) Bioactive Glass Composites. Biomaterials. 2004, (25): 2489 ~ 2500
    88 J. H. Lichfield. Microbiological Production of Lactic Acid. In Advances in Applied Microbiology . San Diego Academic Press. 1996, (14): 245~295
    89 K. Hofvendahl, B. Hagerdal. Factors Affecting the Fermentative Lactic Acid Production from Renewable Resources,Enzyme and Microbial Technology. 2000, (26): 87~97
    90 D. M .Bai, H. X. Dai, X. M. Zhao, et al. The Effect of Na+ and K+ on theMorphology and L-Lactic Acid Productivity of Rhizopus oryzae SOI106. Journal of Chemical Industry and Engineering. 2000, 51(5): 583~585
    91白冬梅,赵学明,胡宗定等.米根霉发酵生产L(+)-乳酸研究进展.现代化工. 2002, 22(6): 9~14
    92 M. D. Altaf, B. J. Naveena, M. Venkateshwar, et al. Single step fermentation of starch to L (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract optimization by RSM. Process Biochemistry. 2006, 41(2): 465~472
    93 Q .Wang, X. Wang, H .Ma, et al. Bioconversion of kitchen garbage to lactic acid by two wild strains of Lactobacillus species. Journal of Environmental Science and Health, Part A. 2005, 40(10): 1951~1962
    94 P. M. David. Plastics from Microbes, Hanser/Gardner Publications Inc. Cincinnatic Munich Vienna.New York. 1994: 137~139
    95杨洁彬.乳酸菌-生物学基础及应用.北京:中国轻工业出版社. 1996: 98~116
    96 K. Sunhoon, P. C. Lee, E. G. Lee. Production of Lactic Acid by Lactobacillus rhamnosus with Vitamin-Supplemented Soybean Hydrolysate. Enzyme and Microbial Technology. 2000, (26): 209~215
    97 J. Rincon, J. Fuertes, Optimization of the Fermentation of Whey by Latcobacillus casei. Acta Biotechnol. 1993, (13): 323~331
    98 M .Hujanen. Linko Y-Y. Effect of Temperature and Various Nitrogen Sources on L-lactic Acid Production by Lactobacillus casei. Appl Microbiol Technol. 1996, (45): 307~313
    99 K. K. Nikkila, M. Hujanen, M. Leisola, et al. Metabolic engineering of Lactobacillus helviticus CNRZ32 for production of pure L-(+) lactic acid. Applied and Environmental Microbiology. 2000, (66): 3835~3841
    100 C. D. Skory, S. N. Freer, V. Bothast. Production of L-Lactic acid by Rhizopus oryzae under oxygen limiting conditions. Biotechnology Letters. 1998, 20(2): 191~194
    101 Y. D. Suntornsuk. Strain improvement of Rhizopus oryzae for Production of L(+)-lactic acid and glucoamylase. Lett Appl Micro. 1994, (19): 249~252
    102张婵婵,潘丽军,赵丹丹.细菌发酵产L-乳酸优良菌株的选育.农产品加工学刊. 2006, 23(10): 10~12
    103赵鑫,赵良启,刘春卉等.离子注入L-乳酸产生菌诱变选育研究.生物技术. 2004, 14(6): 24~26
    104 R. Datta, S. R.Tsai, P. Bonsignore.Technological and Economic Potential of Poly(Lactic Acid) and Lactic Acid Derivatives. FEMS Microbiol. Rev. 1995, (16): 221~231
    105贺银凤,午日娜,王建华.乳酸菌的固定化方法及其发酵特性的研究.食品开发与研究. 2006, 27(5): 16~18
    106李冀新,张超,高虹.固定化细胞技术应用研究进展.化学与生物工程. 2006, 23(6): 5~7
    107宋向阳,余世袁.生物细胞固定化技术及研究进展.化工时刊. 2000, 14(11): 37~39
    108崔建涛,李建新,王育红等.细胞固定化技术的研究进展.农产品加工学刊. 2007, (1): 24~26
    109王建龙,施汉昌.聚乙烯醇包埋固定化微生物的研究及进展.工业微生物. 1998, 28(2): 35~39
    110 Y. Goksungur, M. Gunduz, S. Harsa. Optimization of lactic acid production from whey by L. casei NRRL B-441 immobilized in chitosan stabilized Ca-alginate beads. J Chem Technol Biotechnol. 2000, (80): 1282~1290
    111 A. Senthuran, V. Senthuran, B. Mattiasson, et al. Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei. Biotechnology and Bioengineering. 1997, 55(6): 841~853
    112 A .Pascal, P. Celine, L. Christophe. Batch fermentations with a mixed culture of lactic acid bacteria immobilized separately inк-carrageenan locust bean gum gel beads. Applied Microbiology Biotechnology. 1990, (32): 662~668
    113 D. Roy, J. Goulet. Continuous production of lactic acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus. Dairy Sci. 1987, (70): 506~513
    114 D. Noel, J. C. Roble, H. T. Ogbonna. L-lactic acid production from raw cassava starch in a circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrical). Biotechnology Letters. 2003, (25): 1093~1098
    115 S. Norton, C. Lacroix, J. C. Vuillemard. Reduction of yeast extract supplementation in lactic acid fermentation of whey permeate by immobilized cell technology. Dariy Science. 1994, (77): 2494~2508
    116 Y. D. Hang, H. Hamanci, E. E. Woodams. Production otic acid by Rhizopus oryzac immobilized in calciumBiotechnol. Lett. 1989, (11): 119~122
    117刘祖同.固定化米根霉生产L-乳酸的研究.清华大学学报. 1991, 31(3): 47~49
    118夏黎明,岑沛霖.纤维素酶和米根霉同时糖化发酵纤维素为L-乳酸.食品发酵工业. 2000, 26(3): 6~9
    119 Y. Goksungur, M. Gunduz, S. Harsa. Optimization of lactic acid production from whey by L casei NRRL B-441 immobilized in chitosan stabilized Ca-alginate beads. Journal of Chemical Technology & Biotechnology. 2005, 80(11): 367~372
    120 N. D .Roble, J. C .Ogbonna, H. Tanaka. L-Lactic acid production from raw cassava starch in a circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrica). Biotechnology letters. 2003, 25(13): 1093~1098
    121何延青,刘俊良,杨平等.微生物固定化技术与载体结构的研究.环境科学. 2004, 25(6): 101~104
    122李冀新,张超,高虹.固定化细胞技术研究进展.化学与生物工程. 2006, 23(6): 59~61
    123宋世杰.炭纤维的物理化学特性及用途.高科技纤维与应用. 2003, 25(3): 33~35
    124蔡巧巧,胡中华.生物活性碳纤维处理苯酚模拟废水的研究.高科技纤维与应用. 2006, 31(5): 15~18
    125张守臣,赵修仁,刘长厚.硝酸浸渍对活性炭纤维还原NO性能的影响.化工学报. 2001, 52(8): 6940~6944
    126 M. G .Trulear, W. G . Characklis. Dynamics of biofilm processes. Journal of Water Pollution Control Federation. 1982, (19): 1288~1301
    127 J. P. Ranieri, R. Bellamkonda, J. Jacob, et al. Selective neuronal cell attachment to a covalently patterned monoamine on fluorinated ethylene propylenefilms. Journal of biomedical materials research. 1993, 27(7): 917~921
    128 D .Clark, N. J. Wadsworth, W .Watt. Carbon Fibers-Their Place in Modern Technology. The Plastics Institute, London. 1974, (25): 213~216
    129 I. N. Ermolenko, I. P. Lyubliner, N. V .Gulko. Chemically modified carbon fibers and their application. New York, VCH. 1990, (15): 155~165
    130 K. Kutics, M .Suzuki. Adsorption of Organics on Surface Modified Activated Carbon Fibers. 2nd Korea-Japan Symposium Seoul South Korea. 1990, (25): 395~405
    131 A. Lisovskii, R.Semiat,C.Aharoni. Adsorption of sulfur dioxide by active carbon treated by nitric acid: I. Effect of the treatment on adsorption of SO2 and extractability of the acid formed. Carbon. 1997, 35(10-11): 1639~1643
    132 C. U. Pittman, G. R .He, B .Wu, et al. Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethyl- lenepentamine. Carbon. 1997, 35(3): 331~337
    133 J. W .Shim, S. J .Park, S .K .Ryu. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon. 2001, 39(11): 1635~1642
    134 M. L .Toebes, J. MP van Heeswijk, J. H. Bitter, et al. The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers. Carbon. 2004, 42(2): 307~315
    135陆益民,梁世强.活性碳纤维化学改性的研究进展.高科技纤维与应用. 2005, 30(3): 41~43
    136马兆昆,刘杰.改性碳纤维及表面含氧官能团对反硝化菌固着化的影响.功能材料. 2003, 34(5): 592~594
    137杨文英,董学畅.细胞固定化及其在工业中的应用.云南民族学院学报(自然科学版). 2001, 10(3): 406~410
    138刘杰,马兆昆.碳纤维表面特性对反硝化菌固着化的影响.北京化工大学学报(自然科学版). 2003, 30(2): 41~43
    139芩贞章,戴光泽,董立新等.表面处理对炭纤维挂膜性能的影响研究.重庆工学院学报. 2007, 21(5): 18~22
    140范福洲,康勇,孔琦等.废水处理中生物膜载体研究进展.化工进展. 2002, 17(3): 20~24
    141何振坤,王绍堂.炭纤维生物膜的形成机制-Ⅱ炭纤维表面特性对微生物活性与增殖的影响.新型炭材料. 2003, 18(1): 43~47
    142丛俏,丛孚奇,曲蛟.固定化生物活性炭纤维处理餐饮废水的研究.环境科学与技术. 2008, 31(6): 131~135
    143尹景德.多功能富氧净水器在养殖领域的研究与应用.环境科学与技术. 2008, 31(8): 105~108
    144郑辉杰,李志强,何姗等.离子交换法提取发酵液中乳酸的工艺研究.食品科学. 2009, 30(6): 84~88
    145 Y. J. Kwon, R .Kaul, B .Mattiasson. Extractive lactic acid fermentation in polyethyleneimine based aqueous two-phase system.Biotechnology and bioengineering. 1996, 50(3): 489~492
    146 P. K. Aradhana, K. R. Pradip, S.Vikram. Extractive lactic acid fermentation using ion-exchange resin. Biotechnol Bioeng. 1999, 12(5): 449~510
    147柳萍,王建龙.固定化乳杆菌细胞的离子交换吸附发酵生产乳酸.离子交换与吸附. 1994, 10(5): 385~390
    148陈碧娥,刘祖同.根霉L-乳酸发酵的研究.清华大学学报(自然科学版). 1993, 33(6): 91~96
    149邱挺,韩淑翠,吴燕翔.离子交换树脂法分离醋酸工艺.过程工程学报. 2009, 9(3): 449~453
    150凌代文.乳酸细菌分类鉴定及实验方法.北京:中国轻工业出版社. 1999: 78~110
    151田芳,李建伟,王琛等.原子力纤维镜及其对DNA大分子的应用研究.物理. 1997, 26(6): 238~243
    152蔡明辉,赵葵,展永等. AFM的DNA样品制备技术研究.电子显微学报. 2006, 18(2): 76~79
    153中华人民共和国卫生部药典委员会.中华人民共和国药典(二部),北京:化学工业出版社. 2005: 348~351
    154冯清平.微波对细菌致死及诱变效应的初步研究.兰州大学学报(自然科学版). 1990, 26(1): 44~47
    155郭峰,程新,陈其亮等.南昌链霉菌的微波诱变.生物加工过程. 2004, 2(4): 51~53
    156赵斌,何绍江.微生物学实验.北京:科学出版社. 2005: 170~202
    157 R. E.布坎南, N. E.吉木斯等编著.伯杰细菌鉴定手册(第八版),北京:科学出版社. 1984: 795~797
    158 H. L. Liu, B. Y. Chen, Y. W. Lan et al. SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans. Appl Microbiol Biotechnol. 2003, 62(4): 414~420
    159 S. Boichot, M .Fromm, S .Cunniffe, et al. Investigation of radiation damage in DNA by using atomic force microscopy. Radiation Protection Dosimetry. 2002,99(1): 143~145
    160石万良,谢志雄,沈萍.原子力显微镜在微生物学领域的应用.微生物学通报. 2004, 34(1): 109~112
    161刘晓艳,丘泰球,刘石生等.超声对细胞膜通透性的影响及应用.应用声学. 2002, 21(2): 25~29
    162葛小鹏,潘建华,刘瑞霞等.重金属生物吸附研究中蜡状芽孢杆菌菌体微观形貌的原子力显微镜观察与表征.环境科学学报. 2004, 24(5): 753~760
    163黄小红,许雷,陈清西等.金属离子对苏云金芽孢杆菌几丁质酶活力的影响.农业生物技术学报. 2005, 13(2): 264~266
    164于力华,李壮,吴爱国等.镍邻菲绕啉对DNA固定作用的原子力显微镜表征.高等学校化学学报. 2002, 23(1): 46~48
    165王莉娟,张英鸽,张飒等.原子力显微镜对生理溶液中活细胞成像条件的研究.电子显微学报. 2005, 24(1): 79~83
    166 M. Murakami, M. Minamihisamatsu, K. Sato. Structural analysis of heavy ion radiation-induced chromosome aberrations by atomic force microscop. Biochem Biophys Methods. 2001, 48(3): 293~301
    167 H. Hansma, R .Irene, K. Kerry ,et al. Atomic force microscopy of long and short double-stranded,single-stranded and triple-stranded nucleic acids. Nucleic Acids Res. 1996, 24(4): 713~720
    168刘颖,齐浩,孙润广等.原子力显微镜观测紫外线诱导的K562肿瘤细胞DNA损伤.生物技术通报. 2009, 12(7): 141~145
    169 Y. Ito, S. Q Liu, Y Imanishi. Enhancement of cell growth on growth factor immobilized polymer film. Biomaterials. 1991, 12(5): 449~510
    170马妮妮,魏冬霞,林瑞庆等. AFLP标记在微生物学上的应用.热带医学杂志. 2006, 6(9): 1048~1051
    171金来武,刘伟成,潘争艳等.拮抗链霉菌AFLP分析技术体系的研究.安徽农业科学. 2009, 37(18): 8370~8372
    172哈里根翻译.食品微生物实验室手册(第三版).北京:中国轻工业出版社. 2004: 92~97
    173 P. A. Kebets, P. N. Nesterenko. Use of Sulfonated Hypercross-Linked Polystyrene in IChromatography. Journal of analytical chemistry. 2003, 58(7): 641~647
    174 P. Gluszcz, T. Jamroz, B. Sencio. Equilibrium and dynamic investigations oforganic aadsorption onto ion-exchange resins. Bioprocess Biosyst Eng. 2004, (26): 185~190
    175马翠卿,李景晨,邱建华等.离子交换法分离乳酸转化液中的丙酮酸.离子交换与吸附. 2005, 21(3): 241~247
    176李友元,陈长华,陶萍.高效液相色谱法测定螺旋霉素发酵液中的有机酸.色谱. 2002, 20(1): 46~48
    177李寅,傅为民,陈坚.离子交换法从发酵液中提取丙酮酸.无锡轻工大学学报. 2001, 20(4): 335~339
    178李明愉,曾庆轩,冯长根等.离子交换纤维对阿魏酸的吸附和解吸研究.中国药学杂志. 2005, 40(1): 40~43
    179郑辉杰,李志强,何姗等.离子交换法提取发酵液中乳酸的工艺研究.食品科学. 2009, 30(6): 84~88
    180李秋瑜,胡中华,刘亚菲等.用生物活性炭纤维新技术去除水中微污染有机物.炭素技术. 2005, 24(1): 16~20
    181王建龙.微生物固定化技术与水污染控制.北京:科学出版社. 2002: 1~5
    182日本炭素材料学会编.新炭材料入门. 1999: 215~218
    183陈孝云,林秀兰,魏起华.活性炭表面化学改性及应用研究进展.科学技术与工程. 2008, 8(19): 5463~5466
    184张登峰,鹿雯,王盼盼等.活性炭纤维湿氧化改性表面含氧官能团的变化规律.煤炭学报. 2008, 33(4): 439~444
    185周娟娟,胡中华.活性炭纤维的微生物固定化方法研究.中国给水排水. 2005, 21(1): 45~48
    186李善评,李冲,连军锋.活性炭纤维的改性及其表面特性对挂膜启动的影响.水处理技术. 2009, 35(8): 79~83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700