用户名: 密码: 验证码:
生物成像用新型发光探针的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活细胞内单分子行为研究和活体动物成像已经成为荧光生物成像的前沿领域。然而在单分子和活体动物这两种极端的情况下,生物样品中大量存在的内源性荧光物质产生的自发荧光会对标记分子的荧光信号产生非常严重的干扰。为了解决生物成像中自发荧光干扰的问题,我们必须开发一些能完全消除自发荧光干扰的“新型发光探针”。本论文针对这一目标开展研究,主要包括四个部分。
     1.红色荧光化学计量器用于活细胞内Cu~(2+)的荧光成像
     从发光波长方面考虑,利用生物组织对红光和近红外光的吸收非常弱的特点,并考虑到明确生理过程中铜的浓度和亚细胞分布的变化情况对于研究铜的复杂生理功能和致病机理具有重要的意义。
     我们设计合成了一个含有高电负性S原子的罗丹明B衍生物,实验表明这个化合物是一个Cu~(2+)化学计量器,对Cu~(2+)的响应表现为红光区的发射增强。利用一个Cu~(2+)促进的罗丹明开环、氧化还原和水解反应的识别机理,加入Cu~(2+)引起的荧光强度的增加和吸收强度的增加相当,说明以此化学计量器为探针可以有效地避免Cu~(2+)顺磁性造成的荧光淬灭。更重要的是,这个探针能快速(响应时间≤1 min)、高灵敏(检出限≤10 ppb)、高选择地识别Cu~(2+)。单光子、双光子荧光成像及台盼蓝细胞活性实验证实该探针可以用于检测活细胞中的Cu~(2+),显示Cu~(2+)的亚细胞分布。
     2.磷光重金属配合物用于活细胞磷光成像
     利用磷光重金属配合物为探针,结合时间分辨成像技术,可以区分来自标记物的寿命较长的发光(~μs)和寿命较短的自发荧光(~ns),有望完全消除自发荧光的干扰。铱配合物是一类性质优异的磷光重金属配合物,但其在生物成像中的应用尚未见文献报道。
     首先,我们合成了两个具有明亮的绿光和红光发射的阳离子型铱配合物,并且证明了它们是特异性染色活细胞胞浆的磷光染料。这两个铱配合物在缓冲溶液中发光效率较高,很容易穿过细胞膜进入细胞,专一性地染色细胞的胞浆区域,且细胞毒性低,光稳定性相较于有机染料DAPI有所提高,是一类性能优良的小分子磷光探针。其次,我们将一个对组氨酸有发光响应的铱配合物用于细胞成像,发现它能快速且特异性地染色活细胞和固定细胞的细胞核,并仅在细胞核区域表现出明亮的发光。
     3.稀土上转换发光纳米材料用于激光扫描上转换发光显微成像(LSUCLM)
     稀土上转换发光纳米材料(UCNPs)在980 nm连续光激发下具有独特的上转换发光过程,是一类非常有潜力的生物标记材料。
     我们发现UCNPs上转换发光的成像形式非常特殊,非焦面的上转换发光信号会使焦面细节完全模糊,导致图像分辨率很差。通过引入反式的激发二色分镜和共聚焦针孔技术,我们成功地消除了非焦面的上转换发光的干扰,并且发展了一种新的三维成像方法,即激光扫描上转换发光显微成像(LSUCLM)技术。随后,通过对UCNPs掺杂的薄膜、有机荧光染料和UCNPs同时标记的细胞进行成像实验,我们发现以UCNPs为发光探针的LSUCLM拥有很多独特的优势,如对有机染料和UCNPs的光漂白均非常低,完全消除了来自内源性荧光物质和同时标记的荧光染料的背景干扰,还可以与普通共聚焦荧光成像系统联用等。
     4.放射性核素标记的稀土纳米晶用于正电子发射断层扫描(PET)和上转换发光双模式成像
     PET技术具有最高的活体成像灵敏度;而对细胞和组织显像一般采用荧光成像方式。因此,开发同时具有放射性和荧光的探针可以构造出用于多尺度成像的显像剂。
     我们利用~(18)F~-和稀土离子发生特异性结合反应的原理,发展了一个简单、快速、高效的方法制备了~(18)F标记的稀土上转换发光纳米晶(即~(18)F-UCNPs),放射性标记率>60%。通过在体(in vivo)microPET及LSUCLM成像实验,我们研究了~(18)F-UCNPs在小鼠体内的生物分布,证实了~(18)F-UCNPs可以作为双模显像剂同时用于PET和上转换发光成像。在体PET成像和LSUCLM成像的联用,为实现~(18)F-UCNPs标记物从细胞到活体多尺度上的高灵敏度的可视化提供了一种独特的方法。
One of the current research interests in bioimaging is the ultra-sensitive detection of the targets in vivo or at the single-molecule scale.However,the signal from the targets labeled with fluorescent probes would probably be masked by the high autofluorescence from the endogenous components in biological samples.To solve this problem,it is necessary to develop some new luminescent labels to eliminate autofluorescence background in bioimaging.This thesis is focused on this project and composed of four parts.
     1.Organic Chemodosimeter for Fluorescence Imaging of Cu~(2+) in Live Cells
     Biological tissues have weak absorption of light in the red and near-infrared region. Therefore,a red fluorescence probe would greatly reduce the background fluorescence.In addition,visualizing the concentration and subcellular distribution of copper in physiological processes may greatly contribute to understanding its complex physiological functions and nosogenesis.
     A Rhodamine B derivative containing a highly electron-rich S atom has been synthesized as a red fluorescence turn-on chemodosimeter for Cu~(2+).As a result of Cu~(2+)-promoted ring-opening,redox and hydrolysis reactions,comparable amplifications of absorption and fluorescence signals were observed upon addition of Cu~(2+),suggesting that the chemodosimeter effectively avoided the fluorescence quenching caused by the paramagnetic nature of Cu~(2+).Importantly,this compound can selectively recognize Cu~(2+) in aqueous media in the presence of other metal ions with high sensitivity(detection limit≤10 ppb) and a rapid response time(≤1 min). Moreover,by virtue of the chemodosimeter as fluorescent probe for Cu~(2+),confocal and two-photon microscopy experiments revealed a significant increase of intracellular Cu~(2+) concentration and the subcellular distribution of Cu~(2+),which was internalized into the living HeLa cells upon incubation in growth medium supplemented with 50μM CuCl_2 for 20 hours.
     2.Heavy-metal Complexes for Phosphorescence Imaging of Live Cells
     Phosphorescent heavy-metal complexes have relatively longer luminescence lifetimes(~μs) than those of endogenous fluorescent substances(~ns),and thus are appealing probes for completely avoiding background fluorescence in bioimaging through a time-gated technique.Being among the best class of phosphorescent heavy-metal complexes,iridium(Ⅲ) complexes exhibit many advantageous photophysical properties.To date,no luminescent staining of live cells using iridium(Ⅲ) complexes has been reported.
     Two cationic iridium(Ⅲ) complexes with bright green and red emissions were demonstrated as phosphorescent dyes for live cell imaging.In particular,their exclusive staining in cytoplasm,low cytotoxicity and reduced photobleaching,as well as cell membrane permeability,make the two complexes promising candidates for the design of specific bioimaging agents.Additionaly,an iridium(Ⅲ) complex with histidine-induced luminescence enhancement was demonstrated as a phosphorescent dye for exclusively staining the nuclei of cells.The advantage of phosphorescent complexes for bioimaging,the capability of visualizing nuclei of both live and fixed cells,as well as the short period time(~10 min) for staining promise wide applications in biological and medical studies.
     3.Rare-earth Nanophosphors for Laser Scanning Up-conversion Luminescence Microscopy(LSUCLM)
     Rare-earth up-conversion nanophosphors(UCNPs) as alternatives of conventional biological luminescent labels have attracted a tremendous amount of attention.
     We found that rare-earth nanophosphors exhibit a unique up-conversion luminescence mechanism and imaging modality and developed a new three-dimensional visualization method of laser scanning up-conversion luminescence microscopy(LSUCLM) with little photobleaching and no background fluorescence, by introducing a reverse excitation dichroic mirror and the confocal pinhole technique. Moreover,we demonstrated the up-conversion emission imaging of thin films containing embedded rare-earth nanophosphors and cells multilabeled with the nanophosphors and organic dyes.These data show that LSUCLM offers some distinct advantages,such as little photobleaching of both organic dyes and rare-earth nanophosphors,no background fluorescence from either endogenous fluorophores or colabeled fluorescent probes,and excellent compatibility with conventional confocal microscopy.
     4.~(18)F-Labeled Rare-earth Nanophosphors for Dual-modality Positron Emission Tomography(PET) and Up-conversion Luminescence Imaging
     PET is a whole-body imaging technique with the highest sensitivity,while fluorescence imaging is widely used for cell and tissue imaging.Therefore,both radioactivity and fluorescence should ideally be combined into one probe for multi-level imaging.
     Radionuclide ~(18)F~-has been incorporated into up-converting nanophosphors (UCNPs) in>60%labeling yield by virtue of a simple,rapid and efficient strategy based on reaction between ~(18)F~-and rare-earth elements.The effectiveness of ~(18)F-labeled UCNPs for both PET and UCL imaging was futher evaluated by investigating the biodistribution of these nanoparticles using in vivo PET imaging and LSUCLM imaging experiments.The combination of in vivo PET and LSUCLM imaging indicates the potential of the ~(18)F-labeled UCNPs for ultra-sensitive molecular imaging from the cellular scale to whole-body evaluation.
引文
[1]Weissleder R,Pittet MJ.Imaging in the era of molecular oncology[J].Nature,2008,452(3):580-589.
    [2]Moerner WE.New directions in single-molecule imaging and analysis[J].Proc Natl Acad Sci USA,2007,104(31):12596-12602.
    [3]陈介克等.分析化学新方法新技术丛书——单细胞分析[M].北京:科学出版社,2005.
    [4]唐孝威,陈宜张,胡汛,孙达.分子影像学导论[M].杭州:浙江大学出版社,2005。
    [5]Bogdanov Jr AA.Molecular Imaging:An Essential Tool in Preclinical Research,Diagnostic Imaging,and Therapy[M].Springer,2004.
    [6]Jaffer FA,Weissleder R.Molecular Imaging in the Clinical Arena[J].J Am Med Assoc,2005,293(7):855-862.
    [7]Torigian DA,Huang SS,Houseni M.Alavi A.Functional Imaging of Cancer with Emphasis on Molecular Techniques[J].CA-A Cancer J Clin,2007,57(4):206-224.
    [8]Margolis DJA,Hoffman JM,Herfkens RJ,Jeffrey RB,Quon A,Gambhir SS.Molecular Imaging Techniques in Body Imaging[J].Radiology,2007,245(2):333-356.
    [9]Weissleder R,Mahmood U.Molecular Imaging[J].Radiology,2001,219(2):316-313.
    [10]Prasad PN.Introduction to Biophotonics[M].New York:Wiley-Interscience,2003.
    [11]Lichtman JW,Conchello JA.Fluorescence microscopy[J].Nat Methods,2005,2(12):910-919.
    [12]Conchello JA,Lichtman JW.Optical sectioning microscopy[J].Nat Methods,2005,2(12):920-931.
    [13]Stephens DJ,Allan VJ.Light microscopy techniques for live cell imaging[J].Science,2003,300(5616):82-86.
    [14]Denk W,Strickler JH,Webb WW.Two-photon laser scanning fluorescence microscopy[J].Science,1990,248(6):73-76.
    [15]Cahalan MD,Parker I,Wei SH,Miller MJ.Two-photon tissue imaging:seeing the immune system in a fresh light[J].Nat Rev Immunol,2002,2(11):872-880.
    [16]Zipfel WR,Williams RM,Webb WW.Nonlinear magic:multiphoton microscopy in the biosciences[J].Nat Biotechnology,2003,21(11):1369-1377.
    [17]Stutzmann GE,Parker I.Dynamic Multiphoton Imaging:A Live View from Cells to Systems[J].Physiology,2005,20(1):15-21.
    [18]Evans CL,Potma EO,Puorishaage M,Cote D,Lin C,Xie X.Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy[J].Proc Natl Acad Sci USA,2005,102(46):16807-16812.
    [19]Huang B,Wang W,Bates M,Zhuang X.Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy[J].Science,2008,319(5864):810-813.
    [20]Steyer JA,Almers W.A real-time view of life within 100 NM of the plasma membrane[J].Nature Rev Mol Cell Biol,2001,2(11):268-275.
    [21]Merrifield CJ,Feldman ME,Wan L,Almers W.Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits[J].Nature Cell Biol.2002,4(9):691-698.
    [22].A.Ishijima,T.Yanagida.Single molecule nanobioscience[J].Trends Biochem Sci,2001,26(7):438-444.
    [23]Shimomura O,Johnson FH,Saiga Y.Extraction,purification,and properties of aequorin,a bioluminescent protein from the luminous hydromedusan,Aequorea [J].J Cell Comp Physiol,1962,(59):223-239;
    [24]Chalfie M,Tu Y,Euskirchen G,Ward WW,Prasher DC.Green fluorescent protein as a marker for gene expression[J].Science,1994,263(5148):802-805.
    [25]Giepmans BNG,Adams SR,Ellisman MH,Tsien RY.The fluorescent toolbox for assessing protein location and function[J].Science,2006,312(5771):217-224.
    [26]Gillies RJ.In vivo molecular imaging[J].Journal of Cellular Biochemistry Supplement,2002,(39):231-238.
    [27]Marti AA,Jockusch S,Stevens N,Ju J,Turro NJ.Fluorescent Hybridization Probes for Sensitive and Selective DNA and RNA Detection[J].Acc Chem Res,2007,40(6):402-409.
    [28]www.probes.com and www.invitrogen.com;Haugland RP.The Handbook:A Guide to Fluorescent Probes and Labelling Technologies[M].Molecular Probes,Eugene,Oregon,10th ed.,2005.
    [29]黄晓峰,张远强,张英起.荧光探针技术[M].北京:人民军医出版社,2004.
    [30]吴世康.超分子光化学导论——基础与应用[M].北京:北京科学出版社,2005.
    [31]Silva AP de,Gunaratne HQN,Gunnlaugsson T,Huxley AJM,Mccoy CP,Rademacher JT,Rice TE.Signaling recognition events with fluorescent sensors and switches[J].Chem Rev,1997,97(5):1515-1566.
    [32]周治国.光化学传感器的设计、合成与应用研究[D].上海:复旦大学,2007.
    [33]Zhang M,Gao YH,Li MY,Yu MX,Li FY,Li L,Zhu MW,Zhang JP,Yi T,Huang CH.Novel Y-type two-photon active fluorophore:synthesis and application in fluorescent sensor for cystine and homocystine.Tetearhedron Lett,2007,48,3709-3712.
    [34]Yang H,Zhou ZG,Huang KW,Yu MX,Li FY,Yi T,Huang CH.Multisignaling Optical-Electrochemical Sensor for Hg(2+) Based on a Rhodamine Derivative with a Ferrocene Unit[J].Organic Letters,2007,9(23):4729-4732.
    [35] Huang KW, Yang H, Zhou ZG, Yu MX, Li FY, Gao X, Yi T, Huang CH. Multisignal Chemosensor for Cr~(3+) and Its Application in Bioimaging [J]. Organic Letters, 2008, 10(12): 2557-2560.
    [36] Zhou ZG, Yu MX, Yang H, Huang KW, Li FY, Yi T, Huang CH. FRET-based Sensor for Imaging Chromium(Ⅲ) in Living Cells [J]. Chem Commun, 2008,(29): 3387-3389.
    [37] Bhushan KR, Tanaka E, Frangioni JV. Synthesis of conjugatable bisphosphonates for molecular imaging of large animals [J]. Angew Chem Int Ed, 2007, 46(42): 7969-7971.
    [38] Hanaoka K, Kikuchi K, Kobayashi S, Nagano T. Time-Resolved Long-Lived Luminescence Imaging Method Employing Luminescent Lanthanide Probes with a New Microscopy System [J]. J Am Chem Soc, 2007,129(44): 13502-13509.
    [39] Amoroso AJ, Coogan MP, Dunne JE, Fernandez-Moreira V, Hess JB, Hayes AJ, Lloyd D, Millet C, Pope SJA, Williams C. Rhenium Fac tricarbonyl bisimine complexes: biologically useful fluorochromes for cell imaging applications [J]. Chem Commun, 2007, (29): 3066-3068.
    [40] Lo KKW, Lee TKM, Lau JSY, Poon WL, Cheng SH. Luminescent Biological Probes Derived from Ruthenium(Ⅱ) Estradiol Polypyridine Complexes [J]. Inorg Chem, 2008,47(1): 200-208.
    [41] Lo KKW, Louie MW, Sze KS, Lau JSY. Rhenium(Ⅰ) Polypyridine Biotin Isothiocyanate Complexes as the First Luminescent Biotinylation Reagents: Synthesis, Photophysical Properties, Biological Labeling, Cytotoxicity, and Imaging Studies [J]. Inorg Chem, 2008, 47(2): 602-611.
    [42] Huili Chen, Qiang Zhao, Yanbo Wu, Fuyou Li, Hong Yang, Tao Yi, Chunhui Huang. Selective Phosphorescence Chemosensor for Homocysteine Based on an Iridium(Ⅲ) Complex[J]. Inorg Chem, 2007, 46(26): 11075-11081.
    [43] Zhao Q, Cao TY, Li FY, Li XH, Jing H, Yi T, Huang CH. A Highly Selective and Multisignaling Optical-Electrochemical Sensor for Hg~(2+) Based on a Phosphorescent Iridium(III) Complex [J]. Organometallics 2007, 26(8):2077-2081.
    [44] Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nature Mater, 2005, 4(6): 435-446.
    [45] Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging and diagnostics [J]. Science, 2005, 307(5709): 538-544.
    [46] Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent bilolgical labels [J]. Science, 1998, 281(5385): 2013-2016.
    [47] Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998,281(5385): 2016-2018.
    [48] Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nature Biotech, 2002, 21(1): 41-46.
    [49] Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking [J]. Science, 2003, 302(5644): 442-445.
    [50] Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo [J]. Science, 2003, 300 (5624): 1434-1436.
    [51] Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J]. Science, 2002,298(5599): 1759-1762.
    [52] Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects [J]. Nano Lett, 2006,6(4): 669-676.
    [53] Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots [J]. Nano Lett, 2004,4(1): 11-18.
    [54] Leeuw TK, Reith RM, Simonette RA, Harden ME, Cherukuri P, Tsyboulski DA, Beckingham KM, Weisman RB. Single-Walled Carbon Nanotubes in the Intact Organism: Near-IR Imaging and Biocompatibility Studies in Drosophila [J.] Nano Letters,2007, 7(9): 2650-2654.
    [55] Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright Fluorescent Nanodiamonds: No Photobleaching and Low Cytotoxicity [J]. J Am Chem Soc, 2005,127(50): 17604-17605.
    [56] Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann WS. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers [J]. Proc NatlAcadSci USA, 2007, 104(3), 727-732.
    [57] Xiong HM, Xu Y, Ren QG, Xia YY. Stable Aqueous ZnO@Polymer Core-Shell Nanoparticles with Tunable Photoluminescence and their Application in Cell Imaging [J]. J Am Chem Soc, 2008, 130(24): 7522-7523.
    [58] Weber MJ. Rare Earth Lasers. In: Handbook on the Physicis and Chemistry of Rare Earths [M]. Vol. 4, Eds. Gschneidner KA and Eyring L, Amsterdam: North-Holland Publishing Compang, 1979.
    [59] Wang F, Liu XG Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem Soc Rev, 2009, 38(4), 976-989.
    [60] Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids [J]. Chem Rev, 2004, 104(1): 139-173.
    [61] Corstjens P, Zuiderwijk M, Brink A, Li S, Feindt H, Neidbala RS, Tanke H. Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive DNA test to identify human papillomavirus type 16 infection [J]. Clin Chem, 2001,47(10): 1885-1893.
    [62] Corstjens P, Zuiderwijk M, Nilsson M, Feindt H, Niedbala RS, Tanke HJ. Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay [J]. Anal Biochem, 2003, 312(2): 191-200.
    [63] Hampl J, Hall M, Mufti NA, Yao YMM, MacQueen DB, Wright WH. Upconverting phosphor reporters in immunochromatographic assays [J]. Anal Biochem, 2001,288(2): 176-187.
    [64] Niedbala RS, Feindt H, Kardos K, Vail T, Burton J, Bielska B. Detection of analytes by immunoassay using up-converting phosphor technology [J]. Anal Biochem, 2001,293(1): 22-30.
    [65] Zijlmans H, Bonnet J, Burton J, Kardos K, Vail T, Niedbala RS. Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter echnology [J]. Anal Biochem ,1999,267(1): 30-36.
    [66] van de Rijke F, Zijlmans H, Li S, Vail T, Raap AK, Niedbala RS. Up-converting phosphor reporters for nucleic acid microarrays [J]. Nat Biotechnol, 2001, 19(3):273-276.
    [67] Zhang P, Rogelj S, Nguyen K, Wheeler D. Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles [J]. J Am Chem Soc, 2006, 128(38): 12410-12411.
    [68] Wang LY, Yan RX, Hao ZY, Wang L, Zeng JH, Bao J, Wang X, Peng Q, Li YD. Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles [J]. Angew Chem Int Ed, 2005, 44(37): 6054-6057.
    [69] Wang LY, Li YD. Green upconversion nanocrystals for DNA detection [J]. Chem Commun, 2006, (24): 2557-2559.
    [70] Chen ZG, Chen HL, Hu H, Yu MX, Li FY, Zhang Q, Zhou ZG, Yi T, Huang CH. A Versatile Synthesis Strategy for Carboxylic Acid-functionalized Upconverting Nanophosphors as Biological Labels [J]. J Am Chem Soc, 2008, 130(10): 3023-3029.
    [71] Lim SF, Riehn R, Ryu WS, Khanarian N, Tung Ck, Tank D, Austin RH. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans [J]. Namo Lett, 2006,6(2): 169-174.
    [72] Li ZQ, Zhang Y, Jiang S. Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles [J]. Adv Mater, 2008, 20(1): 1-5.
    [73] Chatterjee DK, Rufaihah AJ, Zhang Y. Upconversion fluorescence imaging of ells and small animals using lanthanide doped nanocrystals [J].Biomaterials ,2008,29(7), 937-943.
    [1]a)Linder MC,Hazegh-Azam M.Copper biochemistry and molecular biology[J].Am J Clin Nutr,1996,63(5):797-811;
    b) Uauy R,Olivares M,Gonzalez M.Essentiality of copper in humans[J].Am J Clin Nutr,1998,67(5):952-959.
    [2]a) Waggoner DJ,Bartnikas TB,Gitlin JD.The role of copper in neurodegenerative disease[J].Neurobiol Dis,1999,6(4):221-30;
    b) Vulpe C,Levinson B,Whitney S,Packman S,Gitschier J.Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase[J].Nat Genet,1993,3(1):7-13;
    c) Bull PC,Thomas GR,Rommens JM,Forbes JR,Cox DW.The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene [J]. Nat Genet, 1993, 5(4): 327-337.
    [3] Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress [J]. Nat Rev Drug Discov, 2004, 3(3): 205-214.
    [4] a) Valentine JS, Hart PJ. Misfolded CuZnSOD and amyotrophic lateral sclerosis [J]. Proc Natl Acad Sci USA, 2003, 100(7): 3617-3622; b) Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS [J]. Annu Rev Neurosci, 2004,27: 723-749.
    [5] Brown DR, Kozlowski H. Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases [J]. Dalton Trans, 2004,(13): 1907-1917.
    [6] Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ. Environmental copper: its dynamics and human exposure issues [J]. J Toxicol Environ Health B Crit Rev, 2001,4(4): 341-394.
    [7] a) Harris ZL, Gitlin JD. Genetic and molecular basis for copper toxicity [J]. Am J Clin Nutr, 1996, 63(5): 836S-41S; b) Scheinberg IH, Sternlieb I. Wilson disease and idiopathic copper toxicosis [JJ. Am J Clin Nutr, 1996, 63(5): 842-845.
    [8] For reviews of cell imaging, see: a) Tsien RY. Fluorescent indicators of ion concentrations [J]. Methods Cell Biol, 1989, 30: 127-156; b) C Brownlee. Cellular calcium imaging: so, what's new? [J]. Trends Cell Biol, 2000, 10(10): 451-457; c)Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences [J]. Nat Biotechnol, 2003, 21(11): 1369-1377; d) Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging [J]. Science, 2003, 300(5616): 82-86; e) Lichtman J, Conchello JA. Fluorescence microscopy [J]. Nature Methods, 2005, 2, 910-919; f) Giepmans BN, Adams SR, Ellisman MH,Tsien RY. The fluorescent toolbox for assessing protein location and function [J].Science, 2006, 312(5771): 217-224.
    [9] For recent examples of imaging specific species in cells, see: a) Lim MH, Lippard SJ. Metal-based turn-on fluorescent probes for sensing nitric oxide [J]. Ace Chem Res, 2007, 40(1): 41-51; b) Miller EW, Tulyathan O, Isacoff EY, Chang CJ. Molecular imaging of hydrogen peroxide produced for cell signaling [J]. Nat Chem Biol, 2007, 3(5): 263-267; c) Xu K, Liu X, Tang B, Yang GW, Yang Y, An LG Design of a phosphinate-based fluorescent probe for superoxide detection in mouse peritoneal macrophages [J]. Chem Eur J, 2007, 13(5): 1411-1416; d) Kenmoku S, Urano Y, Kojima H, Nagano T. Development of a Highly Specific Rhodamine-Based Fluorescence Probe for Hypochlorous Acid and Its Application to Real-Time Imaging of Phagocytosis [J]. J Am Chem Soc, 2007, 129(23):7313-7318; e) Zhang M, Yu MX, Li FY, Zhu MW, Li MY, Gao YH, Li L, Liu ZQ, Zhang JP, Zhang DQ, Yi T, Huang CH. A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging [J]. J Am Chem Soc, 2007,129 (34): 10322-10323.
    [10] For recent examples, see: a) Komatsu H, Miki T, Citterio D, Kubota T, Shindo Y, Kitamura Y, Oka Y, Suzuki K. Single Molecular Multianalyte (Ca~(2+), Mg~(2+)) Fluorescent Probe and Applications to Bioimaging [J]. J Am Chem Soc, 2005,127(31): 10798-10799; b) Farruggia G, Iotti S, Prodi L, Montalti M, Zaccheroni N, Savage PB, Trapani V, Sale P, Wolf FI. 8-Hydroxyquinoline Derivatives as Fluorescent Sensors for Magnesium in Living Cells [J]. J Am Chem Soc, 2006, 128(1): 344-350; c) Sanchez-Martin RM, Cuttle M, Mittoo S, Bradley M. Microsphere-Based Real-Time Calcium Sensing [J]. Angew Chem, 2006, 118(33): 5598-5600; Angew Chem Int Ed, 2006, 45(33): 5472-5474; d) Kim HM,Jung C, Kim BR, Jung SY, Hong JH, Ko YG, Lee KJ, Cho BR. Environment-sensitive two-photon probe for intracellular free magnesium ions in live tissue [J]. Angew Chem, 2007, 119(19): 3530-3533; Angew Chem Int Ed,2007,46(19): 3460-3463.
    [11] For reviews, see: a) Kikuchi K, Komatsu K, Nagano T. Zinc sensing for cellular application [J]. Curr Opin Chem Biol, 2004, 8(2): 182-191; b) Lim NC, Freake HC, Bruckner C. Illuminating zinc in biological systems [J]. Chem Eur J, 2004, 11(1): 38-49.
    [12] For recent examples, see: a) Komatsu K, Kikuchi K, Kojima H, Urano Y, Nagano T. Selective zinc sensor molecules with various affinities for Zn~(2+), revealing dynamics and regional distribution of synaptically released Zn~(2+) in hippocampal slices [J]. J Am Chem Soc, 2005, 127(29): 10197-10204; b) Nolan EM, Ryu JW, Jaworski J, Feazell RP, Sheng M, Lippard SJ. Zinspy Sensors with Enhanced Dynamic Range for Imaging Neuronal Cell Zinc Uptake and Mobilization [J]. J Am Chem Soc, 2006, 128(48): 15517-15528; c) Zhang XA, Lovejoy KS,Jasanoff A, Lippard SJ. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing [J]. Proc Natl Acad Sci USA,2001, 104(26): 10780-10785.
    [13] a) Peng X, Du J, Fan J, Wang J, Wu Y, Zhao J, Sun S, Xu T. A selective fluorescent sensor for imaging Cd~(2+) in living cells [J]. J Am Chem Soc. 2007, 129(6): 1500-1501; b) Liu WM, Xu LW, Sheng RL, Wang PF, Li HP, Wu SK. A Water-Soluble "Switching On" Fluorescent Chemosensor of Selectivity to Cd~(2+) [J]. Org Lett, 2007, 9(19): 3829-3832.
    [14] Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ. A selective turn-on fluorescent sensor for imaging copper in living cells [J]. J Am Chem Soc, 2006, 128(1): 10-11.
    [15] He QW, Miller EW, Wong AP, Chang CJ. A Selective Fluorescent Sensor for Detecting Lead in Living Cells [J]. J Am Chem Soc, 2006, 128 (29): 9316-9317.
    [16] Zhang M, GaoYH, Li MY, Yu MX, Li FY, Li L, Zhu MW, Zhang JP, Tao Y, Huang CH. A selective turn-on fluorescent sensor for Felll and application to bioimaging [J]. Tetearhedron Lett, 2007,48(21): 3709-3712.
    [17] a) Zhang ZC, Wu D, Guo XF, Qian XH, Lu Z, Xu Q, Yang YY, Duan LP, He YK, Feng Z. Visible Study of Mercuric Ion and Its Conjugate in Living Cells of Mammals and Plants [J]. Chem Res Toxicol, 2005, 18(12): 1814-1820; b) Ko SK,Yang YK, Tae JS, Shin IJ. In Vivo Monitoring of Mercury Ions Using a Rhodamine-Based Molecular Probe [J]. J Am Chem Soc, 2006, 128(43): 14150-14155; c) Yoon S, Miller EW, He Q, Do PH, Chang CJ. A bright and specific fluorescent sensor for mercury in water, cells, and tissue [J]. Angew Chem, 2007, 119(35): 6778-6781; Angew Chem Int Ed, 2007, 46(35):6658-6661; d) Yang H, Zhou ZG, Huang KW, Yu MX, Li FY, Yi T, Huang CH. Multisignaling Optical-Electrochemical Sensor for Hg~(2+) Based on a Rhodamine Derivative with a Ferrocene Unit [J]. Org Lett, 2007, 9(23): 4729-4732.
    [18] For fluorescence "turn-off' Cu~(2+) sensors, see: a) Shnek DR, Pack DW, Arnold FH, Sasaki DY. Metal-Induced Dispersion of Lipid Aggregates: A Simple, Selective, and Sensitive Fluorescent Metal Ion Sensor [J]. Angew Chem, 1995, 107(8): 994-996; Angew Chem Int Ed, 1995, 34(8): 905-907; b) Torrado A, Walkup GK, Imperiali B. Exploiting Polypeptide Motifs for the Design of Selective Cu(Ⅱ) Ion Chemosensors [J]. J Am Chem Soc, 1998, 120(3): 609-610;c) Grandini P, Mancin F, Tecilla P, Scrimin P, Tonellato U. Exploiting the Self-Assembly Strategy for the Design of Selective Cu II Ion Chemosensors [J]. Angew Chem, 1999, 111(20): 3247-3250; Angew Chem Int Ed, 1999, 38(20): 3061-3064; d) Klein G, Kaufmann D, Schurch S, Reymond JL. A fluorescent metal sensor based on macrocyclic chelation [J]. Chem Commun, 2001, (6): 561-562; e) Boiocchi M, Fabbrizzi L, Licchelli M, Sacchi D, Vazquez M, Zampa C. A two-channel molecular dosimeter for the optical detection of opper(Ⅱ) [J]. Chem Commun, 2003, (15): 1812-1813; f) Zheng Y, Orbulescu J, Ji X, Andreopoulos FM, Pham SM, Leblanc RM. Development of fluorescent film sensors for the detection of divalent copper [J]. J Am Chem Soc, 2003, 125(9): 2680-2686; g) Roy BC, Chandra B, Hromas D, Mallik S. Synthesis of new, pyrene-containing, metal-chelating lipids and sensing of cupric ions [J]. Org Lett, 2003, 5(1): 11-14; h) Shao N, Zhang Y, Cheung SM, Yang RH, Chan WH, Mo T, Li KA, Liu F. Copper Ion-Selective Fluorescent Sensor Based on the Inner Filter Effect Using a Spiropyran Derivative [J]. Anal Chem, 2005, 77(22):7294-7303; i) Kim SH, Kim JS, Park SM, Chang SK. Hg~(2+)-selective OFF-ON and Cu~(2+)-selective ON-OFF type fluoroionophore based upon cyclam [J]. Org Lett, 2006, 8(3): 371-374.
    [19] For fluorescence "turn-on" Cu~(2+) sensors, see: a) Wu Q, Anslyn EV. Catalytic signal amplification using a Heck reaction. An example in the fluorescence sensing of Cull [J]. J Am Chem Soc, 2004, 126(45): 14682-14683; b) Xu ZC, Xiao Y, Qian XH, Cui JN, Cui DW. Ratiometric and Selective Fluorescent Sensor for Cull Based on Internal Charge Transfer (ICT) [J]. Org Lett, 2005, 7(5): 889-892; c) Wen ZC, Yang R, He H, Jiang YB. A highly selective charge transfer fluoroionophore for Cu~(2+) [J]. Chem Commun, 2006, (1): 106-108; d) Martinez R, Zapata F, Caballero A, Espinosa A, Tarraga A, Molina P. 2-Aza-l,3-butadiene Derivatives Featuring an Anthracene or Pyrene Unit: Highly Selective Colorimetric and Fluorescent Signaling of Cu~(2+) Cation [J]. Org Lett, 2006, 8(15): 3235-3238; e) Xiang Y, Tong AJ, Jin PY, Ju Y New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(Ⅱ) with High Selectivity and Sensitivity [J]. OrgLett, 2006, 8(13): 2863-2866; f) Yang H, Liu ZQ, Zhou ZG, Shi EX, Li FY, Du YK, Yi T, Huang CH. Highly selective ratiometric fluorescent sensor for Cu(Ⅱ) with two urea groups [J]. Tetrahedron Lett, 2006,47(17): 2911-2914; g) A DNAzyme Catalytic Beacon Sensor for Paramagnetic Cu~(2+) Ions in Aqueous Solution with High Sensitivity and Selectivity [J]. Liu JW, Lu Y. J Am Chem Soc, 2007, 129(32): 9838-9839.
    [20] a) Varnes AV, Dodson RB, Whery EL. Interactions of transition-metal ions with photoexcited states of flavines. Fluorescence quenching studies [J]. J Am Chem Soc, 1972, 94(3): 946-950; b) Kemlo JA, Shepherd TM. Quenching of excited singlet states by metal ions[J].Chem Phys Lett,1977,47(1):158-162.
    [21]Dujols V,Ford F,Czarnik AW.A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu(Ⅱ) Ion in Water[J].J Am Chem Soc,1997,119(31):7386-7387.
    [22]For metal ions,see:a) Hennrich G,Sonnenschein H,Resch-Genger U.Redox Switchable Fluorescent Probe Selective for Either Hg(Ⅱ) or Cd(Ⅱ) and Zn(Ⅱ)[J].J Am Chem Soc,1999,121(21):5073-5074;
    b) A selective fluorescent ratiometric chemodosimeter for mercury ion[J].Liu B,Tian H.Chem Commun,2005,(25):3156-3158;
    c) Ros-Lis JV,Marcos MD,M(?)rtinez-M(?)(?)ez R,Rurack K,Soto J.A Regenerative Chemodosimeter Based on Metal-Induced Dye Formation for the Highly Selective and Sensitive Optical Determination of Hg~(2+)Ions[J].Angew Chem,2005,117(28):4479-4482;Angew Chem Int Ed,2005,44(28):4405-4407;
    d) Roeschlaub CA,Maidwell NL,Rezai R,Sammes PG.A fluorescent probe for the detection of NAD(P)H[J].Chem Commun,1999,(17):1637-1638;
    e)Sancen(?)n F,Descalzo AB,Mart(?)nez-M(?)(?)ez R,Miranda MA,Soto J.A Colorimetric ATP Sensor Based on 1,3,5-Triarylpent-2-en-1,5-diones[J].Angew Chem,2001,113(14):2710-2713;Angew Chem Int Ed,2001,40(14):2640-2643;
    f) Kim TH,Swager TM.A Fluorescent Self-Amplifying Wavelength-Responsive Sensory Polymer for Fluoride Ions[J].Angew Chem,2003,115(39):4951-4954;Angew Chem Int Ed,2003,42(39):4803-4806;
    g)Sancen(?)n F,Mart(?)nez-M(?)(?)ez R,Miranda MA,Segu(?) MJ,Soto J.Towards the Development of Colorimetric Probes to Discriminate between Isomeric Dicarboxylates[J].Angew Chem,2003,115(6):671-674;Angew Chem Int Ed,2003,42(6):647-650;
    h) Tanaka F,Mase N,Barbas CE Determination of cysteine concentration by fluorescence increase:reaction of cysteine with a fluorogenic aldehyde[J].Chem Commun,2004,(15):1762-1763;
    i) Mohr GJ.Chromo-and Fluororeactands:Indicators for Detection of Neutral Analytes by Using Reversible Covalent-Bond Chemistry[J].Chem Eur J,2004,10(5):1082-1090.
    [23]Yang YK,Yook KJ,Tae JS.A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg~(2+) Ions in Aqueous Media[J].J Am Chem Soc,2005,127(48):16760-16761;
    [24]Crystal data for C33H41N502S:Fw=571.78,Monoclinic(P2(1)/n),a=12.129(12)(?),b = 12.326(13)(?),c=23.44(2)(?),α=90,β=101.390(14),γ=90,V=3435(6)(?)3,pcalcd=1.185 g cm-3,Z=4,μ=0.133 mm-1,R1[I> 2σ(I)] = 0.0887, wR2 [I>2σ(I)] = 0.1862, R1 (all data) = 0.2609, wR2 (all data) = 0.2702, GOF = 0.894. CCDC reference number: CCDC 649657.
    [25] a) Kwon JY, Jang YJ, Lee YJ, Kim KM, Seo MS, Nam W, Yoon J. A Highly Selective Fluorescent Chemosensor for Pb~(2+) [J]. J Am Chem Soc, 2005, 127(28): 10107-10111; b) Xiang Y, Tong AJ. A new rhodamine-based chemosensor exhibiting selective Fe(Ⅲ)-amplified fluorescence [J]. Org Lett, 2006, 8(8): 1549-1552; c) Zhang H, Qian ZH, Xu L, Yuan FF, Lan LD, Xu JG Switching the Recognition Preference of Rhodamine B Spirolactam by Replacing One Atom: Design of Rhodamine B Thiohydrazide for Recognition of Hg(Ⅱ) in Aqueous Solution [J]. Org Lett, 2006, 8(5): 859-861; d) Mao J, Wang LN, Dou W, Tang XL, Yan Y, Liu WS. Tuning the Selectivity of Two Chemosensors to Fe(Ⅲ) and Cr(IH) [J]. Org Lett, 2007, 9(22): 4567-4570.
    [26] Natarajan A, Guo YH, Arthanari H, Wagner G, Halperin JA, Chorev M. Synthetic Studies toward Aryl-(4-aryl-4H-[1,2,4]triazole-3-yl)-amine from 1,3-Diarylthiourea as Urea Mimetics [J]. J Org Chem, 2005, 70(16): 6362-6368.
    [27] Belfield KD, Schafer KJ, Liu Y, Ren XB, Van Stryland EW. Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging [J]. J Phys Org Chem, 2000,13(12): 837-849.
    [28] Svoboda K, Yasuda R. Principles of two-photon excitation microscopy and its applications to neuroscience [J]. Neuron, 2006, 50(6): 823-839.
    [29] Xu C, Webb WW. Measurement of two-photon excitation cross-sections of molecular fluorophores with data from 690 nm to 1050 nm [J]. J Opt Soc Am B, 1996,13(3): 481-491.
    [30] Filipescu N, Mushrush GW, Hurt CR, McAvoy N. Fluorescence Quantum Efficiencies of Octa-coordinated Europium Homogeneous and Mixed Chelates in Organic Solvents [J]. Nature, 1966,211(5052): 960-961.
    [31] SHELXS-97: G M. Sheldrick, SHELXTL-Plus V5.1 software Reference Manual; Bruker AXS Inc.: Madison, WI, 1997
    [32] Gaussian 03 (Revision B05): M. J. Frisch, G W. Trucks, H. B. Schlegel, G E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vrevenjr, K. N.Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B.Mennucci, M. Cossi, G Scalmani, N. Rega, G A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K.Morokuma, G A. Voth, P. Salvador, J. J. Dannenberg, V. G Zakrzewski, S.Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.Raghavachari, J. B. Fores-man, J. V. Ortiz, Q. Cui, A. G Baboul, S. Clifford, J.Cioslowski, B. B. Stefanov, G Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Na-nayakkara, M.Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc.: Wallingford, CT, 2003.
    [1]a) Evans CL,Potma EO,Puorishaage M,Cote D,Lin CP,Xie XS.Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy[J].Proc Natl Acad Sci USA,2005,102(46):16807-16812;
    b)Huisken J,Swoger J,Bene FD,Wittbrodt J,Stelzer EHK.Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy[J].Science,2004,305(5686):1007-1009;
    c) Boyer D,Tamarat P,Maali A,Lounis B,Orrit M.Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers[J].Science,2002,297(5584):1160-1163;
    d) Rust MJ,Bates M,Zhuang XW.Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM)[J].Nature Methods,2006,3(10):793-795;
    e) Boyer D,Tamarat P,Maali A,Lounis B,Orrit M.Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers[J].Science,2002,297(5584):1160-1163;
    f) Zhang M,Yu MX,Li FY,Zhu MW,Li MY,Gao YH,Li L,Liu ZQ,Zhang JP,Zhang DQ,Yi T,Huang CH.A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging[J].J Am Chem Soc,2007,129(34):10322-10323;
    g) Stephens DJ,Allan VJ.Light microscopy techniques for live cell imaging[J].Science,2003,300(5616):82-86.
    [2]www.probes.com and www.invitrogen.com;R.P.Haugland.A Guide to Fluorescent Probes and Labelling Technologies,10~(th)[M].Molecular Probes,Eugene,Oregon,2005.
    [3]Pandya S,Yu JH,Parker D.Engineering emissive europium and terbium complexes for molecular imaging and sensing[J].Dalton Trans,2006,(23):2757-2766.
    [4]a) Chou PT,Chi Y.Phosphorescent dyes for organic light-emitting di-odes[J].Chem Eur J,2007,13(2):380-395;
    b) Ma B,Djurovich PI,Thompson ME.Excimer and electron transfer quenching studies of a cyciometalated platinum complex[J].Coord Chem Rev,2005,249(13-14):1501-1510;
    c)黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005;
    d)赵强.光功能铱配合物的分子设计、合成及其光电性质研究[D].上海:复旦大学,2007.
    [5]a) Amoroso A J,Coogan MP,Dunne JE,Fern(?)ndez-Moreira V,Hess JB,Hayes AJ,Lloyd D,Millet C,Pope SJA,Williams C.Rhenium Fac tricarbonyl bisimine complexes:biologically useful fluorochromes for cell imaging applications[J]. Chem Commun, 2007, (29): 3066-3068; b) Lo KKW, Lee TKM, Lau JSY, Poon WL, Cheng SH. Luminescent Biological Probes Derived from Ruthenium(Ⅱ) Estradiol Polypyridine Complexes [J]. Inorg Chem, 2008, 47(1): 200-208; c) Lo KKW, Louie MW, Sze KS, Lau JSY. Rhenium(Ⅰ) Polypyridine Biotin Isothiocyanate Complexes as the First Luminescent Biotinylation Reagents: Synthesis, Photophysical Properties, Biological Labeling, Cytotoxicity, and Imaging Studies [J]. Inorg Chem, 2008,47(2): 602-611.
    [6] Puckett CA, Barton JK. Methods to Explore Cellular Uptake of Ruthenium Complexes [J]. J Am Chem Soc, 2007,129(1): 46-47.
    [7] a) Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J]. J Am Chem Soc,2001, 123(18): 4304-4312; b) You YM, Park SY. Inter-Ligand Energy Transfer and Related Emission Change in the Cyclometalated Heteroleptic Iridium Complex: Facile and Efficient Color Tuning over the Whole Visible Range by the Ancillary Ligand Structure [J]. J Am Chem Soc, 2005, 127(36): 12438-12439; c) Tsuboyama A, Iwawaki, Furugori HM, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode [J]. J Am Chem Soc, 2003,125(42): 12971-12979; d) Takizawa S, Nishida J, Tsuzuki T, Tokito S, Yamashita Y. Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[l,2-a]pyridine Ligands: Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices [J]. Inorg Chem, 2007, 46(10): 4308-4319; e)Zhen HY, Luo C, Yang W, Song WY, Du B, Jiang JX, Jiang CY, Zhang Y, Cao Y.Electrophosphorescent chelating copolymers based on linkage isomers of naphthylpyridine-iridium complexes with fluorine [J]. Macromolecules, 2006,39(5): 1693-1700; f) Chen X, Liao JL, Liang Y, Ahmed MO, Tseng HE, Chen SA. High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety [J]. J Am Chem -Soc, 2003, 125(3): 636-637.
    [8] a) Lo KKW, Lau JSY. Cyclometalated Iridium(Ⅲ) Diimine Bis(biotin) Complexes as the First Luminescent Biotin-Based Cross-Linkers for Avidin [J]. Inorg Chem,
    2007,46(3):700-709;
    b) Lo KKW,Zhang KY,Chung CK,Kwok KY.Synthesis,Photophysical and Electrochemical Properties,and Protein-Binding Studies of Luminescent Cyclometalated Iridium(Ⅲ) Bipyridine Estradiol Conjugates[J].Chem 0Eur J,2007,13(25):7110-7120;
    c) Lo KKW,Chung CK,Zhu N.Nucleic Acid Intercalators and Avidin Probes Derived from Luminescent Cyclometalated Iridium(Ⅲ)-Dipyridoquinoxaline and -Dipyridophenazine Complexes[J].Chem Eur J,2006,12(5):1500-1512.
    [9]a) Gao RM,Ho DG,Hernandez B,Selke M,Murphy D,Djurovich PI,Thompson ME.Bis-cyclometalated Ir(Ⅲ) Complexes as Efficient Singlet Oxygen Sensitizers [J].J Am Chem Soc,2002,124(50):14828-14829;
    b) Ho ML,Hwang FM,Chen PN,Hu YH,Cheng YM,Chen KS,Lee GH,Chi Y,Chou PT.Design and synthesis of iridium(Ⅲ) azacrown complex:application as a highly sensitive metal cation phosphorescence sensor[J].Org Biomol Chem,2006,4(1):98-103;
    c)Zhao Q,Cao TY,Li FY,Li XH,Jing H,Yi T,Huang CH.A Highly Selective Phosphorescent Chemosensor for Hg~(2+) Based on Iridium(Ⅲ) Complex[J].Organometallics,2007,26(8):2077-2081;
    d) Zhao Q,Liu SJ,Shi M,Li FY,Jing H,Yi T,Huang CH.Tuning Photophysical and Electrochemical Properties of Cationic Iridium(Ⅲ) Complexes based on Phenanthroline Derivatives by Proton and Anions[J].Organometallics,2007,26(24):5922-5930;
    e) Chen HL,Zhao Q,Wu Y,Li FY,Yang H,Yi T,Huang CH.A Highly Selective Sensor for Hey Based on a Phosphorescent Iridium(Ⅲ) Complex[J].Inorg Chem,2007,46(26):11075-11081.
    [10]Cory AH,Owen TC,Barltrop JA.Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture[J].Cancer Commun,1991,3(7):207-212.
    [11]Zhao Q,Liu SJ,Shi M,Wang CM,Yu MX,Li L,Li FY,Yi T,Huang CH.Series of New Cationic Iridium(Ⅲ) Complexes with Tunable Emission Wavelength and Excited State Properties:Structures,Theoretical Calculations,and Photophysical and Electrochemical Properties[J].Inorg Chem,2006,45(16):6152-6160.
    [12]为了避免DAPI发光对配合物2信号的干扰,实验中使用低浓度的DAPI(0.5μg/mL)染色细胞核,因此有些细胞的胞浆被2染色而核未被DAPI染色.
    [13]Nakamaru K.Synthesis,Luminescence Quantum Yields,and Lifetimes of Trischelated Ruthenium(Ⅱ) Mixed-ligand Complexes Including 3,3'-Dimethyl-2,2'-bipyridyl[J].Bull Chem Soc Jpn,1982,55(9):2697-2705.
    [1]Lodish,H,Berk A,Matsudaira P,Kaiser CA,Krieger M,Scott MP,Zipursky SL,Darnell J.Molecular Cell Biology,5~(th)[M].New York:WH Freeman,2004.
    [2]Harris,H.The Birth of the Cell[M].New Haven:Yale University Press,1999.
    [3]Brown R.On the Organs and Mode of Fecundation of Orchidex and Asclepiadea [J].Miscellaneous Botanical Works(Ⅰ):511-514,1866.
    [4]Thomas C.Von der Zellenlehre zur Chromosomentheorie[M].Berlin,Heidelberg,New York,Tokyo:Springer Verlag,1985.
    [5]a) Evans CL,Potma EO,Puorishaage M,Cote D,Lin CP,Xie XS.Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy[J].Proc Natl Acad Sci USA,2005,102(46):16807-16812;
    b)Huisken J,Swoger J,Bene FD,Wittbrodt J,Stelzer EHK.Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy[J].Science,2004,305(5686):1007-1009;
    c) Boyer D,Tamarat P,Maali A,Lounis B,Orrit M.Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers[J].Science,2002,297(5584):1160-1163;
    d) Rust MJ,Bates M,Zhuang XW.Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM)[J].Nature Methods,2006,3(10):793-795;
    e) Boyer D,Tamarat P,Maali A,Lounis B,Orrit M.Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers[J].Science,2002,297(5584):1160-1163;
    f) Zhang M,Yu MX,Li FY,Zhu MW,Li MY,Gao YH,Li L,Liu ZQ,Zhang JP,Zhang DQ,Yi T,Huang CH.A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging[J].J Am Chem Soc,2007,129(34):10322-10323;
    g) Stephens DJ,Allan VJ.Light microscopy techniques for live cell imaging[J].Science,2003,300(5616):82-86.
    [6]www.probes.com and www.invitrogen.com;Haugland RP.A Guide to Fluorescent Probes and Labelling Technologies,10~(th)[M].Molecular Probes,Eugene,Oregon,2005,397-405.
    [7]Wu X,Liu H,Liu J,Haley KN,Treadway JA,Larson JP,Ge N,Peale F,Bruchez MP.Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J].Nature Biotechnology,2003,21(1):41-46.
    [8]a) Bruchez Jr.M,Moronne M,Gin P,Weiss S,Alivisatos AP.Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281(5385):2013-2016;
    b)Nabiev I,Mitchell S,Davies A,Williams Y,Kelleher D,Moore R,Gun'ko YK,Byrne S,Rakovich YP,Donegan JF,Sukhanova A,Conroy J,Cottell D,Gaponik N,Rogach A,Volkov Y.Nonfunctionalized Nanocrystals Can Exploit a Cell's Active Transport Machinery Delivering Them to Specific Nuclear and Cytoplasmic Compartments[J].Nano Letters,2007,7(11):3452-3461;
    c) Biju V,Muraleedharan D,Nakayama K,Shinohara Y,Itoh T,Baba Y,Ishikawa M.Quantum dot-insect neuropeptide conjugates for fluorescence imaging,transfection,and nucleus targeting of living cells[J].Langmuir,2007,23(20):10254-10261.
    [9]Ruan G,Agrawal A,Marcus AI,Nie S.Imaging and Tracking of Tat Peptide-Conjugated Quantum Dots in Living Cells:New Insights into Nanoparticle Uptake,Intracellular Transport,and Vesicle Shedding[J].J Am Chem Soc,2007,129(47):14759-14766.
    [10]a) Troy T,Jekic-McMullen D,Sambucetti L,Rice B.Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models[J].Mol Imaging,2004,3(1):9-23;
    b) Mansfield JR,Gossage KW,Hoyt CC,Levenson RM.Autofluorescence removal,multiplexing,and automated analysis methods for in-vivo fluorescence imaging[J].J Biomed Opt,2005,10(4):41207.
    [11]a) Chou PT,Chi Y.Phosphorescent dyes for organic light-emitting di- odes[J].Chem Eur J,2007,13(2):380-395;
    b) Ma B,Djurovich PI,Thompson ME.Excimer and electron transfer quenching studies of a cyclometalated platinum complex[J].Coord Chem Rev,2005,249(13-14):1501-1510;
    c)黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005;
    d)赵强.光功能铱配合物的分子设计、合成及其光电性质研究[D].上海:复旦大学,2007.
    [12]Hanaoka K,Kikuchi K,Kobayashi S,Nagano T.Time-Resolved Long-Lived Luminescence Imaging Method Employing Luminescent Lanthanide Probes with a New Microscopy System[J].JAm Chem Soc,2007,129(44):13502-13509.
    [13]Puckett CA,Barton JK.Methods to Explore Cellular Uptake of Ruthenium Complexes[J].J Am Chem Soc,2007,129(1):46-47.
    [14]a) Amoroso AJ,Coogan MP,Dunne JE,Fern(?)ndez-Moreira V,Hess JB,Hayes AJ,Lloyd D,Millet C,Pope SJA,Williams C.Rhenium Fac tricarbonyl bisimine complexes : biologically useful fluorochromes for cell imaging applications [J]. Chem Commun, 2007, (29): 3066-3068; b) Lo KKW, Lee TKM, Lau JSY, Poon WL, Cheng SH. Luminescent Biological Probes Derived from Ruthenium(Ⅱ) Estradiol Polypyridine Complexes [J]. Inorg Chem, 2008, 47(1): 200-208; c) Lo KKW, Louie MW, Sze KS, Lau JSY. Rhenium(I) Polypyridine Biotin Isothiocyanate Complexes as the First Luminescent Biotinylation Reagents:Synthesis, Photophysical Properties, Biological Labeling, Cytotoxicity, and Imaging Studies [J]. Inorg Chem, 2008,47(2): 602-611; d) Yu MX, Zhao Q, Shi L, Li FY, Zhou ZG, Yang H, Yi T, Huang CH. Cationic iridium(Ⅲ) complexes for phosphorescence staining in the cytoplasm of living cells [J]. Chem Commun,2008, (18): 2115-2117.
    [15] a) Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J]. J Am Chem Soc, 2001, 123(18): 4304-4312; b) Zhao Q, Liu SJ, Shi M, Wang CM, Yu MX, Li L, Li FY, Yi T, Huang CH. Series of New Cationic Iridium(III) Complexes with Tunable Emission Wavelength and Excited State Properties: Structures, Theoretical Calculations, and Photophysical and Electrochemical Properties [J]. Inorg Chem,2006, 45(16): 6152-6160; c) Zhao Q, Jiang CY, Shi M, Li FY, Yi T, Cao Y, Huang CH. Synthesis and Photophysical, Electrochemical, and Electrophosphorescent Properties of a Series of Iridium(Ⅲ) Complexes Based on Quinoline Derivatives and Different P-Diketonate Ligands [J]. Organometallics,2006,25(15): 3631-3638.
    [16] Schmid B, Garces FO, Watts RJ. Synthesis and Characterizations of Cyclometalated Iridium (III) Solvent Complexes [J]. Inorg Chem, 1994, 33(1): 9-14.
    [1]Stephens DJ,Allan VJ.Light Microscopy Techniques for Live Cell Imaging[J].Science,2003,300(5616):82-86.
    [2]Matsumoto B.Methods in Cell Biology:Cell Biological Applications of Confocal Microscopy,2nd ed[M].San Diego,CA:Academic Press,Vol.70,2002.
    [3]Conchello JA,Lichtman JW.Optical sectioning microscopy[J].Nat Methods.2005,2(12):920-931.
    [4]Cahalan MD,Parker I,Wei SH,Miller M.Two-photon tissue imaging:seeing the immune system in a fresh light[J].Nat Rev Immunol,2002,2(11):872-880.
    [5]Zipfel WR,Williams RM,Webb WW.Nonlinear magic:multiphoton microscopy in the biosciences[J].Nat Biotechnol,2003,21(11):1369-1377.
    [6]Stutzmann GE,Parker I.Dynamic Multiphoton Imaging:A Live View from Cells to Systems[J].Physiology,2005,20(1):15-21.
    [7]Schuttpelz M,Muller C,Neuweiler H,Sauer M.UV Fluorescence Lifetime Imaging Microscopy:A Label-Free Method for Detection and Quantification of Protein Interactions[J].Anal Chem,2006,78(3):663-669.
    [8]Xie XS,Yu J,Yang WY.Living cells as test tubes[J].Science,2006,312(5771):228-230.
    [9]Poggi MA,Gadsby ED,Bottomley LA,King WP,Oroudjev E,Hansma H.Scanning Probe Microscopy[J].Anal Chem,2004,76(12):3429-3444.
    [10]Brucherseifer M,Kranz C,Mizaikoff B.Combined in Situ Atomic Force Microscopy- Infrared-Attenuated Total Reflection Spectroscopy[J].Anal Chem,2007,79(22):8803-8806.
    [11]www.probes.com and www.invitrogen.com;Haugland RP.A Guide to Fluorescent Probes and Labelling Technologies, 10th ed [M]. Molecular Probes: Eugene, OR, 2005.
    [12] Zhang M, Yu MX, Li FY, Zhu MW, Li MY, Gao YH, Li L, Liu ZQ, Zhang JP, Zhang DQ, Yi T, Huang CH. A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging [J]. J Am Chem Soc, 2007,129(34): 10322-10323.
    [13] Giepmans BNG, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function [J]. Science ,2006, 312(5771): 217-224.
    [14] Yu MX, Zhao Q, Shi LX, Li FY, Zhou ZG, Yang H, Yi T, Huang CH. Cationic Iridium(Ⅲ) Complexes for Phosphorescent Staining in Cytoplasm of Living Cells [J]. Chem Commun, 2008, (18): 2115-2117.
    [15] Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics [J]. Science, 2005, 307(5709): 538-544.
    [16] Billinton N, Knight AW. Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence [J]. Anal Biochem, 2001,291(2): 175-197.
    [17] Troy T, Jekic-McMullen D, Sambucetti L, Rice B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models [J]. Mol Imaging, 2004, 3(1): 9-23.
    [18] Mansfield JR, Gossage K W, Hoyt CC, Levenson RM. Considerations in Longitudinal Multispectral Small Animal Molecular Imaging [J]. J Technical Biomed Opt, 2005, 10(4): 41207.
    [19] Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids [J]. Chem Rev, 2004, 104(1): 139-173.
    [20] Heer S, K(?)mpe K, G(?)del HU, Haase M. Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF_4 Nanocrystals[J],Adv Mater, 2004,16(23): 2102-2105.
    [21] Sivakumar S, van Veggel, FCJM, Raudsepp M. Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln~(3+)-Doped LaF_ Nanoparticles [J]. J Am Chem Soc, 2005, 127(36):12464-12465.
    [22] Zhang P, Rogelj S, Nguyen K, Wheeler D. Design of a Highly Sensitive and Specific Nucleotide Sensor Based on Photon Upconverting Particles [J]. J Am ChemSoc, 2006,128(38): 12410-12411.
    [23] Boyer JC, Vetrone F, Cuccia LA, Capobianco JA. Synthesis of Colloidal Upconverting NaYF_4 Nanocrystals Doped with Er~(3+), Yb~(3+) and Tm~(3+), Yb~(3+) via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors [J]. J Am ChemSoc, 2006,128(23): 7444-7445.
    [24] Li Z, Zhang Y. Monodisperse Silica-Coated Polyvinylpyrrolidone/NaYF4 Nanocrystals with Multicolor Upconversion Fluorescence Emission [J]. Angew Chem Int Ed. 2006,45(46): 7732-7735.
    [25] Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH. Synthesis of Colloidal Upconverting NaYF-4 Nanocrystals Doped with Er~(3+), Yb~(3+) and Tm~(3+),Yb~(3+) via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors [J]. J Am Chem Soc, 2006, 128(23): 6426-6436.
    [26] Zhang P, Steelant W, Kumar M, Scholfield M. Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation [J]. JAm Chem Soc, 2007, 129(15):4526-4527.
    [27] Wang F, Liu XG. Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF_4 Nanoparticles [J]. J Am Chem Soc, 2008,130(17): 5642-5643.
    [28] Zhou ZG, Hu H, Yang H, Yi T, Huang KW, Yu MX, Li FY, Huang CH. Up-conversion Luminescent Switch Based on Photochromic Diarylethene and Rare Earth Nanophosphors [J]. Chem Commun, 2008, (39): 4786-4788.
    [29] Chen ZG, Chen HL, Hu H, Yu MX, Li FY, Zhang Q, Zhou ZG, Yi T, Huang CH. Versatile Synthesis Strategy for Carboxylic Acid-functionalized Upconverting Nanophosphors as Biological Labels [J], JAm Chem Soc, 2008,130(10):3023-3029.
    [30] Rantanen T, P(?)Tckil(?) H, J(?)msen L, Kuningas K, Ukonaho T, L(?)vgren T, Soukka T. Tandem Dye Acceptor Used To Enhance Upconversion Fluorescence Resonance Energy Transfer in Homogeneous Assays [J], Anal Chem, 2007,79(16): 6312-6318.
    [31] Rantanen T, J(?)rvenp(?)(?) M-L, Vuojola J, Kuningas K, Soukka T. Fluorescence-Quenching-Based Enzyme-Activity Assay by Using Photon Upconversion [J]. Angew Chem Int Ed, 2008,47(20): 3811-3813.
    [32] van de Rijke F, Zijlmans H, Li S, Vail T, Raap AK, Niedbala RS, Tanke H J. Up-converting phosphor reporters for nuclei acid microarrays [J]. Nat Biotechnol, 2001,19(3): 273-276.
    [33] Lim SF, Riehn R, Ryu WS, Khanarian N, Tung CK, Tank D, Austin RH. In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans [J]. Nano Lett, 2006, 6(2): 169-174.
    [34] Chatterjee D K, Rufaihah A J, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J]. Biomaterials, 2008,29(7): 937-943.
    [35] Wang LY, Li YD. Controlled Synthesis and Luminescence of Lanthanide Doped NaYF_4 Nanocrystals [J]. Chem Mater, 2007,19(4): 727-734.
    [1] a) Bogdanov Jr AA. Molecular Imaging: An Essential Tool in Preclinical Research, Diagnostic Imaging, and Therapy [M]. Springer, 2004; b) Jaffer FA, Weissleder R. Molecular Imaging in the Clinical Arena [J]. J Am Med Assoc, 2005, 293(7): 855-862; c) Torigian DA, Huang SS, Houseni M, Alavi A. Functional Imaging of Cancer with Emphasis on Molecular Techniques [J]. CA-A Cancer J Clin, 2007, 57(4): 206-224; d) Margolis DJA, Hoffman JM, Herfkens RJ, Jeffrey RB, Quon A, Gambhir SS. Molecular Imaging Techniques in Body Imaging [J]. Radiology, 2007, 245(2): 333-356; e) Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim SJ, Cho EJ, Yoon HG, Suh JS, Cheon JW. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging [J]. Nat Medicine, 2007, 13(1): 95-99.
    [2] a) Ray P, Wu AM, Gambhir SS. Optical Bioluminescence and Positron Emission Tomography Imaging of a Novel Fusion Reporter Gene in Tumor Xenografts of iving Mice [J]. Cancer Research, 2003, 63(6): 1160-1165; b) Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, Keren S, Bentolila LA, Li J, Rao J, Chen X, Banin U, Wu AM, Sinclair R, Weiss S, Gambhir SS. Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living Mice [J]. Small, 2009, 5(1): 126-134; c) Cai W, Chen K, Li Z, Gambhir SS, Chen X. Dual-Function Probe for PET and Near-Infrared Fluorescence Imaging of Tumor Vasculature [J]. J Nucl Med, 2007, 48(11): 1862-1870; d) Chen K, Li Z, Wang H, Cai W, Chen X. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots [J]. Eur J Nucl Mol Imaging, 2008, 35(12): 2235-2244; e) Duconge F, Pons T, Pestourie C, Herin L, Theze B, Gombert K, Mahler B, Hinnen F, Kuhnast B, Dolle F, Dubertret B, Tavitian B. Fluorine-18-Labeled Phospholipid Quantum Dot Micelles for in Vivo Multimodal Imaging from Whole Body to Cellular Scales [J]. Bioconjug Chem, 2008, 19(9): 1921-1926; f) Bhushan KR, Misra P, Liu FB, Mathur S, Lenkinski RE, Frangioni JV. Detection of Breast Cancer Microcalcifications Using a Dual-modality SPECT/NIR Fluorescent Probe [J]. J Am Chem Soc, 2008, 130(52): 17648-17649; g) Sampath L, Kwon S, Ke S, Wang W, Schiff R, Mawad ME, Sevick-Muracal EM. Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor [J]. J Nucl Med, 2007, 48(9): 1501-1510; h) Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R. Nanoparticle PET-CT Imaging of Macrophages in Inflammatory Atherosclerosis [J]. Circulation, 2008, 117(3): 379-387; i) Pandey SK, Gryshuk AL, Sajjad M, Zheng X, Chen Y, Abouzeid MM, Morgan J, Charamisinau I, Nabi HA, Oseroff A, Pandey RK. Multimodality Agents for Tumor Imaging (PET, Fluorescence) and Photodynamic Therapy. A Possible "See and Treat" Approach [J]. JMed Chem, 2005,48(20): 6286-6295.
    [3] a) Prasad PN. Introduction to Biophotonics [M]. Wiley-Interscience: New York, 2003; b) Weissleder R, Pittet MJ. Therapy of Localized Esophageal Cancer: It Is Time to Reengineer Our Investigative Strategies [J]. Nature, 2008, 452(7): 580-589; c) Chen J, Corbin IR, Li H, Cao WG, Glickson JD, Zheng G. Ligand Conjugated Low-Density Lipoprotein Nanoparticles for Enhanced Optical Cancer Imaging in Vivo [J]. J Am Chem Soc, 2007, 129(18): 5798-5799; d) Bhushan KR, Tanaka E, Frangioni JV. Synthesis of Conjugatable Bisphosphonates for Molecular Imaging of Large Animals [J]. Angew Chem Int Ed, 2007, 46(42): 7969-7971; e) Nesterov EE, Skoch J, Hyman BT, Klunk WE, Bacskai BJ, Swager TM. In Vivo Optical Imaging of Amyloid Aggregates in Brain: Design of Fluorescent Markers [J]. Angew Chem Int Ed, 2005,44(34): 5452 -5456.
    [4] a) Periasamy A. Methods in Cellular Imaging [M]. New York: Oxford University Press, 2001; b) Lichtman JW, Conchello JA. Fluorescence microscopy [J]. Nat Methods, 2005, 2(12): 910-919; c) Conchello, JA.; Lichtman JW. Optical sectioning microscopy [J]. Nat Methods, 2005, 2(12): 920-931; d) Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nat. Biotechnology, 2003, 21(11): 1369-1377; e) Evans CL, Potma EO, Puorishaage M, Cote D, Lin C, Xie X. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy [J]. Proc Natl Acad Sci USA, 2005, 102(46): 16807-16812; f) Huang B, Wang W, Bates M, Zhuang X. Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy [J]. Science, 2008, 319(5864): 810-813; g) Duan H, Nie S. Cell-Penetrating Quantum Dots Based on Multivalent and Endosome-Disrupting Surface Coatings [J]. J Am Chem Soc, 2007, 129(11): 3333-3338; h) Zheng J, Ding Y, Tian B, Wang Z, Zhuang X. Luminescent and Raman Active Silver Nanoparticles with Poly crystal line Structure [J]. J Am Chem Soc, 2008, 130(32): 10472-10473. i) Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes [J]. Angew Chem Int Ed, 2008, 47(33): 6172-6176; j) Zhang M, Yu MX, Li FY, Zhu MW, Li MY, Gao YH, Li L, Liu ZQ, Zhang JP, Zhang DQ, Yi T, Huang CH. A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Application to Bioimaging [J]. J Am Chem Soc, 2007, 129(34): 10322-10323.
    [5] a) Adam MJ, Wilbur DS. Radiohalogens for imaging and therapy [J]. Chem Soc Rev, 2005,34(2): 153-163; b) Britz-Cunningham SH, Adelstein SJ. Molecular Targeting with Radionuclides: State of the Science [J]. J Nucl Med, 2003, 44(12): 1945-1961; c) Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice [J]. Nat Nanotechology, 2007, 2(1): 47-52; d) Mankoff DA, Eary JF, Link JM, Muzi M, Rajendran JG, Spence AM, Krohn KA. Tumor-Specific Positron Emission Tomography Imaging in Patients: [~(18) F] Fluorodeoxyglucose and Beyond [J]. Clin Cancer Res., 2007, 13(12): 3460-3469; e) Choi JS, Park JC, Nah H, Woo S, Oh J, Kim K M, Cheon GJ, Chang Y, Yoo J, Cheon J. A Hybrid Nanoparticle Probe for Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging [J]. Angew Chem Int Ed, 2008,47(33): 6259-6262.
    [6] a) Kircher MF, Allport JR, Graves EE, Love V, Josephson L, Lichtman AH, Weissleder R. In Vivo High Resolution Three-Dimensional Imaging of Antigen-Specific Cytotoxic T-Lymphocyte Trafficking to Tumors [J]. Cancer Research, 2003, 63(20): 6838-6846; b) Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S. Drug-Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy In Vivo [J]. Angew Chem Int Ed, 2008, 47(29): 5362-5365; c) Shin J, Anisur RM, Ko MK, Im GH, Lee JH, Lee IS. Hollow Manganese Oxide Nanoparticles as Multifunctional Agents for Magnetic Resonance Imaging and Drug Delivery [J]. Angew Chem Int Ed, 2009, 48(2): 321-324; d). Sun C, Veiseh O, Gunn J, Fang C, Hansen S, Lee DH, Sze R, Ellenbogen RG, Olson J, Zhang MQ. In Vivo MRI Detection of Gliomas by Chlorotoxin-Conjugated Superparamagnetic Nanoprobes [J]. Small, 2008, 4(3): 372-379.
    [7] a) Billinton N, Knight AW. Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence [J]. Anal Biochem, 2001, 291(2): 175-197; b) Troy T, Jekic-McMullen D, Sambucetti L, Rice B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminscent reporters in animal models [J]. Mol Imaging, 2004, 3(1): 9-23; c) Mansfield JR, Gossage KW, Hoyt CC, Levenson RM. Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging [J]. J Biomed Opt, 2005,10(4): 41207.
    [8] a) Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem Soc Rev, 2009, 38(4): 976-989; b) Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids [J]. Chem Rev, 2004, 104(1): 139-173; c) Wang L, Yan R, Hao Z, Wang L, Zeng J, Bao J, Wang X,Peng Q, Li Y. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles [J]. Angew Chem Int Ed, 2005, 44(37): 6054-6057; d) Sivakumar S, van Veggel, FCJM, Raudsepp M. Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln~(3+)-Doped LaF_3 Nanoparticles [J]. J Am Chem Soc, 2005, 127(36): 12464-12465; e) Mai H, Zhang Y, Si R, Yan Z, Sun L, You L, Yan. C High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and Optical Properties [J]. J Am Chem Soc, 2006, 128(19): 6426-6436; f) Boyer JC, Vetrone F, Cuccia LA, Capobianco JA. Synthesis of Colloidal Upconverting NaYF_4 Nanocrystals Doped with Er~(3+), Yb~(3+) and Tm~(3+), Yb~(3+) via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors [J]. J Am Chem Soc, 2006, 128(23): 7444-7445; g) Zhang P, Steelant W, Kumar M, Scholfield M. Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation [J]. J Am Chem Soc, 2007, 129(15): 4526-4527; h) Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, Zhou Z, Yi T, Huang C. Versatile Synthesis Strategy for Carboxylic Acid-functionalized Upconverting Nanophosphors as Biological Labels [J]. J Am Chem Soc, 2008, 130(10): 3023-3029.
    [9] a) Lim SF, Riehn R, Ryu WS, Khanarian N, Tung CK, Tank D, Austin RH. In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans [J]. Nano Lett, 2006, 6(2): 169-174; b) Chatterjee DK, Rufaihah AJ, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J]. Biomaterials, 2008, 29(7): 937-943; c) Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN.High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm~(3+) and Yb~(3+) Doped Fluoride Nanophosphors[J].Nano Lett.,2008,8(11):3834-3838;
    d) Kumar R,Nyk M,Ohulchanskyy TY,Flask CA,Prasad PN.Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF_4 Nanocrystals[J].Adv Funct Mater,2009,19(6):853-859;
    e) Yu M,Li F,Chen Z,Hu H,Zhan C,Yang H,Huang C.Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors[J].Anal Chem,2009,81(3):930-935;
    f) Hu H,Yu M,Li F,Chen Z,Gao X,Xiong L,Huang C.Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels[J].Chem Mater,2008,20(22):7003-7009;
    g) Hu H,Xiong L,Zhou J,Li F,Cao T,Huang C.Multimodal-Luminescence Core-Shell Nanocomposites for Targeted Imaging of Tumor Cells[J].Chem Eur J,2009,15(14):3577-3584.
    [10]a) Das GK,Tan TTY.Rare-Earth-Doped and Codoped Y_2O_3 Nanomaterials as Potential Bioimaging Probes[J].J Phys Chem C,2008,112(30):11211-11217;
    b)Louis C,Bazzi R,Marquette CA,Bridot JL,Roux S,Ledoux G,Mercier B,Blum L,Perriat P,Tillement O.Nanosized Hybrid Particles with Double Luminescence for Biological Labeling[J].Chem Mater,2005,17(7):1673-1682.
    [11]Wang H,Wang Y,Zhou X,Zhou L,Tang J,Lei J,Yu C.Siliceous Unilamellar Vesicles and Foams by Using Block-Copolymer Cooperative Vesicle Templating [J].Adv Funct Mater,2007,17(4):613-617.
    [12]Mahmood U,Tung C,Bogdanov Jr AA,Welssleder R.Near-Infrared Optical Imaging of Protease Activity for Tumor Detection[J].Radiology,1999,213(3):866-870.
    [13]Zhang X,Wang X,Tang Z,Zhang J.Effects of Tween-80 on the biodistribution of several lipophilic technetium-99m complexes[J].Nucl Med Biol,2001,28(3):303-308.
    [14]a) Cai L,Lu S,Pike VW.Chemistry with[~(18)F]Fluoride Ion[J].Eur J Org Chem,2008,2008(17):2853-2873;
    b) Zhang X,Xiong Z,Wu Y,Cai W,Tseng JR,Gambhir SS,Chen X.Quantitative PET Imaging of Tumor Integrin α_vβ_3Expression with ~(18)F-FRGD2[J].J Nucl Mecl,2006,47(1):113-121;
    c) Devaraj NK,Keliher EJ,Thurber GM,Nahrendorf M,Weissleder R.~(18)F Labeled Nanoparticles for in Vivo PET-CT Imaging[J].Bioconjugate Chem,2009,20(2):397-401.
    [15] a) Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R. ~(18)F labeled nanoparticles for in vivo PET-CT imaging [J]. Bioconjug Chem, 2009,20(2): 397-401; b) Pressly ED, Rossin R, Hagooly A, Fukukawa K, Messmore BW, Wooley KL, Welch MJ, Lamm M, Hule R, Pochan DJ, Hawker CJ. Structural Effects on the Biodistribution and Positron Emission Tomography (PET) Imaging of Weil-Defined ^Cu-Labeled Nanoparticles Comprised of Amphiphilic Block Graft Copolymers [J]. Biomacromolecules, 2007, 8(10): 3126-3134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700