用户名: 密码: 验证码:
核酸探针技术用于mRNA检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实时获取RNA合成、转运、表达、定位的信息对分子生物学、病理生理学、药物的开发及疾病的诊断等研究都具有重要的推动作用。核酸荧光分子探针为RNA研究提供了一种强有力的工具,已为我们提供了大量有关RNA的基本信息。但是,如何进一步拓展已有核酸分子探针在生命科学与医学中的应用范围,如何进一步改进或研制新的核酸分子探针来解决生命研究过程中遇到的新问题,如何实时、动态、灵敏、准确地获取生命活动相关信息,仍然是分析化学工作者所面临的重大挑战。
     本论文瞄准上述挑战进行研究,结合分子信标和相邻探针技术建立了一系列检测mRNA的新方法,主要内容包括:
     1.建立了一种直接以mRNA为模板,基于Reverse分子信标检测单碱基突变的新方法。本文以重要的肿瘤相关基因p53为检测对象,利用T4 DNA连接酶的高特异性、以及RNase H对RNA/DNA杂交体中RNA链的降解作用,结合Reverse分子信标技术,发展了一种快速检测靶基因mRNA单碱基突变的新方法。该方法通过比较分析RNase H作用前后样品中荧光信号的变化,确定是否存在单碱基突变。这种方法探针设计简单,避免了反转录、PCR扩增、电泳分离等步骤,检测结果准确,已应用于细胞总RNA提取物中目标基因的单碱基错配检测。
     2.设计合成了超猝灭分子信标。提高分子信标的猝灭效率是优化分子信标检测性能,提高其检测灵敏度的有效途径之一。本文设计、合成、纯化了常规分子信标和超淬灭分子信标,利用基质辅助激光解吸电离飞行时间质谱对产物进行解析,证明其为目标产物。与相同序列的常规分子信标相比,超淬灭分子信标的信背比可达到112,比常规分子信标大约高5倍,信背比的提高主要是通过降低背景信号达到的。研究还表明,与荧光基团相邻的末端为C碱基,或者在探针末端引入与目标互补的序列,也可以提高超猝灭分子信标的检测灵敏度。
     3.建立了基于硫代修饰相邻探针直接检测细胞裂解液中mRNA的新方法。常规相邻探针用于生物样品中核酸检测时,有可能被核酸酶降解而产生假阴性信号。本文设计了一种硫代修饰的相邻探针,并用于细胞裂解液中相关mRNA的检测。结果表明,硫代修饰探针可以有效抵御核酸酶的降解作用,降低假阳性信号及假阴性信号。探针设计简单、灵敏度高、与靶分子作用速度快;检测过程中信号呈逐渐增强模式、可免除洗脱及分离等步骤。
     4.建立了基于分子信标荧光增强速率检测活细胞内mRNA表达的新方法。常规分子信标在活细胞内mRNA表达水平的研究中,由于细胞内核酸酶对分子信标骨架的降解和破坏作用,常导致假阳性信号的产生,对检测结果的准确性影响较大。本文根据肿瘤抑制基因p21序列设计合成分子信标,通过显微操作将其注入p21表达水平存在差异的两种鼻咽癌细胞内,以活细胞成像方式动态检测了分子信标进入鼻咽癌细胞后荧光信号的变化。p21分子信标注入两种细胞后,荧光信号均逐渐增强,约15 min后达到最大值;注入细胞后4 min内,两种细胞间荧光增强速率存在明显差异,该差异反映了p21 mRNA表达水平的变化趋势,与常规逆转录PCR (RT-PCR)结果相符。在使用分子信标进行活细胞内mRNA表达水平的研究中,通过分析荧光增强速率的变化,可有效降低细胞内的酶的影响,提高检测结果的准确性。
     5.建立了基于硫代修饰分子信标检测活细胞内mRNA表达的新方法。本文针对分子信标在活细胞检测中所面临的生物稳定性的关键问题,用可抵御核酸酶切的硫代修饰的DNA设计合成分子信标探针,提高了细胞内检测结果的准确性,同时还可保持常规分子信标高选择性、高灵敏度以及无需对多余探针洗脱的优点。该分子信标已应用于转染GFP基因前后活细胞内靶GFP mRNA的实时检测。
The essential information on RNA synthesis, processing, transport, and localization obtained in real time will offer unprecedented opportunities for advancement in molecular biology, disease pathophysiology, drug discovery, and medical diagnostics. As a powerful tool, nucleic acid probes have been utilized in RNA study and explored wealth of essential information of RNA. However,how to further extend the applications of nucleic acid probes in biology and medicine research, how to develop novel nucleic acid probes to resolve new problems, how to get the dynamic data of these life processes sensitively and accurately in real time are still great challenges to analysts.
     In this dissertation, a series of mRNA detection methods based on molecular beacon and adjacent probe have been developed. The main researches of this dissertation are summarized as follows.
     1. RNA-templated single-base mutation detection based on T4 DNA ligase and reverse molecular beacon. A novel RNA-templated single-base mutation detection method was developed and applied to identification of single-base mutation in codon 273 of the p53 gene taking advantage of the high specificity of T4 DNA ligase and the capability of RNase H to digest RNA in RNA/DNA complex. One-base mismatch can be discriminated by analyzing the change of fluorescence intensity before and after RNase H digestion. This method has several advantages for practical applications, such as ease of design of detection probes; direct discrimination of single-base mismatch of the RNA extracted from cells; no requirement of PCR amplification; and performance of homogeneous detection.
     2. Design and synthesis of the superquencher molecular beacon. Improving the quenching efficiency is one of the useful strategies to improve the signal-to-background ratio and to optimize the sensitivity of the molecular beacon. In this work, normal molecular beacon and superquencher molecular beacon were synthesized and purified using the DNA autosynthesizer and liquid chromatogram.
     The products were identified by MALDI-TOF-MS. Our results showed that, the signal-to-background ratio of superquencher molecular beacon was 112, which is 5 times higher than that of normal molecular beacon with the same sequence. The significantly increased signal-to-background ratio of the superquencher molecular beacon was due to the decreasing of the background signal of the probe. Choosing cytidine as the final nucleotide base next to the fluorophore, or let one arm of molecular beacon be complementary to the target can further increase the signal-to-background ratio of the superquencher molecular beacon.
     3. Detection of nucleic acid in cell lysate using phosphorothioate-modified adjacent probe. In order to eliminate the false-negative signals resulting from nuclease degradation of the convenient adjacent probe in biological sample analysis, phosphorothioate modified adjacent probe was designed and synthesized for mRNA detection in cell lysate. Results showed that phosphorothioate modified adjacent probe can efficiently reduce the false-positive and false-negative signals resulting from nuclease degradation, thus, improving the accuracy in mRNA detection in biological samples. Phosphorothioate modified adjacent probes are easy to design, very sensitive and selective in monitoring nucleic acid targets, easy to hybrid to the target sequence, and allow rapid detection in complex sample matrix. As the light-up signaling approach is used to detect the presence of target sequence, removing of unbound probes are not necessary and tedious washing and separating procedures are avoided.
     4. Monitoring p21 mRNA expression in living cell based on molecular beacon fluorescence increasing rate. The normal molecular beacons tend to generate false positive signals due to nuclease degradation, when used for intracellular mRNA expression level analysis. A specific molecular beacon (p21 MB) for the important tumor suppressor gene p21 has been designed and synthesized. The fluorescence signal was detected in real-time after injecting the p21 MB into nasopharyngeal carcinoma cell and p33-transfected nasopharyngeal carcinoma cell. In both cases, the fluorescence intensities achieved maximum in about 15 minute. However, the fluorescence increasing rate within 4 minutes right after microinjection was significantly different between these two cell lines, indicating different p21 mRNA expression levels. The results obtained in the real-time detection were also validated by RT-PCR. Analysis of the initial fluorescence increasing rate can efficiently reduce the nuclease degradation and improve the accuracy in living cell mRNA detection.
     5. mRNA detection in living cell using phosphorothioate-modified molecular beacon. In order to resolve the intracellular biostability problem of molecular beacons, phosphorothioate modified DNA, which can efficiently improve the nuclease resistance of the backbone of the DNA, were chosen to design and synthesize molecular beacons. Phosphorothioate modified molecular beacon can efficiently improve the accuracy in living cell mRNA detection while keeping the advantages of molecular beacons, such as excellent selectivity, high sensitivity, and without-separation detection, and has been applied in real time detection of GFP mRNA in COS-7 cell and GFP tansfected COS-7 cell.
引文
[1]朱玉贤,李毅.现代分子生物学,第二版.北京:高等教育出版社, 2002: 64-65
    [2] Kennedy D. Breakthrough of the year. Science, 2000, 290(5500): 2255
    [3] Kennedy D. Breakthrough of the year. Science, 2001, 294(5551): 2429
    [4] Couzin J. Breakthrough of the year: small RNAs make big splash. Science, 2002, 298(5602): 2296-2297
    [5] Surani M A. Imprinting and the initiation of gene silencing in the germ line. Cell, 1998, 93(3): 309-312
    [6] Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in caenorhabditis elegans. Nature, 2000, 403(6772): 901-906
    [7] Kozal M J, Shah N, Shen N, et al. Extensive polymorphisms observed in HIV-I clade B protease gene using high-density oligonucleotide arrays. Natrue Medicine, 1996, 2(7): 753-759
    [8] Marton M J, DeRisi J L, Bennett H A, et al. Drug target validation and identification of secondary drug target effect using DNA microarray. Nature Medicine, 1998, 4(11): 1293-1301
    [9]杨吉成,陈子兴.医用分子生物学.北京:化学工业出版社,2003: 4-15
    [10] Hatzimanikatis V,Lee K.Dynamical analysis of gene networks ?requires both mRNA and protein expression information. Metabolic Engineering, 1999, 1(4): 275-281
    [11]江培洲,沈新明,黄华,等.癌基因与抑癌基因的表达研究进展.国外医学?肿瘤学分册, 2001, 28(2): 89-92
    [12] Matthews D J, Kopczynski J. Using model-system genetics for drug-based target discovery. Drug Discovery Today, 2001, 6(3): 141-149
    [13]邢婉丽,程京.生物芯片技术.北京:清华大学出版社, 2004: 2-8
    [14] Kavangh J, Hanania E, Giles R E, et al. Recent advances in the application of genetherapy to human disease. Blood, 1996, 88(suppl 1): 2729
    [15] Fueyo J, Gomez-Manzano C, Yung W K, et al. Adenovirus-mediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. Oncogene, 1996, 12(1): 103-110
    [16] Wei M X, Tamiya T, Hurford J R, et al. Enhancement of interleukin-4-mediatedtumour regression in athymic mice by in situ retroviral gene transfer. Human Gene Therapy, 1995, 6(4): 437-443
    [17] Nam M, Johnston P, Lal B, et al. Endothelial cell-based cytokine gene delivery inhibits 9L glioma growth in vivo. Brain Reasearch, 1996, 731(1-2): 161-170
    [18] Messager M, Carrière C, Bertagna X, et al. RT-PCR analysis of corticotroph-associated genes expression in carcinoid tumours in the ectopic-ACTH syndrome. European Journal of Endocrinology, 2006, 154(1): 159-166
    [19] Mercatali L, Valenti1 V, Calistri D, et al. RT-PCR determination of maspin and mammaglobin B in peripheral blood of healthy donors and breast cancer patients. Annals of Oncology, 2006, 17(3): 424-428
    [20] Bustin S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 2002, 29(1): 23-39
    [21] Reinhold U, Berkin C, Bosserho A K, et al. Interlaboratory evaluation of a new reverse transcriptase polymerase chain reaction-based enzyme-linked immunosorbent assay for the detection of circulating melanoma cells: a multicenter study of the dermatologic cooperative oncology group. Journal of Clinical Oncology, 2001, 19(6): 1723-1727
    [22] Calogero A, Timmer B H, Schraordt K H, et al. Limitations of the nested reverse transcriptase polymerase chain reaction on tyrosinase for the detection of malignant melanoma micrometastases in lymphnodes. British Journal of Cancer, 2000, 83(2): 184-187
    [23] Bieche I, Laurendeau I, Tozlu S, et al. Quantitation of MYC gene expression in sporadic breast tumors with a real-time reverse transcription-PCR assay. Cancer Research, 1999, 59(12): 2759-2765
    [24] Zygalaki1 E, Stathopoulou A, Kroupis C, et al. Real-time reverse transcription -PCR quantification of vascular endothelial growth factor splice variants. Clinical Chemistry, 2005, 51(6): 1518-1520
    [25] Bergqvist J, Ohd JF, Smeds J, et al. Quantitative real-time PCR analysis and microarray-based RNA expression of HER2 in relation to outcome. Annals of Oncology, 2007, 18(5): 845-850
    [26] Bijwaard K E, Aguilera N S, Monczak Y, et al. Quantitative real-time reverse transcription-PCR assay for cyclin D1 expression: utility in the diagnosis of mantle cell lymphoma. Clinical Chemistry, 2001, 47(2): 195-201
    [27] Walker N J. Real time and quantitative PCR: applications to mechanism based toxicology. Journal of Biochemical and Molecular Toxicology, 2001, 15(3): 121-127
    [28] Higo N, Oishi T, Yamashita A, et al. Northern blot and in Situ hybridization analyses of marcks mRNA expression in the cerebral cortex of the macaque monkey. Cerebral Cortex, 2002, 12(5): 552-564
    [29] Higo N, Oishi T, Yamashita A, et al. Northern blot and in situ hybridization analyses for the development of myristoylated alanine-rich c-kinase substrate mRNA in the monkey cerebral cortex. Neuroscience, 2004, 129(1): 167-177
    [30] Bennett M D, Woolford L, O'Hara A J, et al. In situ hybridization to detect bandicoot papillomatosis carcinomatosis virus type 1 in biopsies from endangered western barred bandicoots (Perameles bougainville). Journal of General Virology, 2008, 89(Pt 2): 419-423
    [31] Page K, Hollister R, Tanzi R E, et al. In situ hybridization analysis of presenilin 1 mRNA in Alzheimer disease and in lesioned rat brain. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(24): 14020-14024
    [32] Fahey J M, Pritchard G A, Grassi J M, et al. In situ hybridization histochemistry as a method to assess GABA(A) receptor subunit mRNA expression following chronic alprazolam administration. Journal of Psychopharmacology, 1999, 13(3): 211-218
    [33] Rottman J B. The ribonuclease protection assay: a powerful tool for the veterinary pathologist. Veterinary Pathology, 2002, 39(1): 2-9
    [34] Ilian M A, Gilmour R S, Bickerstaffe R. Quantification of ovine and bovine calpain I, calpain II and calpastatin mRNA by ribonuclease protection assay. Journal of Animal Science, 1999, 77(4): 853-864
    [35] Kasai Y, Hashimoto S, Yamada T, et al. 5'SAGE: 5'-end serial analysis of gene expression database. Nucleic Acids Research, 2005, 33(Database issue): D550-D552
    [36] Pleasance E D, Marra M A, Steven J M, et al. Assessment of SAGE in transcript identification. Genome Research, 2003, 13(6A): 1203-1215
    [37] Mangruma W I, Farassatib F, Kadirvelc R, et al. mRNA expression in rabbit experimental aneurysms: a study using gene chip microarrays. American Journal of Neuroradiology, 2007, 28(5): 864-869
    [38] Misson J, Raghothama KG, Jain A. A genome-wide transcriptional analysisusing Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33): 11934-11939
    [39] Albano C R. High throughput studies of gene expression using green fluorescent protein-oxidative stress promoter probe constructs the potential for living chips. Journal of Biomolecular Screening, 2001, 6(6): 421-428
    [40] Nagino K, Nomura O, Takii Y. Ultrasensitive DNA chip: gene expression profile analysis without RNA amplification. Journal of Biochemistry, 2006, 139(4): 697-703
    [41] Bertrand E C, Pascal S, Matthias S, et al. Localization of ASH1 mRNA particles in living yeast. Molecular Cell, 1998, 2(4): 437-445
    [42] Fusco D, Accornero N, Lavoie B, et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Current Biology, 2003, 13(2): 161-167
    [43] Janicki S M, Tsukamoto T, Salghetti S E, et al. From silencing to gene expression; real-time analysis in single cells. Cell, 2004, 116(5): 683–698
    [44] Shav-Tal Y, Darzacq X, Shenoy SM, et al. Dynamics of single mRNPs in nuclei of living cells. Science, 2004, 304(5678): 1797-1800
    [45] Chubb J R, Trcek T, Shenoy S M, et al. Transcriptional pulsing of a developmental gene. Current Biology, 2006, 16(10): 1018-1025
    [46] Beach D L, Salmon E D, Bloom K. Localization and anchoring of mRNA in budding yeast. Current Biology, 1999, 9(11): 569-578
    [47] Alexis J R, John C, Robert H S, et al. Imaging mRNA movement from transcription sites to translation sites. Seminars in Cell & Developmental Biology, 2007, 18(2): 202-208
    [48] Cha B J, Koppetsch B S, Theurkauf W E. In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell, 2001, 106(1): 35-46
    [49] Tadakuma H, Ishihama Y, Shibuya T, et al. Imaging of single mRNA molecules moving within a living cell nucleus. Biochemical and Biophysical Research Communications, 2006, 344(3): 772-779
    [50] Ainger K, Avossa D, Morgan F, et al. Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. Journal of Cell Biology, 1993, 123(2): 431-441
    [51] F?rster T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annals ofphysics, 1948, 6(2): 57-75
    [52] Mochizuki N, Yamashita S, Kurokawa K, et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature, 2001, 411(6841): 1065-1068
    [53] Haj F G, Verveer P J, Squire A, et al. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science, 2002, 295(5560): 1708-1711
    [54] Orlando C, Pinzani P, Pazzagli M. Developments in quantitative PCR. Clinical Chemistry and Laboratory Medicine, 1998, 36(5): 255-269
    [55] Cummings T J, Brown N M, Stenzel T T. TaqMan junction probes and the reverse transcriptase polymerase chain reaction: detection of alveolar rhabdomyosarcoma, synovial sarcoma, and desmoplastic small round cell tumor. Annals of Clinical and Laboratory Science, 2002, 32(3): 219-224
    [56] Yip S P, To S T, Leung P H M, et al. Use of dual taqman probes to increase the sensitivity of 1-step quantitative reverse transcription-PCR: application to the detection of SARS coronavirus. Clinical Chemistry, 2005, 51(10): 1885-1888
    [57] Oberst R D, Hays M P, Bohra L K, et al. PCR-based DNA amplification and presumptive detection of escherichia coli O157:H7 with an internal fluorogenic probe and the 5' nuclease (TaqMan) assay. Applied and Environmental Microbiology, 1998, 64(9): 3389-3396
    [58] Luderer R, Verheul A, Kortlandt W. Rapid detection of the factor V leiden mutation by real-time PCR with taqman minor groove binder probes. Clinical Chemistry, 2004, 50(4): 787-788
    [59] Shi M M, Myrand S P, Bleavins M R, et al. High throughput genotyping for the detection of a single nucleotide polymorphism in NAD(P)H quinone oxidoreductase (DT diaphorase) using TaqMan probes. Molecular Pathology, 1999, 52(5): 295-299
    [60] Liu H P, Wang H, Tan W H, et al. TaqMan probe array for quantitative detection of DNA targets. Nucleic Acids Research, 2006, 34(1): e4
    [61] Uematsu C, Makino I, Okano K. Real-time detection of PCR products for comparative analysis of expressed genes using module-shuffling Taqman probes (MTPs). Nucleic Acids Symposium Series, 2002, 2(1): 211-212
    [62] Ward L N, Bej A K. Detection of Vibrio parahaemolyticus in shellfish by use of multiplexed real-time PCR with TaqMan fluorescent probes. Applied and Environmental Microbiology, 2006, 72(3): 2031-2042
    [63] Yesilkaya H, Meacci F, Niemann S, et al. A real-time TaqMan polymerase chain reaction for the identification of Culex vectors of West Nile and Saint Louis encephalitis viruses in North America. American Journal of Tropical Medicine and Hygiene, 2007, 77(1): 58-66
    [64] Yesilkaya H, Meacci F, Niemann S, et al. Evaluation of molecular-Beacon, TaqMan, and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed Mycobacterium tuberculosis DNA extracts. Journal of Clinical Microbiology, 2006, 44(10): 3826-3829
    [65] Wang L, Gaigalas A K, Blasic J, et al. Fluorescence resonance energy transfer between donor-acceptor pair on two oligonucleotides hybridized adjacently to DNA template. Biopolymers, 2003, 72(6): 401-412
    [66] Connolly G R, Patel B K. Development of fluorescent adjacent hybridization probes and their application in real-time PCR for the simultaneous detection and identification of fervidobacterium and caloramator. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(Pt5): 1837-1843
    [67] Maruta S, Saitoh J, Asakura T. Analysis of conformational changes at the unique loop adjacent to the ATP binding site of smooth muscle myosin using a fluorescent probe. Journal of Biochemistry, 2000, 127(2): 199-204
    [68] Podkowiński J, Górnicki P. Ribosomal proteins S7 and L1 are located close to the decoding site of E. coli ribosome affinity labeling studies with modified tRNAs carrying photoreactive probes attached adjacent to the 3'-end of the anticodon. Nucleic Acids Research, 1989, 17(21): 8767-8782
    [69] Turin L, Behe P, Plonsky I, et al. Hydrophobic ion transfer between membranes of adjacent hepatocytes: a possible probe of tight junction structure. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(20): 9365-9369
    [70] Mayall F, Barratt K, Shanks J. The detection of Simian virus 40 in mesotheliomas from New Zealand and England using real time FRET probe PCR protocols. Journal of Clinical Pathology, 2003, 56(10): 728-730
    [71] Wang J K, Li T X, Guo X Y, et al. Exonuclease III protection assay with FRET probe for detecting DNA-binding proteins. Nucleic Acids Research, 2005, 33(2): e23
    [72] Abe H, Kool E T. Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proceedings of the NationalAcademy of Sciences of the United States of America, 2006, 103(2): 263-268
    [73] Karadag A, Riminucci M, Bianco P, et al. A novel technique based on a PNA hybridization probe and FRET principle for quantification of mutant genotype in fibrous dysplasia/McCune–albright syndrome. Nucleic Acids Research, 2004, 32(7): e63
    [74] Gustiananda M, Liggins J R, Cummins P L, et al. Conformation of prion protein repeat peptides probed by FRET measurements and molecular dynamics simulations. Biophysical Journal, 2004, 86(4): 2467-2483
    [75] Breen G. Novel and alternate SNP and genetic technologies. Psychiatric Genetics, 2002, 12(2): 83-88
    [76] Tsuji A, Koshimoto H, Sato Y, et al. Direct observation of specific of specific messenger RNA in a single living cell under a fluorescence microscope. Biophysical Journal, 2000, 78(6): 3260-3274
    [77] Tsuji A, Sato Y, Hirano M, et al. Development of a time-resolved fluorometric method for observing hybridization in living cells using fluorescence resonance energy transfer. Biophysical Journal, 2001, 81(1): 501-515
    [78] Sando S, Kool E T. Quencher as leaving group: efficient detection of DNA-joining reactions. Journal of the American Chemical Society, 2002, 124(10): 2096-2097
    [79] Silverman A P, Kool E T. Quenched probes for highly specific detection of cellular RNAs. Trends in Biotechnology, 2005, 23(5): 225-230
    [80] Sando S, Abe H, Kool E T. Quenched auto-ligating DNAs: multicolor identification of nucleic acids at single nucleotide resolution. Journal of the American Chemical Society, 2004, 126(4): 1081-1087
    [81] Sando S, Kool E T. Imaging RNA in bacteria with selfligating quenched probes. Journal of the American Chemical Society, 2002, 124(33): 9686-9687
    [82] Abe H, Kool E T. Destabilizing universal linkers for signal amplification in self-ligating probes for RNA. Journal of the American Chemical Society, 2004, 126(43): 13980-13986
    [83] Abe H, Kool E T. Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(2): 263-268
    [84] Silverman A P, Kool E T. Quenched autoligation probes allow discrimination of live bacterial species by single nucleotide differences in rRNA. Nucleic Acids Research, 2005, 33(15): 4978-4986
    [85] Whitcombe D, Theaker J, Guy S P, et al. Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotechnology, 1999, 17(8): 804-807
    [86] Broude N E. Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology. Trends in Biotechnology, 2002, 20(6): 249-256
    [87] Germer S, Holland M J, Higuchi R. High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Research, 2000, 10(2): 258-266
    [88] Thelwell N, Millington S, Solinas A, et al. Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Research, 2000, 28(19): 3752-3761
    [89] Taveau M, Stockholm D, Spencer M, et al. Quantification of splice variants using molecular beacon or scorpion primers. Analytical Biochemistry, 2002, 305(2): 227-235
    [90] Huang Y P, Kong D M, Chen Q M, et al. Real-time detection of telomerase activity utilizing duplex scorpion primers and hairpin-like reverse primers. New Journal of Chemistry, 2004, 28(12): 1488-1493
    [91] Solinas A, Brown L J, McKeen C, et al. Duplex scorpion primers in SNP analysis and FRET applications. Nucleic Acids Research, 2001, 29(20): e96
    [92] Huang Y P, Kong D M, Yang Y, et al. Real-time quantitative assay of telomerase activity using the duplex scorpion primer. Biotechnology Letters, 2004, 26(11): 891-895
    [93] Cech T R, Zaug A J, Grabowski P J. In vitro splicing of the ribosomal-RNA precursor of tetrahymena-involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell, 1981, 27(3): 487-496
    [94] Cech T R. Ribozymes, the first 20 years. Biochemical Society Transactions, 2002, 30(6): 1162-1166
    [95] Cech T R. Structural biology-The ribosome is a ribozyme. Science, 2000, 289(5481): 878-879
    [96] Kruger K, Grabowski P J, Zaug A J, et al. Self-splicing RNA-auto-excision and auto-cyclization of the ribosomal-RNA intervening sequence of tetrahymena. Cell, 1982, 31(1): 147-157
    [97] Zaug A J, Been M D, Cech T R. The tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature, 1986, 324(6096): 429-433
    [98] Cech T R. RNA Chemistry-ribozyme self-replication. Nature, 1989, 339(6225):507-508
    [99] Been M D, Cech T R. RNA as an RNA-polymerase-net elongation of an RNA primer catalyzed by the tetrahymena ribozyme. Science, 1988, 239(4846): 1412-1416
    [100]詹林盛,王全立,孙红琰.脱氧核酶研究进展.生物化学与生物物理学报, 2002, 29(1): 42-45
    [101] Santoro S W, Joyce G F. A general purpose RNA-cleaving DNA enzyme. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9): 4262-4266
    [102] Santoro S W, Joyce G F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry, 1998, 37(38): 13330-13342
    [103] Feldman A R, Sen D. A new and efficient DNA enzyme for the sequence-specific cleavage of RNA. Journal of Molecular Biology, 2001, 313(2): 283-294
    [104] Harris R S, Petersen-Mahrt S K, Neuberger M S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Molecular Cell, 2002, 10(5): 1247-1253
    [105] Mei S H J, Liu Z J, Brennan J D, et al. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. Journal of the American Chemical Society, 2003, 125(2): 412-420
    [106] Todd A V, Impey H L, Applegate T L, et al. Homogeneous amplification and detection of nucleic acid sequences using DzyNA (TM)-PCR. Clinical Chemistry, 1999, 45(11): 2049-2050
    [107] Todd A V, Fuery C J, Impey H L, et al. DzyNA-PCR: Use of DNAzymes to detect and quantify nucleic acid sequences in a real-time fluorescent format. Clinical Chemistry, 2000, 46(5): 625-630
    [108] Applegate T L, Iland H J, Mokany E, et al. Molecular monitoring of acute promyelocytic leukemia by DzyNA reverse transcription-PCR. Clinical Chemistry, 2002, 48(10): 1858-1860
    [109] Applegate T L, Iland H J, Mokany E, et al. Diagnosis and molecular monitoring of acute promyelocytic leukemia using DzyNA reverse transcription-PCR to quantify PML/RAR alpha fusion transcripts. Clinical Chemistry, 2002, 48(8): 1338-1343
    [110] Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. Journal of the American Chemical Society, 2000, 122(42): 10466-10467
    [111] Lu Y, Liu J W, Li J, et al. New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosensors & Bioelectronics, 2003, 18(5-6): 529-540
    [112] Stojanovic M N, de Prada P, Landry D W. Catalytic molecular beacons. Chembiochem, 2001, 2(6): 411-415
    [113] Breaker R R. Molecular biology-making catalytic DNAs. Science, 2000, 290(5499): 2095-2096
    [114]王青,羊小海,王玲,等.基于脱氧核酶的新型银离子荧光探针.高等学校化学学报, 2007, 28(12): 2270-2273
    [115] Tyagi S, Kramer F R. Molecular beacons.probes that fluoresce upon hybridization. Nature Biotechnology, 1996, 14(3): 303-308
    [116] Tyagi S, Bratu D P, Kramer F R. Multicolor molecular beacons for allele discrimination. Nature Biotechnology, 1998, 16(1): 49-53
    [117] Tyagi S, Marras S A E, Kramer F R. Wavelength-shifting molecular beacons. Nature Biotechnology, 2000, 18(11): 1191-1196
    [118] Tan W H, Wang K M, Drake T J. Molecular beacons. Current Opinion in Chemical Biology, 2004, 8(5): 547-553
    [119] Ameziane N, Seguin C, Borgel D, et al. The-33T -> C polymorphism in intron 7 of the TFPI gene influences the risk of venous thromboembolism, independently of the factor V Leiden and prothrombin mutations. Thrombosis and Haemostasis, 2002, 88(2): 195-199
    [120] Chang H W, Ali S Z, Cho S K, et al. Detection of allelic imbalance in ascitic supernatant by digital single nucleotide polymorphism analysis. Clinical Cancer Research, 2002, 8(8): 2580-2585
    [121] Dubertret B, Calame M, Libchaber A J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnology, 2001, 19(4): 365-370
    [122] El-Hajj H H, Marras S A E, Tyagi S, et al. Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons. Journal of Clinical Microbiology, 2001, 39(11): 4131-4137
    [123] Giesendorf B A, Vet J A, Tyagi S, et al. Molecular beacons: a new approach for semiautomated mutation analysis. Clinical Chemistry, 1998, 44(3): 482-486
    [124] Hodgson D R, Foy C A, Partridge M, et al. Development of a facile fluorescent assay for the detection of 80 mutations within the p53 gene. Molecular Medicine, 2002, 8(5): 227-237
    [125] Kostrikis L G, Tyagi S, Mhlanga M M, et al. Spectral genotyping of humanalleles. Science, 1998, 279(5354): 1228-1229
    [126] Li X, Huang Y, Guan Y, et al. Universal molecular beacon-based tracer system for real-time polymerase chain reaction. Analytical Chemistry, 2006, 78(22): 7886-7890
    [127] Marras S A E, Kramer F R, Tyagi S. Genotyping SNPs with molecular beacons. Methods in Molecular Biology, 2003, 212(1): 111-128
    [128] Mhlanga M M, Malmberg L. Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods, 2001, 25(4): 463-471
    [129] Orru G, Faa G, Pillai S, et al. Rapid PCR real-time genotyping of M-Malton alpha1-antitrypsin deficiency alleles by molecular beacons. Diagnostic Molecular Pathology, 2005, 14(4): 237-242
    [130] O'Shea M K, Ryan M A, Hawksworth A W, et al. Symptomatic respiratory syncytial virus infection in previously healthy young adults living in a crowded military environment. Clinical Infectious Diseases, 2005, 41(3): 311-317
    [131] Maarten L S, Belinda A J G, Jacqueline A M V, et al. Semiautomated DNA mutation analysis using a robotic workstation and molecular beacons. Clinical Chemistry, 2001, 47(4): 739-744
    [132] Heil S G, Lievers K J, Boers G H. Betaine-homocysteine methyltransferase (BHMT): genomic sequencing and relevance to hyperhomocysteinemia and vascular disease in humans. Molecular Genetics and Metabolism, 2000, 71(3): 511-519
    [133] Szuhai K, Ouweland J, Dirks R, et al. Simultaneous A8344G heteroplasmy and mitochondrial DNA copy number quantification in Myoclonus Epilepsy and Ragged-Red Fibers (MERRF) syndrome by a multiplex Molecular Beacon based real-time fluorescence PCR. Nucleic Acids Research, 2001, 29(3): e13
    [134] Durand R, Eslahpazire J, Jafari S, et al. Use of molecular beacons to detect an antifolate resistance-associated mutation in plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2000, 44(12): 3461-3464
    [135] Steemers F J, Ferguson J A, Walt D R, et al. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nature Biotechnology, 2000, 18(1): 91-94
    [136] Li J, Tan W H, Wang K M, et al. Ultrasensitive optical DNA biosensor based on surface immobilization of molecular beacon by a bridge structure. Analytical Sciences, 2001, 17(10): 1149-1153
    [137] Jin Y, Wang K M, Tan W H, et al. Monitoring molecular beacon/DNA interactions using atomic force microscopy. Analytical Chemistry, 2004, 76(19): 5721-5725
    [138] Wang H, Li J, Liu H P, et al. Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film. Nucleic Acids Research, 2002, 30(12): e61
    [139] Li J J, Geyer R, Tan W. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Research, 2000, 28(11): e52
    [140] Fang X H, Li J J, Tan W H. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Analytical Chemistry, 2000, 72(14): 3280-3285
    [141] Biggins J B, Prudent J R, Marshall D J, et al. A continuous assay for DNA cleavage: the application of break lights to enediynes, iron-dependent agents, and nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(25): 13537-13542
    [142] Rizzo J, Gifford L K, Zhang X, et al. Chimeric RNA-DNA molecular beacon assay for ribonuclease H activity. Molecular and Cellular Probes, 2002, 16(4): 277-283
    [143] Tang Z W, Wang K M, Tan W H, et al. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons. Nucleic Acids Research, 2003, 31(23): e148
    [144] Liu L F, Tang Z W, Wang K M, et al. Using molecular beacon to monitor activity of E. coli DNA ligase. Analyst, 2005, 130(3): 350-357
    [145] Tang Z W, Wang K M, Tan W H, et al. Real-time investigation of nucleic acids phosphorylation process using molecular beacons. Nucleic Acids Research, 2005, 33(11): e97
    [146] Bratu D P, Cha B J, Mhlanga M M, et al. Visualizing the distribution and transport of mRNAs in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23): 13308-13313
    [147] Mhlanga M M, Vargas D Y, Fung C W, et al. tRNA-linked molecular beacons for imaging mRNAs in the cytoplasm of living cells. Nucleic Acids Research, 2005, 33(6): 1902-1912
    [148] Santangelo P J, Nix B, Tsourkas A, et al. Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Research, 2004, 32(6): e57
    [149] Nitin N, Santangelo P J, Kim G, et al. Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Research, 2004, 32(6): e58
    [150] Chen A K, Behlke M A, Tsourkas A. Avoiding false-positive signals with nuclease-vulnerable molecular beacons in single living cells. Nucleic Acids Research, 2007, 35(16): e105
    [151] Cui Z Q, Zhang Z P, Zhang X E, et al. Visualizing the dynamic behavior of poliovirus plus-strand RNA in living host cells. Nucleic Acids Research, 2005, 33(10): 3245-3252
    [152] Kloc M, Wilk K, Vargas D, et al. Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes. Development, 2005, 132(15): 3445-3457
    [153] Matsuo T. In situ visualization of messenger RNA for basic fibroblast growth factor in living cells. Biochimica et Biophysica Acta, 1998, 1379(2): 178-184
    [154] Peng X H, Cao Z H, Xia J T, et al. Real-time detection of gene expression in cancer cells using molecular beacon imaging: new strategies for cancer research. Cancer Research, 2005, 65(5): 1909-1917
    [155] Perlette J, Tan W. Real-time monitoring of intracellular mRNA hybridization inside single living cells. Analytical Chemistry, 2001, 73(22): 5544-5550
    [156] Rhee W J, Santangelo P J, Jo H, et al. Target accessibility and signal specificity in live-cell detection of bmp-4 mRNA using molecular beacons. Nucleic Acids Research, 2008, 36(5): e30
    [157] Hagiwara M, Nojima T. Cross-talks between transcription and post transcriptional events within a 'mRNA factory'. Journal of Biochemisty, 2007, 142(1): 11-15
    [158] Santangelo P J, Nitin N, Bao G. Direct visualization of mRNA colocalization with mitochondria in living cells using molecular beacons. Journal of Biomedical Optics, 2005, 10(4): 44025
    [159] Santangelo P J, Nitin N, Laconte L, et al. Live-cell characterization and analysis of a clinical isolate of bovine respiratory syncytial virus, using molecular beacons. Journal of Virology, 2006, 80(2): 682-688
    [160] Sokol D L, Zhang X, Lu P, et al. Real time detection of DNA-RNA hybridization in living cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(20): 11538-11543
    [161] Tyagi S, Alsmadi O. Imaging native Beta-actin mRNA in motile fibroblasts.Biophysical Journal, 2004, 87(6): 4153-4162
    [162] Vargas D Y, Raj A, Marras S A, et al. Mechanism of mRNA transport in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(47): 17008-17013
    [163] Wang A, Salazar A M, Yates M V, et al. Visualization and detection of infectious coxsackievirus replication using a combined cell culture-molecular beacon assay. Applied and Environmental Microbiology, 2005, 71(12): 8397-8401
    [164] Wu Y, Yang C J, Moroz L L, et al. Nucleic acid beacons for long-term real-time intracellular monitoring. Analytical Chemistry, 2008, 80(8): 3025-3028
    [165] Santangelo P, Nitin N, Bao G. Nanostructured probes for RNA detection in living cells. Annals of Biomedical Engineering, 2006, 34(1): 39-50
    [166] Bratu D P. Molecular beacons: Fluorescent probes for detection of endogenous mRNAs in living cells. Methods in Molecular Biology, 2006, 319(1): 1-14
    [167] Ho S P, Bao Y, Lesher T, et al. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nature Biotechnology, 1998, 16(1): 59-63
    [168] Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 2003, 31(13): 3406-3415
    [169] Mathews D H, Burkard M E, Freier S M, et al. Predicting oligonucleotide affinity to nucleic acid targets. RNA, 1999, 5(11): 1458-1469
    [170] Peyret N, Seneviratne P A, Allawi H T, et al. Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. Biochemistry, 1999, 38(12): 3468–3477
    [171] SantaLucia J J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4): 1460–1465
    [172] SantaLucia J J, Allawi H T, Seneviratne P A. Improved nearestneighbor parameters for predicting DNA duplex stability. Biochemistry, 1996, 35(11): 3555-3562
    [173] Sugimoto N, Nakano S, Katoh M, et al. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry, 1995, 34(35): 11211–11216
    [174] Bonnet G, Tyagi S, Libchaber A, et al. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proceedings of the National Academy ofSciences of the United states of America, 1999, 96(11): 6171-6176
    [175] Tsourkas A, Behlke M A, Rose SD, et al. Hybridization kinetics and thermodynamics of molecular beacons. Nucleic Acids Research, 2003, 31(4): 1319-1330
    [176] Marras S A, Kramer F R, Tyagi S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Research, 2002, 30(21): e122
    [177] Arnold S F, Tims E, McGrath B E. Identification of bone morphogenetic proteins and their receptors in human breast cancer cell lines: importance of BMP2. Cytokine, 1999, 11(12): 1031-1037
    [178] Chen W, Martinez G, Mulchandani A. Molecular beacons: a real-time polymerase chain reaction assay for detecting Salmonella. Analytical Biochemistry, 2000, 280(1): 166-172
    [179] Elsayed S, Plewes K, Church D, et al. Use of molecular beacon probes for real-time PCR detection of plasmodium falciparum and other plasmodium species in peripheral blood specimens. Journal of Clinical Microbiology, 2006, 44(2): 622-624
    [180] Feldman S H, Bowman S G. Molecular phylogeny of the pinworms of mice, rats and rabbits, and its use to develop molecular beacon assays for the detection of pinworms in mice. Lab Animal, 2007, 36(9): 43-50
    [181] Gubala A J, Proll D F. Molecular-beacon multiplex real-time PCR assay for detection of Vibrio cholerae. Applied and Environmental Microbiology, 2006, 72(9): 6424-6428
    [182] Gullsby K, Storm M, Bondeson K. Simultaneous detection of Chlamydophila pneumoniae and Mycoplasma pneumoniae using molecular beacons in a duplex real-time PCR. Journal of Clinical Microbiology, 2008, 46(2): 727-731
    [183] Lewin S R, Ribeiro R M, Walters T, et al. Analysis of hepatitis B viral load decline under potent therapy: complex decay profiles observed. Hepatology, 2001, 34(5): 1012-1020
    [184] McKillen J, Hjertner B, Millar A, et al. Molecular beacon real-time PCR detection of swine viruses. Journal of Virological Methods, 2007, 140(1): 155-165
    [185] Shi L, Jung Y J, Tyagi S, et al. Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proceedings of the National Academy of Sciencesof the United states of America, 2003, 100(1): 241-246
    [186] Takács T, Jeney C, Kovács L, et al. Molecular beacon-based real-time PCR method for detection of 15 high-risk and 5 low-risk hpv types. Journal of Virological Methods, 2008, 149(1): 153-162
    [187] Varma-Basil M, El-Hajj H, Marras S A E, et al. Molecular beacons for multiplex detection of four bacterial bioterrorism agents. Clinical Chemistry, 2004, 50(6): 1060-1062
    [188] Vet J A, Majithia A R, Marras S A E, et al. Multiplex detection of four pathogenic retroviruses using molecular beacons. Proceedings of the National Academy of Sciences of the United states of America, 1999, 96(11): 6394-6399
    [189] Xiao G, Chicas A, Olivier M, et al. A DNA damage signal is required for p53 to activate gadd45. Cancer Research, 2000, 60(6): 1711-1719
    [190]章晓波,徐洵,李庆阁,等.分子信标探针用于PCR检测对虾白斑杆状病毒.生物化学与生物物理进展, 2000, 27(3): 277-280
    [191]刘斌,王柯敏,肖志强,等.基于分子信标对肿瘤细胞ING1转录水平调控的定量检测.科学通报, 2006, 51(11): 1264-1268
    [192]王炜,刘斌,李军,等.分子信标研究5-氟尿嘧啶对鼻咽癌HNE1细胞p33ING1基因转录水平的影响.高等学校化学学报, 2006, 27(2): 268-270
    [193]李军,王柯敏,谭蔚泓,等.分子信标荧光探针用于抑癌基因ING1表达产物的定量测定.高等学校化学学报, 2004, 25(3): 421-424
    [194]何丽芳,唐红星,王柯敏,等.分子信标用于p53 mRNA的体外定量检测.化学学报, 2006, 64(11): 1116-1120
    [195] Frei K, Szuhai K, Lucas T, et al. Connexin 26 mutations in cases of sensorineural deafness in eastern Austria. European Journal of Human Genetics, 2002, 10(7): 427-432
    [196] Piatek A S, Telenti A, Murray M R, et al. Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing. Antimicrobial Agents and Chemotherapy, 2000, 44(1): 103-110
    [197] Piatek A S, Tyagi S, Pol A C, et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nature Biotechnology, 1998, 16(4): 359-363
    [198] Rhee J T, Piatek A S, Small P M, et al. Molecular epidemiologic evaluation of transmissibility and virulence of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 1999, 37(6): 1764-1770
    [199] Singer G, Kurman R J, Chang H W, et al. Diverse tumorigenic pathways in ovarian serous carcinoma. American Journal of Pathology, 2002, 160(4): 1223-1228
    [200] Szuhai K, Sandhaus E, Kolkman-Uljee S M, et al. A novel strategy for human papillomavirus detection and genotyping with SybrGreen and molecular beacon polymerase chain reaction. American Journal of Pathology, 2001, 159(5): 1651-1660
    [201] T?pp I, Malmberg L, Rennel E, et al. Homogeneous scoring of single-nucleotide polymorphisms: comparison of the 5'-nuclease TaqMan assay and molecular beacon probes. Biotechniques, 2000, 28(4): 732-738
    [202] Lin S Y, Probert W, Lo M, et al. Rapid detection of isoniazid and rifampin resistance mutations in Mycobacterium tuberculosis complex from cultures or smear-positive sputa by use of molecular beacons. Journal of Clinical Microbiology, 2004, 42(9): 4204-4208
    [203] Varma-Basil M, El-Hajj H, Colangeli R, et al. Rapid detection of rifampin resistance in Mycobacterium tuberculosis isolates from India and Mexico by a molecular beacon assay. Journal of Clinical Microbiology, 2004, 42(12): 5512-5516
    [204] Zhao X, Tapec-Dytioco R, Wang K, et al. Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Analytical Chemistry, 2003, 75(14): 3476-3483
    [205] Raj A, Peskin C S, Tranchina D, et al. Stochastic mRNA synthesis in mammalian cells. PLoS Biology, 2006, 4(10): e309
    [206] Strittmatter W J, Saunders A M, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proceedings of the National Academy of Sciences of the United states of America, 1993, 90(5): 1977-1981
    [207] Halushka M K, Fan J B, Bentley K, et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genetics, 1999, 22(3): 239-247
    [208] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409(6822): 928-933
    [209] Roses A D. Pharmacogenetics and the practice of medicine. Nature, 2000, 405(6788): 857-865
    [210] Michikawa Y, Mazzucchelli F, Bresolin N, et al. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science, 1999, 286(5440): 774-779
    [211] Knight J C, McGuire W, Kortok M M, et al. Accuracy of genotyping of single-nucleotide polymorphisms by PCR-ELISA allele-specific oligonucleotide hybridization typing and by amplification refractory mutation system. Clinical Chemistry, 1999, 45(10): 1860-1863
    [212] Takatsu K, Yokomaku T, Kurata S, et al. A new approach to SNP genotyping with fluorescently labeled mononucleotides. Nucleic Acids Research, 2004, 32(7): e60
    [213] Landegren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detection technique. Science, 1988, 241(4869): 1077-1080
    [214] Howell W M, Jobs M, Gyllensten U, et al. Dynamic allele-specific hybridization: a new method for scoring single nucleotide polymorphisms. Nature Biotechnology, 1999, 17(1): 87-88
    [215] Howell W M, Jobs M, Brookes A J, et al. iFRET: an improved fluorescence system for DNA-melting analysis. Genome Research, 2002, 12(9): 1401-1407
    [216] Kwok P Y. Methods for genotyping single nucleotied polymorphisms. Annual Review of Genomics and Human Genetics, 2001, 2(2): 235-258
    [217] Wabuyele M B, Farquar H, Stryjewski W, et al. Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. Journal of the American Chemical Society, 2003, 125(23): 6937-6945
    [218] Wu Z S, Jiang J H, Shen G L, et al. Highly sensitive DNA detection and point mutation identification: an electrochemical approach based on the combined use of ligase and reverse molecular beacon. Human Mutation, 2007, 28(6): 630-637
    [219] Nilsson M, Antson D O, Barbany G, et al. RNA-templated DNA ligation for transcript analysis. Nucleic Acids Research, 2001, 29(2): 578-581
    [220] Nilsson M, Barbany G, Antson D O, et al. Enhanced detection and distinction of RNA by enzymatic probe ligation. Nature Biotechnology, 2000, 18(7): 791-793
    [221] Chen L, McBranch D W, Wang H L, et al. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proceedings of the National Academy of Sciences of the United states of America, 1999, 96(22): 12287-12292
    [222] Du H, Disney M D, Miller B L, et al. Hybridization-based unquenching of DNA hairpins on au surfaces: prototypical "molecular beacon" biosensors. Journal of the American Chemical Society, 2003, 125(14): 4012-4013
    [223] Maxwell D J, Taylor J R, Nie S. Single-mismatch detection using gold quenched fluorescent oligonucleotides. Nature Biotechnology, 2001, 19(4): 365-370
    [224] Maxwell D J, Taylor J R, Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemical Society, 2002, 124(32): 9606-9612
    [225] Yang C Y J, Lin H, Tan W H. Molecular assembly of superquenchers in signaling molecular interactions. Journal of the American Chemical Society, 2005, 127(37): 12772-12773
    [226] Drake T J, Tan W H. Molecular beacon DNA probes and their bioanalytical applications. Applied Spectroscopy, 2004, 58(9): 269-280
    [227] Li J J, Tan W H. A real-time assay for DNA sticky-end pairing using molecular beacons. Analytical Biochemistry, 2003, 312(2): 251-254
    [228] Tsourkas A, Behlke1 M A, Bao G. Structure-function relationships of shared stem and conventional molecular beacons. Nucleic Acids Research, 2002, 30(19): 4208-4215
    [229] Cook B N, Bertozzi C R. Chemical approaches to the investigation of cellular systems. Bioorganic & Medicinal Chemistry, 2002, 10(4): 829-840
    [230] Xie X S, Yu J, Yang W Y. Living cells as test tubes. Science, 2006, 312(5771): 228-230
    [231] El-Deiry W S, Tokino T, Velculescu V E, et al. WAF1, a potential mediator of p53 tumor suppression. Cell, 1993, 75(4): 817-825
    [232] Dulic V, Kaufmann W K, Wilson S J, et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell, 1994, 76(6): 1013-1023
    [233] Bunz F, Dutriaux A, Lengauer C, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 1998, 282(5393): 1497-1501
    [234] Cheng J, Huang H Y, Pak J, et al. Allelic loss of p53 gene is associated with genesis and maintenance, but not invasion, of mouse carcinoma in situ of the bladder. Cancer Research, 2003, 63(1): 179-185
    [235] Facchinetti M M, Siervi A D, Toskos D, et al. UCN-01-induced cell cycle arrest requires the transcriptional induction of p21waf1/cip1 by activation of mitogen-activated protein/extracellular signal-regulated kinase kinase/extracell-ular signal-regulated kinase pathway. Cancer Research, 2004, 64(10): 3629-3637
    [236] Saiki R K, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, 230(4732): 1350-1354
    [237] Adams M D, Dubnick M, Kerlavage A R, et al. Sequence identification of 2375 human brain genes. Nature, 1992, 355(13): 632-634
    [238] Velculescu V E, Zhang L, Kinzler KW, et al. Serial analysis of gene expression. Science, 1995, 270(5235): 484-487
    [239] Schena M, Shalon D, Davis R W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467-470
    [240] Shah R, El-Deiry W S. p53-Dependent activation of a molecular beacon in tumor cells following exposure to doxorubicin chemotherapy. Cancer Biology & Therapy, 2004, 3(9): 871-875
    [241]方平,蒋利萍.化学修饰在反义寡核苷酸和核酸催化剂的应用.医学分子生物学杂志, 2004, 1(3): 161-164
    [242] Lee L K, Roth C M. Antisense technology in molecular and cellular bioengineering. Current Opinion Biotechnology, 2003, 14(5): 505-511
    [243] Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 2001: 821-890
    [244] Yang C Y J, Martinez K, Lin H, et al. Hybrid molecular probe for nucleic acid analysis in biological samples. Journal of the American Chemical Society, 2006, 128(31): 9986-9987
    [245] Freeman T C, Lee K, Richardson P J. Analysis of gene expression in single cells. Current Opinion Biotechnology, 1999, 10(6): 579-582
    [246] Winter P C, Hickey G I, Fletcher H L. Instant notes in genetics. United Kingdom: BIOS Scientific Publishers Limited, 1998: 283-284
    [247] Li J J, Fang X H, Schuster S M, et al. Molecular beacons: a novel approach to detect protein-DNA interactions. Angewandte Chemie International Edition, 2000, 39(6): 1049-1052
    [248]唐志文,王柯敏,谭蔚泓,等.分子信标用于核酸连接过程的实时检测.科学通报, 2003, 48(6): 567-570
    [249] Marras S A, Tyagi S, Kramer F R. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes. Clinica Chimica Acta, 2006,363(1-2): 48-60
    [250]刘斌,王柯敏,谭蔚泓,等. p33ING1b对鼻咽癌细胞HNE1增殖的影响.中国癌症杂志, 2007, 17(4): 269-272
    [251]萨姆布鲁克,弗里奇,曼尼阿蒂斯.分子克隆实验指南[M],第二版.金冬雁,黎孟枫,等译.北京:科学出版社, 1992: 888-898
    [252] Medley C D, Lin H, Mullins H, et al. Multiplexed detection of ions and mRNA expression in single living cells. Analyst, 2007, 132(9): 885-891
    [253] Wang L, Yang C Y J, Medley C D, et al. Locked nuclei acid molecular beacons. Journal of the American Chemical Society, 2005, 127(45): 15664-15665
    [254] Yang C Y J, Wang L, Wu Y R, et al. Synthesis and investigation of deoxyribonucleic acid/locked nucleic acid chimeric molecular beacons. Nucleic Acids Research, 2007, 35(12): 4030-4041
    [255] Molenaar C, Marras S A, Slats J C M, et al. Linear 2'-O-Methyl RNA probes for the visualization of RNA in living cells. Nucleic Acids Research, 2001, 29(17): e89
    [256] Tsourkas A, Behlke M A, Bao G. Hybridization of 2'-O-methyl and 2'-deoxy molecular beacons to RNA and DNA targets. Nucleic Acids Research, 2002, 30(23): 5168-5174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700