用户名: 密码: 验证码:
染料脱色真菌的筛选与脱色条件的研究头头是
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,关于微生物对染料的脱色及降解进行了广泛的研究,已经有许多可脱色染料的微生物的报道。我们通过富集筛选,从保定市某化工厂废水中分离到7株具有较强脱色效果的真菌。此7株菌分别为密丝明孢曲霉属(Sartorga)、青霉属(Penicillium)、黄丝曲霉属(Talaromyces)、组丝核菌属(Phacodium)、麦氏曲霉属(Magnusia)、曲霉属(Aspergillus)。
     本文研究了碳源、氮源、温度、pH、装液量、染料浓度对脱色率的影响;混合培养对染料的脱色效果,探讨了菌丝球的重复使用及寿命;同时进行了环境条件对拟内孢霉脱色的试验。实验结果如下:
     1.KL-1、10B-1、NG-2以纤维素为碳源时脱色率在90%以上;10B-2以糊精为碳源脱色率达到96.3%。其它菌种以玉米浆为碳源较好。玉米浆、NH_4Cl是多数菌种的良好氮源,但由于玉米浆价格低廉、容易得到,考虑到实际应用,以后的试验采用玉米浆为氮源。
     2.不同的真菌达到最大脱色率时的温度不同,多在25℃~28℃之间具有最佳的脱色效果;KL-1、HL、NG-3、NG-2、10B-2在pH为5的条件下脱色率最高。NG-1、10B-1在pH值为4时脱色率最高;装液量脱色率也有影响,NG-1菌的脱色率随装液量的增加而降低;KL-1、NG-2、NG-3菌在装液量为50ml时脱色率最高,10B-1在90ml时脱色率大幅度下降;KL-1、HL、NG-2、10B-2及NG-3均可耐受高浓度染料。以上菌株对染料的降解率最大只为20.6%,可见大部分为染料吸附,少部分为降解。
     3.混合菌种比单一菌种对染料的耐受性强,对芳胺的最大降解率可达96.39%,对染料的降解率可达100%;菌丝球在重复使用8次后仍有较高的脱色率。
     4.拟内孢霉对偶氮染料酸性黑NG、酸性黑10B、活性红在pH5时具有较好的脱色效果。菌株可以耐受一定的染料浓度并且对重金属Hg~(2+)、Ag~+、Cu~(2+)也有一定的耐受性。
In recent years, a number of studies have been done on some microorganisms which are able to biodegrade and biosorb dyes in wastewater. There are many reports about a wide variety of microorganisms which can decolorize dyes. Seven decolorizing strains are screened from the wastewater of the 3rd chemical factory in Baoding. By classic methods of fungus identification, their taxonomic station had been identified. According to their morphologica characteristics and colony features, two strains of them belong to Apergillus ,the others belong to Penicillium , Phacodium, Magnusia, Sartorya, Talaromyces. The seven fungus could mainly biosorb dyes but not biodegradate.
    The paper studied carbon resource, nitrogen resource, temperature, pH, volume of culture, and concentration of dyes on decolorization rate. At the same time, the test of reusing fungus pellet and the effect of environment condition on endomycopsi.sp. were studied too. The results showed:
    l.The strain of KL-l,10N-l,NG-2 could utilize cellulose as carbon source and the decolorization rates were above 90%.Dextrin was used as the carbon source by 10B-2 and decolorization rate was 96.3%.The other strains' carbon source is com steep liquor. The effect of NHUCl and corn steep liquor were better than others as nitrogen resources, but corn steep liquor was cheaper. Then the following test, com steep liquor was used as nitrogen resources.
    2.When the temperature was between 25?-28?, most strains showed the best decolorizing result. Different strains had different optimum pH. The optimum pH of KL-1,HL,NG-3,MG-1,10B-1 was 5;NG-1 and 10B-1 was 4. With the volume of culture increased, the decolorization rate of NG-1 was decreased. When the volume of KL-l,NG-2,NG-3 was 50ml, the decolorization rate was the highest. The
    
    
    ___________________________________________Abstract____________________________________________
    decolorization rate was decreased mostly when the volume of culture was
    90ml.KL-l,HL,NG-2,10B-2 and NG-3 could endure higher dyes' concentration. The
    best result of biodegrade rate was only 20.6%,which showed the effect was mainly
    caused by biosorb, not by biodegrade.
    3.The endurance ability of Mixed strains was better than single strains. The max biodegrade rate
    to aromatic amine compound was 96.39%, and 100% to dyes. The decolorization rate of
    reusing fungus pellet was still higher after being used 8 times.
    4.The decolorization rate of endomycopsi.sp. to acid black NG, acid black 10B and
    active red was best at pHS.O.The strain could endure higher concentration of dyes and
    Hg2+. Ag+. Cu2+. heavy metal ions.
引文
[1] Walker, G. M. and weatherley, 1.r. (2000) Biodegradation and biosorption of acid anthraquinone dye. Environmental. pollution, 108: 219-223.
    [2] Youssef, B. M. (1993) Adsorption of acid dyes by cellulose derivatives. A. M. dyest. Rep., 82: 30-33.
    [3] Sumathi, S. and Manju, B. S. (2001) Fungal mediated decolorization of media containing procion dyes. water sci. Technol. 43: 285-290.
    [4] [日]精细化学品辞典编辑委员会编,禹茂章等译,精细化学品辞典,北京:化学工业出版社,1989.
    [5] Vaidya A A, Datye K V., Environmental pollution during chemical processing of synthetic fibers, Colourate, 1982, 14: 3-10.
    [6] Weber E J, Stickney V C, Hydrolysis kinetics of reactive blue 19-vinyl sulfone, Wat. Res., 1993, 27:63-67.
    [7] 北京市环境保护科学研究所编,水污染防治手册,上海:上海科学技术出版社,1989.
    [8] 彭天杰等编,工业污染治理技术手册,成都:四川科学技术出版社,1985.
    [9] Nagarathnamma R, Bajpal P, Decolorization and detoxification of Extraction-stage Effluent fromChlorine Bleaching of Kraft pulp by Rhizopus
    [10] Patricio P Z, Degradation of reactive dyes Ⅰ. A comparative study of ozonation, enzymatic and photochemical process, Chemosphere, 1999, 38(4): 835-852.
    [11] Herrera F et al. Photochemical decolorization of Remazol Brilliant Blue and Uniblue A in the presence of Fe~(3+) and H_2O_2. Envron. Sci. Technol., 1999, 33: 3145-3151.
    [12] Fung P C. Cleaner technologies of organic wastewater in Hong Kong dyeing and finishing factories. Research report of the Hong Kong
    
    Polytechnic University, Hong Kong, 1997.
    [13] 杨智宽,韦进宝编著,污染控制化学,武汉大学出版社,1998.
    [14] AL-Degs Y et al. Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. War. Res., 2000, 34(3): 927-935.
    [15] Chen L C. Effect of factors and interacted factors on the optimal decolorization process of methyl orange by ozone. Wat. Res., 2000, 34(3): 974-982.
    [16] Pak, Chang W. Decolorizing dye wastewater with low temperature catalytic oxidation, Wat. Sci. Tech., 1999, 40(4-5): 115-121.
    [17] Chippindale, c. and Tacon, P. S. C., The Archaeology of Rock-Art. 1998: Cambridge University press.
    [18] Chang, k. t, stevens, S. E. J. and cerniglia, C. E(1992) The reduction of azo dyes by the intestinal microflora. crit Rev. Microbial., 18: 175-197.
    [19] 董新姣.三株染料脱色优势菌的分离与鉴定.温州师范学院学报,2000,21(3):42-43.
    [20] 李蒙英,孟祥勋,王雪峰.青霉菌(penicilluim sp)对三种活性染料的吸附和降解.中国环境科学,2001,21(5):449-452.
    [21] Lesley, D.. Potential of a fungus Acremoniu sp. to decolorize pulp mill effluent, 1993, M. Sc. Thesis, Oregon state university, USA.
    [22] Eaton, D. Chang, H. M., et al. Fingul decolorization of kraft bleach plant effluent. Tappi J., 1980, 63: 103-109
    [23] Wong, Y., YU, J.. Laccase-catalyzed decolorization of synthetic dyes. Water Res., 1999, 33(16): 3512-3520
    [24] Knapp, J. S, Newby, P. S.. The decolorization of a chemical industry effluent by white rot fung. Water Res., 1999. 33(2): 575-577
    [25] Yesilada, O., Fiskin, K.. et. al. The use of white rot fungus Funalia trogii for the decolorization and phenol removal from olive mill wastewater. Enoiron. Technol.,1995, 16: 95-100
    
    
    [26] Eaton, D. Chang, H.M., et al. Fingul decolorization of kraft bleach plant effluent. Tappi J., 1980, 63: 103-109
    [27] 冯红,张义正.木质素过氧化物酶基团5端上游调控序列的分析.生物化学与生物物理学报,1999,31(6):669-674
    [28] 赵春芳,胡倒伟.偶氮金属络合染料的微生物脱色研究.武汉化工学院学报,2001,23(3):18-25
    [29] 郑金来,李君文.生物降解常见染料的研究进展.环境污染治理技术与设备,2000,1(3):39-43
    [30] Graca, M.B. Soares, M.T. et al. Study on the biotransformation of novel disazo dyes by Laccase. Process Biochemistry, 2002, 37: 581-587
    [31] 程永前,黄民生.白腐真菌对染料脱色及降解过程机理和影响因素.环境污染治理技术与设备,2000,1(6):25-34
    [32] 陈叶福,郭雪娜.木质素生物降解与纸浆工业废水脱色.工业微生物,2001,31(4):49-53
    [33] S.B. Pointing et. al. Dye decolorization by sub-tropical basidiomycetous Microbiol. Biotechnol, 2000, 16: 199-205
    [34] Spadaro, J.T.,Gold, M.H..Renganathan, V..Degradation of azo dyes by the Lignini-degrading fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol., 1992, 58(8): 2397-2401
    [35] Knapp, J.S.,Newby, P.S..Decolorization of dyes by wood-rotting basidiomycete fungi. Enzyme and Microbial Technol., 1995, 17: 664-668
    [36] Zhang. F. Knapp,J.S..et al. Decolorization of cotton bleaching effluent with wood rotting fungus. Water Res., 1999, 33(4): 919-928
    [37] 程永前,黄民生.白腐真菌煤渣生物膜反应器对染料的脱色实验研究.水处理技术,2001,27(6):322-325
    [38] 刘小涛,郭卫兵,阎韶鹃,等.纺织印染废水治理工程设计[J].环境污染治理技术与设备,2002,3(1):77-78
    [39] Pasti-Grigsby, M.B. Paszcczynski, A., Goszczynski, S. Crawford, D.L. Infl-uence ofaromatic substitution patterns on azo dye degradability by
    
    streptomyces spp. And Phanerochaete chrysosporium. Appl. Enciron. Microbiol. 1992, 58(11): 3605-3613.
    [40] Lankinen, V.P., Inkeroimen, M.M., Pellinen, J., Hatakka, A.I., The onset of ligni-modifing enzymes, decrease of aox and color removal by witer-rot fungi grown on bleach plant effluents, Water Sci. rechno, 1991, 24(3/4): 189-198.
    [41] Gadd, G.M., Biosorption. Chemistry and Industry, (No. 13)1990(7), 421-426.
    [42] Brady, D. Stoll, A., Duncan, J.R., Biosorption of heavy metal action by non-viable yeast biomass, Environ. Technol.,1994, 15: 428-438.
    [43] Kapoor, A., Viraraghavan, J., Fungal biosortion-an alternative treatment option for heavy metal bearing wastewater: a review, Bioresource Technol. 1995, 53: 195-206.
    [44] Lesley, D.. Potential of a fungus Acremoniu sp. to decolorize pulp mill effluent, 1993, M. Sc. Thesis, Oregon state university, USA.
    [45] Miranda, M.P., Benito, G.G., Cristobal, N.S., Nieto, C.H., Color elimination from molasses wastewater by Aspergillus niger, Bioresource Technol., 1996, 57: 229-235.
    [46] Ryu, B.H., Weon, Y.D., Decolorization of azo dyes by Aspergillus Sojae B-10, J. Microbioa. Biotechnol., 1992, 2: 215-219.
    [48] Knapp, J.S. Newby, P.S. Reece, L.P., Decolorization of dyes by woodrotting basidiomycete fungi, Enzyme and Microbial. Technol. 1995, 17: 664-668.
    [49] Vasdev, K., Kuhad, R.C., Saxena, R.K., Decolorization of triphenylmetbane dyes by the bird's nest fungus cyathus bulleri, Current Microbiol, 1995, 30: 269-272.
    [50] Ryu, B.H., Weon, Y.D., Decolorization of azo dyes by Aspergillus Sojae B-10, J. Microbioa. Biotechnol.,1992, 2: 215-219.
    [52] Mou, D.G., Lim, K.K., Shen, H.P., Microbial agents for decolorization of
    
    dye wastewater, Biotechnol. Adv. 1991, 9: 613-622.
    [53] Raghukumar, C., Chandramohan, D., MichelJr. F.C., Reddy, C.A.. Degradation of lignin and decolorization of paper mill bleach plant effluent (BPE) by marine fungi, Biotechnol. Lett.,1996, 18(1): 105-106.
    [54] Lankinen, V.P., Inkeroimen, M.M., Pellinen, J., Hatakka, A.I., The onset of ligni-modifing enzymes, decrease of aox and color removal by wirer-rot fungi grown on bleach plant effluents, Water Sci. Techno, 1991, 24(3/4): 189-198.
    [55] Brahimi-Horn, M.C., Lim, Liany, S.L., Mou, D.G., Bindign of textile azo dyes by Mirothecium verrucaria orange Ⅱ, 10B(b?ue)andRs(red) azo dye uptake for textile wasewater decolorization, J. Ind. Microbiol., 1992, 10: 245-261.
    [56] Young, L., Yu, J. Liginase-catalyzed decolorization of synthetic dyes, Water Res., 1997, 31(5): 1187-1193.
    [57] Pasti-Grigsby, M.B., Paszcczynski, A., Goszczynski, S., Crawford, D.L. In fluene of aromatic substitution patterns on azo dye degradability by streptomyces spp. and phanerochaete chrysosporium. Appl. Enciron. Microbiol. 1992, 58(11): 3605-3613.
    [58] Pallerla, S., Chambers, R.P., Characterization of a Ca-alginae immobilized Trametes versicolor bioreactor for decolorization and aox reduction of paper mill effluents, Bioresource Technol. 1997, 60: 1-8.
    [59] 董新娇,陈珠,杜志游.无花果曲霉对直接冻黄(G)的脱色特性研究,城市环境与城市生态,2001,14(1):1-3.
    [60] G.S. Nyanhongo, J. Gomes, G.M. GUBITZ, Decolorization of texitile dyes by laccase from a newly isolated strain of Trametes modesta, Water Research, 2002, 36: 1449-1456.
    [61] Zuoxing zheng, Rpbert E. Levin, Jemifer L Pinkham, et al. Decolorization of polymeric dyes by a novel Penicillium isolate, Process
    
    Biochemistry, 1999, 34: 31-37.
    [62] 董新娇,张峰,郑建铭.曲霉WZ-1对染料脱色的研究,海南大学学报(自然科学版),2000,18(1):50-53.
    [63] 李孱,白景华,刘幼其.温特曲霉HD-1的鉴定及对氧蒽类染料脱色特性的研究,菌物系统,1999,18(1):67-72.
    [64] M.A.M. Martins, M.H. Cardoso, M.J. Queiroz, et al. Biodegradation of azo dyes by the yeast Candida zeylanoides in batch aerated cultures. Chemosphere, 1999, 38(11): 2455-2460.
    [65] Fu.Y., Viraraghavan, T.. Rmoval of a dye from an aqueous solution by funfus Aspergillus niger, water Qual. Res. J. Canada, 2000, 35(1): 95-111.
    [66] Polman, J.K., Breckenridge, C.R., Biomas-mediated binding and recovery of textile dyes from waste effluents, Textile Chemist and Colorist, 1976, 28(4): 31-35.
    [67] Mittal, A.K., Gupta, S.K, Biosorption of cationic dyes by dead macro fungus Fomitopsis carnea: batch studies, Water Sci. Technol., 1996, 34(140): 81-87.
    [68] Gallagher, K.A., Healy. M.G., Allen, S.J., Biosorption of synthetic dye and metal ions from aqueous effluents using fungal biomass. In: wise, D.L. (Ed), global Environmental biotechnology. Elsevier, uk, 1997, 27-50.
    [69] Tatarko, M., Bumpus, J.A., Biodegradation of Congo Red by Phanerochaete chrysosporium, Water Res., 1998, 32(5): 1713-1717.
    [70] 辛宝平,邹其猛,庄源益等.吸附菌GX2对活性艳蓝KN-R的脱色作用研究,环境科学学报,2000,20(增):97—102.
    [71] 李慧蓉,黄孢原毛平革菌对两种双偶氮染料的脱色降解,染料工业,1999,36(2):42-47.
    [72] 戴芳澜.真菌的形态和分类.北京:科学出版社,1987.
    [73] 中国科学院微生物研究所编.菌种保藏手册.北京:科学出版社,1980.
    [74] 张波,白云峰,朱斌.两株细菌对偶氮染料活性艳红X-3B脱色的研究.山西
    
    大学学报(自然科学版)21(1):77-79,1998.
    [75] Cripps C, Bumpus J A, Aust S D. Biodegradation of azo dyes and heterocyclic dyes by Phanerochaete chrusosporium. Appl Environ Microbiol, 56(4): 1114-1118(1990)
    [76] Bumpus J A. Microbiol degradation of azo dyes. In: Biotransformation: Microbial Degradation of Health Risk Compounds, V P Singh(Ed), E-lsevier Science B V, Netherland, 157-176(1995)
    [77] 李慧蓉.黄孢原毛平革菌对两种双偶氮染料的脱色降解[J].染料工业,1999,36(2):42—47
    [78] 魏景超.真菌鉴定手册.上海:上海科学技术出版社,1979.
    [79] 南京大学《无机及分析化学实验》编写组.无机及分析化学实验(第三版).1998.
    [80] 环境环保局《水和废水监测分析方法》编委会主编,水和废水监测分析方法(第二版),中国环境科学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700