用户名: 密码: 验证码:
改性茶叶对工业废水的吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据茶叶中含有大量的吸附活性中心,如-OH,=NH,>C=C <,>C=O,二氮杂环及多元酚类等,这些基团在适宜条件下与金属离子发生不同反应,即可将金属离子吸附在茶叶上,并且多元酚类物质具有活性羟基,可使多种金属离子沉淀,用甲醛处理后发生酚醛缩合,既提高了物理吸附能力又增强了化学吸附能力,探讨了改性茶叶吸附Fe3+的最佳工艺条件、吸附动力学及吸附热力学等,在最佳工艺条件下,制备了新型吸附剂茶叶质铁,然后考察了茶叶质铁对模拟工业废水(苯酚废水、萘酚废水、活性嫩黄K-6G废水和活性艳红K-2BP废水)的吸附性能、吸附活化能及吸附热力学参数等。主要的实验结果如下:
     1、考察改性茶叶吸附Fe3+的吸附性能、热力学及动力学
     最佳吸附工艺条件:Fe3+初始浓度大于1.40mol/L时,溶液吸附温度范围为50-60℃,调节溶液pH为0.8-0.9之间;吸附60min基本达到饱和,饱和吸附量可达到863mg/g。改性茶叶吸附Fe3+很好的符合Langmuir等温吸附方程,热力学参数吸附自由能变ΔG<0,吸附焓变ΔH=340.61 J/mol,吸附熵变ΔS=1.18 J/mol·K;改性茶叶吸附水溶液中Fe3+的反应动力学过程均很好地符合准二级吸附速率方程,反应活化能Ea=28.41kJ/mol,活化能较小,表明改性茶叶吸附水溶液中Fe3+是容易进行的吸热过程。
     2、考察茶叶质铁对模拟苯酚废水的吸附性能、热力学及动力学
     最佳吸附工艺条件:最佳溶液pH为9.0;吸附温度为50℃,在吸附60min吸附量最大,当溶液初始浓度为200mg/L时,吸附都达到了饱和,饱和吸附量为4.78mg/g。茶叶质铁吸附苯酚的过程符合Langmuir等温吸附方程,热力学参数吸附自由能变AG<0,吸附焓变ΔH=38.10kJ/mol,吸附熵变ΔS=0.15kJ/mol·K;茶叶质铁吸附苯酚的吸附动力学反应级数为2,反应活化能Ea=92.04kJ/mol。
     3、考察茶叶质铁对模拟萘酚废水的吸附性能、热力学及动力学
     最佳吸附工艺条件:最佳溶液pH为11.0;吸附温度为50℃,在吸附120min吸附量最大,当溶液初始浓度为900mg/L时,吸附都达到了饱和,饱和吸附量为21.24mg/g。茶叶质铁吸附苯酚的过程符合Langmuir等温吸附方程,热力学参数吸附自由能变AG<0,吸附焓变ΔH=9.86kJ/mol,吸附熵变ΔS=0.053kJ/mol·K;茶叶质铁吸附萘酚的吸附动力学反应级数为2,反应活化能Ea=35.49kJ/mol。
     4、考察茶叶质铁对模拟活性嫩黄K-6G废水的吸附性能、热力学及动力学
     最佳吸附工艺条件:最佳溶液pH为0.5;吸附温度为60℃,在吸附11h吸附量最大,当溶液初始浓度为500mg/L时,吸附都达到了饱和,饱和吸附量为23.56mg/g。茶叶质铁吸附活性嫩黄K-6G的过程符合Langmuir等温吸附方程,热力学参数吸附自由能变ΔG<0,吸附焓变ΔH=57.12kJ/mol,吸附熵变ΔS=0.22kJ/mol·K;茶叶质铁吸附活性嫩黄K-6G的吸附动力学反应级数为1,反应活化能Ea=48.91 kJ/mol。
     5、考察茶叶质铁对模拟活性艳红K-2BP废水的吸附性能、热力学及动力学
     最佳吸附工艺条件:最佳溶液pH为0.8;吸附温度为50℃,在吸附120min吸附量最大,当溶液初始浓度为2000mg/L时,吸附都达到了饱和,饱和吸附量为95.32mg/g。茶叶质铁吸附活性艳红K-2BP的过程符合Langmuir等温吸附方程,热力学参数吸附自由能变ΔG<0,吸附焓变ΔH=16.49kJ/mol,吸附熵变ΔS=0.074KJ/mol·K;茶叶质铁吸附活性艳红K-2BP的吸附动力学反应级数为1,反应活化能Ea=44.13 kJ/mol。
A large number of adsorption active sites were contained on the tea, such as-OH,=NH,> C=C<,> C=O,2-aza-ring and multi-phenols, etc.. These groups reacted with metal ions in appropriate conditions, for example, metal ions could be adsorbed on the tea. Metal ions also could be precipitated because of polyhydric phenol with active hydroxyl. The physical and chemical adsorption capacities were enhanced after treated with phenolic formaldehyde condensation by formaldehyde. The main content was described as follows:adsorption kinetics, adsorption thermodynamics and the adsorption conditions of Fe3+ with modified tea, The new kind of adsorbent of Tea-Fe(Ⅲ) was synthesized under suitable condition. In addtion adsorption capacity, adsorption activation energy and adsorption thermodynamic parameters were studied on industrial wastewater (phenol wastewater naphthol wastewater, Reactive Yellow K-6G wastewater and Reactive Brilliant Red K-2BP wastewater) removal using Tea-Fe(Ⅲ). The main results obtained were as follows:
     1. Investigation of modified tea on adsorption capacity, adsorption kinetics and adsorption thermodynamics with Fe3+
     The optimal conditions were the initial concention of Fe3+ larger than 1.40 mol/L, the reaction temperature 50-60℃, pH 0.8-0.9; adsorption 60 min reaching to saturation, the saturated adsorption capacity 863mg/g. The adsorption behavior of modified tea with Fe3+ showed a good fit with Langmuir isotherm equation, Thermodynamic parameters of Gibbs free energy(AG) was less than zero. Enthaly of adsorption (AH) value was 340.61J/mol and the entropy (ΔS) value was 1.18 J/mol·K. The dynamic adsorption model of modified tea on Fe3+ ions was well accorded with quasi-second dynamic equation. The activation energy (Ea) was determined to be only 28.74 kJ/mol, indicated that the adsorption is endothermic process.
     2. Investigation of adsorption capacity, adsorption kinetics and adsorption thermodynamics of simulated phenol wastewater onto Tea-Fe(Ⅲ)
     The optimum conditions of adsorption technology were as follows: pH 9.0, the temperature 50℃, adsorption time 60 min. If the initial concention of phenol wastewater was 200mg/L, the saturated adsorption capacity was 4.78 mg/g on the above conditions. The adsorption behavior of Tea-Fe(Ⅲ) with phenol shows a good fit with Langmuir isotherm equation, Thermodynamic parameters of Gibbs free energy(ΔG) was less than zero. Enthaly of adsorption (ΔH) value was 38.10 kJ/mol and the entropy (ΔS) value was 0.15 kJ/mol·K. The dynamic adsorption model of Tea-Fe(Ⅲ) on phenol was accorded with the character of the second-order reaction, and the activation energy (Ea) was determined to be 92.04 kJ/mol.
     3. Investigation of adsorption capacity, adsorption kinetics and adsorption thermodynamics of simulated naphthol wastewater onto Tea-Fe(Ⅲ)
     The optimum conditions of adsorption technology were as follows: pH 11.0, the temperature 50℃, adsorption time 120min. If the initial concention of phenol wastewater were 900 mg/L, the saturated adsorption capacity was 21.24 mg/g on the above conditions. The adsorption behavior of Tea-Fe(Ⅲ) with naphthol shows a good fit with Langmuir isotherm equation, Thermodynamic parameters of Gibbs free energy(ΔG) was less than zero. Enthaly of adsorption (ΔH) value was 9.86 kJ/mol and the entropy (ΔS) value was 0.053 kJ/mol·K. The dynamic adsorption model of Tea-Fe(Ⅲ) on naphthol was accorded with the character of the second-order reaction, and the activation energy (Ea) was determined to be 35.49 kJ/mol.
     4. Investigation of adsorption capacity, adsorption kinetics and adsorption thermodynamics of simulated Reactive Yellow K-6G wastewater onto Tea-Fe(Ⅲ)
     The optimum conditions of adsorption technology were as follows: pH 0.5, the reaction temperature 60℃, adsorption time 11h. If the initial concention of Reactive Yellow K-6G wastewater was 500 mg/L, the saturated adsorption capacity was 23.56 mg/g on the above conditions. The adsorption behavior of Tea-Fe(Ⅲ) with Reactive Yellow K-6G shows a good fit with Langmuir isotherm equation. Thermodynamic parameters of Gibbs free energy(ΔG) was less than zero. Enthaly of adsorption (ΔH) value was 57.12 kJ/mol and the entropy (ΔS) value was 0.22 kJ/mol·K. The dynamic adsorption model of Tea-Fe(Ⅲ) on Reactive Yellow K-6G was accorded with the character of the first-order reaction, and the activation energy (Ea) was determined to be 48.91 kJ/mol.
     5. Investigation of adsorption capacity, adsorption kinetics and adsorption thermodynamics of simulated Reactive Brilliant Red K-2BP wastewater onto Tea-Fe(Ⅲ)
     The optimum conditions of adsorption technology were as follows: pH 0.8, the reaction temperature 50℃, adsorption time 120 min. If the initial concention of Reactive Brilliant Red K-2BP wastewater 2000mg/L, the saturated adsorption capacity was 95.32 mg/g on the above conditions. The adsorption behavior of Tea-Fe(Ⅲ) with Reactive Brilliant Red K-2BP shows a good fit with Langmuir isotherm equation. Thermodynamic parameters of Gibbs free energy(ΔG) was less than zero. Enthaly of adsorption (ΔH) value was 16.49 kJ/mol and the entropy (ΔS) value was 0.074 kJ/mol·K. The dynamic adsorption model of Tea-Fe(Ⅲ) on Reactive Brilliant Red K-2BP was accorded with the character of the first-order reaction, and the activation energy (Ea) was determined to be 44.13 kJ/mol.
引文
[1]林俊雄.硅藻土基吸附剂的制备、表征及其染料吸附特性研究[D].浙江:浙江大学,2007.
    [2]朱世云,李道棠.有机染料废水处理研究进展[J].上海环境科学,2000,19(8):396-398.
    [3]汪学军,徐莉,汪培文.染料工业废水处理研究进展[J].化学工业与工程技术,2003,24(4):39-41.
    [4]魏宏斌等.水中有机污染物物理、化学处理技术的现状及发展趋势[J].上海环境科学,1997,16(4):15-18.
    [5]卢文森.高浓度制药有机废液的焚烧处理[J].化工环保,1985,5(2):73-77.
    [6]李茵.染料废水处理技术的研究进展[J].化工时刊,2005,19(10):60-63.
    [7]程云,周启星,马奇英,王颖慧.染料废水处理技术的研究与进展[J].环境污染治理技术与设备,2003,4(6):5660.
    [8]范洪波,孙晓娟,吴卫忠,常杰云,王晋.难降解染料废水处理方法的研究进展[J].江苏石油化工学院学报,2002,14(1):61-64.
    [9]刘冬莲.染料废水处理方法的研究进展[J].河南化工,2004,(12):5-7.
    [10]贾金平,申哲民.含染料废水处理方法的现状与进展[J].上海环境科学,2000,19(1):26-29.
    [11]王红梅,郑振辉.新型吸附剂在染料废水处理中的应用[J].浙江化工,2005,36(7):18-20.
    [12]耿锋,戴海平.膜法染料废水处理及膜污染的防治[J].环境技术,2005,(2):43-45.
    [13]冯冰凌,叶菊招,郎雪梅等.聚氨基葡糖超滤膜的研制及其在印染水处理中的应用[J].工业水处理,1998,18(4):16-18.
    [14]王振余,郭树才.炭膜处理染料水溶液的研究[J].膜科学与技术,1997,17(5):7-10.
    [15]骆广生,吕阳成,江伟斌,朱慎林.电泳萃取技术用于回收染料[J].环境保护,1999,(1):14-15
    [16]PanditP.,BasuS.Removal of organic dyes from water by liquid-liquid extraction using reverse micelles.Journal of Colloid and Interface Science,2002, 245(1):208-214.
    [17]Horrng J Y, Huang S D, Removal of Organic Dyc(Direct Blue) from synthetic wastwater by Adsorptive Bubble Separation Tcchniques[J]. Environ Sci Technol, 1993,27(6):1169-1175.
    [18]董丽丽.有机染料废水处理的新技术研究[J].云南环境科学,2002,21(3):49-51.
    [19]邢铁玲,宫巍,陈国强.超声技术在染料废水处理中的研究进展[J].印染,2006,(22):47-50.
    [20]李家珍.染料、染色工业废水处理[M].北京:化学工业出版社,1997:75.
    [21]武荣成,曲久辉.表面改性Fe3O4去除水中酸性红B的研究[J].环境科学学报,2004,24(3):435-439.
    [22]石香玉,符德学,常照荣.印染废水处理方法研究进展[J].焦作大学学 报,2004,(4):32-33.
    [23]Sylvia H. Duncan ei al. FEMS Microbiology letters [J].Inhibitory activity of gut bacteria against Eschericbia coil 0157 mediated by dietary plant mataboiiter,1998,164:283-288.
    [24]姚清照,刘正宝.光电催化降解染料废水[J].工业水处理,1999,19(6):15-16.
    [25]王爱民,杨立红,张素娟等.电化学方法治理含染料废水的现状与进展[J].业水处理,2001,21(8):4-8.
    [26]Model M. Processing methods for the oxidation of organics in supercritical water[P], Us 4543190,1985.
    [27]Chia-Yih et al.Induction of apotosis by escutetin in human leukemia cells [J]. Europcam Jowmel of Pharmacology,2001,416:25-32.
    [28]雷乐成,汪大辉.湿式氧化法处理高浓度活性染料腹水[J].中国环境科学,1999,19(1):42-46.
    [29]赵燕,李艳梅.天然高分子水处理剂在染料废水处理中的应用[J].皮革化工,2007,24(6):26-31.
    [30]吴海若,冯爱云.新型有机高分子絮凝剂的合成及应用[J].嘉兴学院学报,2991,913(996):78-79.
    [31]Kuo W G.Decoloriaing dye wastewater with Fenton's reagent[J].Wat Res,1992,26(7):881-884.
    [32]TezukaM,JwasakiM.Oxidative degradation of organic pollutants in water by glow discharge electrolysis.In:Japan society for the promotion of science.Proceeding of Asia-Pac Conf Plasma SciTechnol 3rd (APCPST 96,Tokyo,1996),Tokyo:Local Organizing Committee of APCPST 96,1996,423-427.
    [33]刘 静.超声电化学处理印染废水的实验研究[J].上海环境科学,2000,20(3):151-153.
    [34]陈昆柏.阳离子染料废水处理的工艺研究[J].中国环保产业,2001,12(6):40-41.
    [35]Ellis T G et al.Activated sludge and other suspend culture processe[J].Water Environment Research,1998,70(4):473-495.
    [36]玄哲仙.生物吸附剂桔子皮的制备及对重金属Pb2+、Cu2+的吸附研究[D].延边:东北师范大学,2006.
    [37]闰庆松.厌氧+好氧+煤渣吸附处理偶氮染料废水的研究[J].工业水处理,2000,20(7):19-22.
    [38]汪耀斌.H.S.B.技术的特点及其在高难度废水处理中的应用[J].水资源保护,2001,64(2):23-24.
    [39]Al-MomaniF.,TouraudE.,Degorce-DumasJ.R.,RoussyJ.,Thomas.Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis.Journal of Photo-chemistry and Photobiology A:Chemistry,2002,153(1):191-197.
    [40]余刚.超临界水氧化技术及其应用[J].上海环境科学,1995,14(9):13-16.
    [41]薛方亮,张雁秋.染料废水处理技术最新研究进展[J].水科学与工程技术,2007,(2):26-29.
    [42]张庆芳,孔秀琴,辛佳,贾小宁,张玉兰.生物质吸附剂-改性玉米芯对印染废水脱色性能研究[J].化学与生物工程,2008,25(12):60-62.
    [43]邱会东,段传人.农作物废弃物在工业废水处理方面的研究应用[J].工业水处理,2007,27(1):5-8.
    [44]MeyerV,CarlssonFHH,OellermannRA.Decolorizationoftextile effluent using a low cost natural adsorbent aterial[J].WaterSciTechnol,1992,26(526):1205-1211.
    [45]贺德留,孙晓薇.玉米芯为原料制造颗粒活性炭的研究[M].河南林业科技,2004,24(2):20-21
    [46]Orhan Y, BuYuKGungor H. The removal of heavy metals byusing agricultural wastes [J]. Water Science and Technology,1993,28:247-255.
    [47]章明奎,方利平.利用非活体生物质去除废水中重金属的研究.生态环境,2006,15(5):897-901
    [48]张庆芳,孔秀琴,辛佳,贾小宁,张玉兰.生物质吸附剂-改性玉米芯对印染废水脱色性能研究[J].化学与生物工程,2008,25(12):60-62
    [49]宋肄业,宋艳.玉米芯改性方法的研究进展.安全与环境工程,2008,15(2):72-74.
    [50]范鹏程,田静,雷文泉,邱会东.天然纤维素基材料改性方法的研究[J].重庆科技学院学报(自然科学版),2008,10(1):45-47.
    [51]郝红英,邵自强,何孟常.植物秸秆纤维素物理化学改性及其吸附机理研究[J].农业环境科学学报,2007,26(3):1138-1141.
    [52]吕秉峰.纤维素蒸汽闪爆改性的表征及化学反应性能研究[D].山西:华北工学院,2002.
    [53]赵艳锋.纤维素的改性技术及进展[J].天津化工,2006,20(2):11-13.
    [54]熊建华,王双飞,叶志青.纤维素的改性技术及进展[J].西南造纸,2004,33(6):24-26.
    [55]杨芳,黎钢,宋晓峰,张俊然,杨超.改性纤维素的发展现状及展望[J].天津化工,2004,18(5):22-24.
    [56]张锐利.化学改性提高甜菜纤维素吸水性的研究[D].重庆:西南农业大学,2005.
    [57]贺毅.改性稻草纤维素的制备及其吸附苯胺和甲醛的研究[D].广东:暨南大学,2006.
    [58]孙潇.改性蔗渣纤维素的开发及在糖液中的应用研究[D].广西:广西大学,2006.
    [59]钱国勇,侯明,汪菊玲.绿茶对水溶液中Pb2+和Cd2+吸附性能初步研究[J].分析试验室,2008,27(1):63-66.
    [60]刘转年,周安宁,金奇庭.超细煤粉吸附苯胺机理研究[J].燃料化学学报,2006,34(1):20-25.
    [61]Gupta S S,Bhattacharyya K G. Adsorption of Ni (Ⅱ) on clays[J]. Journal of Colloid and Interface Science,2006,295 (1).
    [62]谢祖芳,何星存,夏金虹,等.苦味酸在聚酰胺树脂上的吸附热力学及动力学[J].化学研究,2003,14(4):53-56.
    [63]顾惕人,朱步瑶,李外郎,等.表面化学[M].北京:科学出版社,1999:257-258.
    [64]北川浩,铃木谦一朗.吸附的基础与设计[M].鹿政理,译.北京:化学工业出版社,1983.
    [65]Yang X Y, Bushra A D. Kinetic modeling of liquidphase adsorption of reactive dyes on activated carbon[J]. J Colbid Interface Sci,2005,287:25-34.
    [66]Sunq, Yan L. The adsorption of basic dyes from aqueous solution on modified peat3/resin particle [J]. Water Res,2003,37:1535-1544.
    [67]Xiong C H, Wu X M. Study on the adsorption of im inodiacetic acid resin for ytterbium (Ⅲ) [J]. Chinese Journal of Inorganic Chemistry,2003,19(12): 1356-1360.
    [68]莫建军,施林妹,熊春华.D301R树脂吸附金(Ⅲ)的实验[J].矿物学报,2006,26(3):272-276.
    [69]Dursun A Y. A comparative study on determination of the equilibrium, kinetic and t hermodynamic parameters of biosorption of copper (Ⅱ) and lead (Ⅱ) ions onto pretreated As pergillus niger [J]. Biochemical Engineering Journal, 2006,28(2):187-195.
    [70]陶庭先,吴之传.偕胺肟基纤维对Ni2+的吸附动力学.华南理工大学学报:自然科学版,2003,31(9):53-56.
    [71]Magady Y. H., Daifullah A. A., Waste Management [J],1998,18(4):219.
    [72]王永江,熊春华,张启伟,等.氨基膦酸树脂对铅的吸附性能及机理[J].中国有色金属学报,2002,12(8):832-836.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700