用户名: 密码: 验证码:
微波改性秸秆纤维制备聚烯烃复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秸秆是一种天然高分子材料,来源非常丰富,且价格低廉、密度低,具有良好的生物降解性。我国对秸秆的利用除用于造纸、牲畜饲料外,大多数通过掩埋、焚烧等方法处理掉,这不仅浪费资源,且污染环境。从环境保护和资源开发利用的角度出发,对植物秸秆经过一定的化学和机械处理,作为复合材料的增强材料在国内外已受到高度重视,并取得了一定进展。植物纤维复合材料(NFRP)结合了塑料和植物纤维的优点,而且对于解决能源短缺和环境污染有十分重要的意义,但是植物纤维与热塑性塑料之间的界面相容性和植物纤维在塑料基体中的分散性严重制约着这类复合材料的发展,因此需要对植物纤维进行处理,以改善其与塑料之间的界面相容性。
     常用的秸秆改性处理方法有碱化处理法、酸化处理方法、氧化处理方法和物理处理方法等,但存在对环境污染大、耗能多、效率低等问题;而微波辐射处理具有干燥清洁、均匀、生产效率高、耗能少等特点,同时可以增大纤维表面粗糙度,降低纤维极性,有利于加强界面相互渗透深度和界面机械互锁。
     本研究的主要目的是为了找到一种高效、环保且简单易行的方法来改善秸秆纤维表面的亲水性,提高秸秆纤维与热塑性塑料(如PE、PP等)的界面相容性,制备出性能优异,环境友好的绿色环保材料,从而能将秸秆纤维这一巨大的生物资源利用起来,同时尽可能的减小来自石油化工等非可再生资源的使用量,从而达到变废为宝、有限资源综合利用、保护环境的目的,为植物纤维复合材料在我国的工业化生产和应用作积极而有效的探索。
     因此本文使用具有干燥清洁、均匀、生产效率高、耗能少等特点的微波辐射技术对秸秆纤维表面进行改性,达到增大纤维表面粗糙度,降低纤维极性的目的,并创新性的利用微波辐射将偶联剂接枝到植物纤维表面,以加强界面相互渗透深度和界面机械互锁。在此基础上运用过渡态理论设计出一种新型的利用偶联剂和界面改性剂复配使用的改性方法来处理秸秆纤维表面,也取得良好的实验结果。同时采用现代分析技术手段,如红外光谱分析(IR)、X-射线衍射(XRD)等表征和评价了微波对秸秆纤维表面改性效果及对其微观结构的影响;首次利用原子力显微镜(AFM)表征了改性秸秆纤维表面微观形貌和粗糙度的变化。通过混炼、热压等工艺制备改性植物纤维复合材料,测定了样条的力学性能,结合扫描电子显微镜(SEM)分析了复合材料界面组成,考察了界面改性剂的作用,最后针对秸秆纤维与高分子基体的界面复合机理进行了探讨。
     研究结果表明:
     1.未经微波处理的秸秆纤维表面比较光滑,平均粗糙度Ra为(86.7±6.335)nm,均方根粗糙度Rq为(141.1±9.055)nm;经微波处理的秸秆纤维表面比较粗糙,并出现许多细小孔洞,其平均粗糙度Ra为(445.0±28.14)nm,均方根粗糙度Rq为(558.9±33.458)nm,微波辐射处理前后秸秆纤维的表面形态差异较大。这说明微波辐射可以秸秆纤维表面粗糙程度增大,从而有利于与非极性高分子基体的复合。秸秆纤维的表面粗糙度对复合界面强度的影响主要表现在两个方面:在秸秆纤维与高分子基体能够形成良好润湿以及有利表面粗糙形态的前题下,表面粗糙度较大意味着可以在界面形成较深的界面扩散和机械互锁。
     2.由XRD的结果可以看出,经微波辐射处理后,秸秆纤维在20=22.3°处的衍射峰移至21.8°,且峰宽稍有增加,在38.1°,44.3°,64.6°,78.9°处出现的4个衍射峰,除强度稍有增强,其峰形和位置与未经处理秸秆纤维的衍射峰基本一致,表明微波处理对纤维的结晶形态影响不大。
     3.本研究中采用的几种表面改性方法对秸秆纤维表面亲水性均有较好的改善效果:微波接枝KH550组和CPVC/KH550组改性效果最佳,经微波/KH550处理后接触角0=95.68°,经CPVC/KH550处理后接触角0=98.96°,较未经任何处理的秸秆纤维的平衡接触角0=74.65°有着明显提高;微波/钛酸酯组对秸秆纤维表面亲水性的改善效果稍次之,经微波/钛酸丁酯处理后接触角0=91.44°,经微波/TAIC处理后接触角0=86.89°。秸秆纤维经过不同的表面处理后,接触角均变大。说明秸秆纤维表面的亲水性变小,疏水性增大,从而有利于改善与高分子基体的界面相容性。同样,改性后秸秆纤维表面能均有不同程度减小,其中经微波/KH550处理后秸秆纤维表面能最为接近HDPE基体;改善复合材料界面特性的一个重要的技术措施是对纤维材料和高分子基体表面性能的改进。有效改善纤维和高分子基体的表面能及表面极性状态,对于改善纤维与高分子基体表面分子的相容性是十分有效的。
     4.FT-IR光谱表明微波处理样中未产生新的官能团,但分子间氢键及分子内氢键发生了变化。处理后秸秆纤维表面-OH减少而C-O-C连接增多,导致这一变化的原因可能是-OH在界面改性剂的条件下发生了脱水或者酯化,从而使秸秆纤维表面极性减弱,有利于秸秆纤维的复合。
     5.从复合材料的SEM微观结构研究发现,未经处理的秸秆纤维表面光滑,与高分子基体相容性较差;经微波结合偶联技术处理后的植物纤维形成了大量微隙与孔洞,表面粗糙程度增大,在HDPE中纤维与高分子基体相容性良好,复合界面模糊,复合材料力学性能保持率也较高。处理后的秸秆纤维与塑料的复合材料断面,秸秆纤维与塑料结合得比较紧密,纤维表面粘满了塑料且粘结牢固,秸秆纤维在塑料间的混合也比较均匀,不易区分,并且在断面处有大量拉丝,说明纤维与塑料之间形成了比较致密的界面结合层,致使复合材料在断裂的时候裂缝不能在界面上发生,转移到了塑料内部,使拔出的纤维表面包裹着一层塑料。
     6.从复合材料的性能来看,处理后的秸秆纤维比未处理的原料秸秆纤维在复合过程中使复合材料整体更容易塑化,流动性较好。从复合材料的综合力学性能来看,经微波接枝KH550改性组秸秆纤维的填充量高达60份时,其力学性能保持率仍在90%以上,说明微波接枝KH550对秸秆纤维与HDPE界面相容性的改性效果最好,而另外几种改性剂(钛酸酯、CPVC/KH550、CPE/KH550和TAIC/CPE等)改性后的秸秆纤维填充量在60份时,其力学性能保持率也均在80%以上,说明界面改性效果也很明显。在确定了偶联剂和界面改性剂最佳用量的基础上,且发现两种硅烷偶联剂与界面改性剂并用可以产生协同效应,进一步提高复合材料的界面相容性,有可能进一步提高植物纤维的填充量。
     从以上结果可以看出,通过微波改性及界面偶联复合处理,能有效改善秸秆纤维表面的性质,极大增强与非极性烯烃的界面复合,使复合材料在较高填充量下仍能体现良好的综合性能。因此,通过本研究制备得到的秸秆纤维复合材料综合了植物纤维与塑料的性能特点,因而具有广泛的用途,同时本研究中所使用的微波接枝偶联剂技术的环保、高效等技术特点也将广泛应用于其他植物纤维改性。天然植物纤维复合材料的可回收和可降解等优良性能,将满足未来社会各领域,特别是在农业工程领域对复合材料性能的特殊要求,有利于保护环境,具有巨大市场潜力和发展前景。
Barley straw is a significant raw material used in cellulose production as an energy resource and for use in agriculture as ruminant feed. The advantages of straw particleboard are its rigidity and strength, built-in insulation, and low cost. Barley straw is also used as a biodegradable substance for sorption in oil spill clean-up, for oil removal from soil and for the inhibition of algae and cyanobacteria growth in aquatic reservoirs. In all these cases, the surface properties of barley straw play a crucial role. Faced with the worldwide shortage of forest resources, industry is showing increased interest in the production of particleboard from agricultural residues. Natural fiber reinforced plastics(NFRP) is a kind of new developing compsite developed in the last few years, it has combined the advantages of the plastics and natrual fiber, and there are very important meanings in solving energy shortage and environment pollution. It is a focus studied at present to regard polyolefin as the matrix resin and prepar NFRP. In this study, Polyolefin/straw composites were fabricated by hot pressing, with HDPE as matrix and wheat straw as the reinforcing agent. Microwave treatment combine with coupling technique was introduced. Modern instrumental analysis, including Scanning Electron Microscopy (SEM), Fourier Transform Infrared Absorotion Spectrum (FTIR), Atomic force microscopy(AFM) and X-ray diffraction (XRD) were used to elucidate the effect of straw surface modification. The mechanical properties of materials were assessed by tensile test and impact test.The effect of the interfacial modifiers and the connection menchanism between straw fiber and plastics. The study indicates that:
     1. Atomic force microscopy(AFM) was used to study the surface structures of straw fibers treated by microwave radiation. The results showed that the surface structures of treated group was rougher, control group had a smooth surface, relatively. Treated group had a higher Rms Rough (and Ave Rough) of 558.9±33.458 nm (445.0±28.14 nm), whereas control group had a lower Rms Rough (and Ave Rough) of 141.1±9.055 nm (86.7±6.335 nm). The AFM images revealed that the surface structures of straw fibers treated by microwave radiation changed and the ultrastructure also became complex.
     2. Moreover, the X ray diffraction peak 20=22.3°was moved to 21.8°, the results from XRD indicate that straw fibers still contains noncrystalline and crystalline regions after microwave treating, but its crystallinity and crystal face dimension increase. The ultrastructure of straw fiber treated by microwave radiation has not changed.
     3. These three surface modification all have good modifying effects, the microwave-grafting KH550 have the best modifying ability and the microwave-grafting tetrabutyl orthotita have better modifying ability then microwave radiation. The dynamic contact angle of modified straw fiber increased, the surface energy was even closed to Polyolefin matrix. After treatment, the straw fiber forms a uniform pore structure, roughness of surface becomes lager, the distribution of straw in Polyolefin and interfacial compatibility was markedly improved. The retention rate of mechanical properties is higher than that of the untreated group. The mechanical properties of Polyolefin/straw composites were improved evidently. Compared with other modifiers, microwave-grafting silane could improve the Hydrophily and mechanical properties of Polyolefin/straw composites more effectively.
     4. FTIR show that there is no effect of microwaves on the chemical structure of straw fibers, there had multi difference in the apices form the characteristic peak of 3300cm-1 because its intermolecular and intramolecular hydrogen bond change subsequently. After the treament, the C-O-C bond increased and the hydroxy groups decreased, probably due to the dehydration between hydroxy groups. This change may good to combine of straw fiber and plastics.
     5. Raw straw with the smooth surface has a poor combinative ability with Polyolefin. After treatment, the straw fiber forms a uniform pore structure, roughness of surface becomes lager, the distribution of straw in Polyolefin and interfacial compatibility was markedly improved. The retention rate of mechanical properties is higher than that of the untreated group. At the transverse section of straw fiber-Plastics composites, the straw fiber and the plastic united closely, and the surface of the straw fiber covered with plastic. The wire drawing in the transverse section indicates that the formation of binding layer between the fiber and plastic transferred the crack from the interface to the inner of the plastic when the sample was ruptured.
     6. Compared with the untreated sawdust, the treated sawdust is more easily to be plastieized, and the flow-ability is better. We find that several modifier can all improve composite performance. Atfer KH550 dealing with the straw fiber, the modified effect is best, CPVC/KH550、CPE/KH550 and TAIC/CPE modify the effect takes second place. On the basis of confirming that unites the best use level of modifier, find that two kinds of silane coupling agent and the inerfacial modifier respectively can produce the synergistic effect, improve the performance of composites further. The tensile strength and impact strength of the composites of the treated straw fiber and Polyolefin obviously increased.
     According to results given in this paper, the interfacial behavior of straw fiber reinforced composite was improved by Microwave-assisted surface modification and coupling agent, Straw-plastic composites are being accepted widely in to the building and construction industry. The composite industry always looks into alternative low cost lignocellulosic sources, which can decrease overall manufacturing costs and increase stiffness of the materials. However, it is believed that the research focused at the use of these materials could follow a developmental market at the same time can lead to a new market opportunity for these surplus inexpensive field crop leftovers.
引文
[1]DANIEL M, ISHAI O. Engineering Mechanizes of Composite Materials [M]. Oxford University Press,1994.
    [2]LUO X G. Reuse Application on Alter-property of Plant (straw stalk) Fiber [J]. Engineering Science,2004,6:91-94.
    [3]HERRERA-FRANCO P J, VALADEZ-GONZALEZ A. Mechanical properties of continuous natural fibre-reinforced polymer composites [J]. Applied Science and Manufacturing,2004,3(35):339-345.
    [4]PANTHAPULAKKAL S, SAIN M. Agro-residue reinforced high-density polyethylene composites:Fiber characterization and analysis of composite properties [J]. Composites:Part A,2007,38 (6):1445-1454.
    [5]韩永生.工程材料性能与选用[M].化学工业出版社,2004.
    [6]LIU Ruigang, YU Hui, HUANG Yong. Structure and morphology of cellulose in wheat straw[J]. Cellulose, 2005,12(1):25-34.
    [7]MO Xiaoqun, CHENG Enzhi, WANG Donghai, et al. Physical properties of medium-density wheat straw particleboard using different adhesives[J]. Industrial Crops and Products,2003,18(1):47-53.
    [8]YANG H S, KIM D J, LEE Y K. Possibility of using waste tire composites reinforced with rice straw as construction materials[J]. Bioresour Technol,2004,95(1):61-65.
    [9]张晓明,刘雄亚.纤维增强热塑性复合材料及其应用[M].化学工业出版社,2007.
    [10]JOUNGM P, SON T Q. Interficial evaluation of modified jute and hemp fibers/polypropylene-maleic an hydride polypropylene copolymers (PP-MAPP) composites using micromechanial technique and nondestructive acoustic emission[J]. Composites Science and Technology,2006(66):2686-2699.
    [11]MILLER B. Plastics World [M]. Academic Press,New York,1991.
    [12]B FOCHER, A MARZETTI, E MARSANO, et al. Regenerated and Graft Copolymer Fibers from Steam-Exploded Wheat Straw:Characterization and Properties [J]. Journal of Applied Polymer Science,1998,67,1:961-974.
    [13]KARLSSON J O, BLACHOT J F, PEGW A. Improvement of Adhesion between Polyethylene and Regenerated Cellulose Fibers by Surface Fibrillation [J]. Polymer Composites,1996,17,2:300-304.
    [14]SAMIR KAMEL. Preparation and properties of composites made from rice straw and poly (vinyl chloride) [J]. Poly Adv. Technol.2004,15:612-616.
    [15]鲁博,张林文,曾竟成.天然纤维复合材料[M].化学工业出版社,2005.
    [16]KHULBE K C, FENG C Y, MATSUURA T, et al. Characterization of Surface-Modified Hollow Fiber Polyethersulfone Membranes Prepared at Different Air Gaps [J]. Journal of Applied Polymer Science,2007,104(1):710-721.
    [17]JIANG Z, ASHRAF I, ROGER C, et al. Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength [J]. Composites Science and Technology,2007(67):1509-1517.
    [18]PANTHAPULAKKAL S, SAIN M. Bioprocess preparation of wheat straw fibers and their characterization [J]. Industrial Crops and Products,2006,23:1-8.
    [19]MAYA J J, RAJESH D A. Recent developments in chemical modification and characterization of natural fiber reinforced composites [J]. Polymer Composites,2008(10):187-207.
    [20]PANTHAPULAKKAL S, SAIN M. Bioprocess preparation of wheat straw fibers and their characterization [J]. Industrial Crops and Products,2006,23:1-8.
    [21]刘洪凤,俞镇慌.秸秆纤维性能[J].东华大学学报(自然科学版),2002,28(2):123-128.LIU H F, YU Z H. Properties of Straw Fiber [J]. Journal of Dong Hua University,2002,28 (2):123-128.
    [22]邬义明.植物纤维化学[M].中国轻工业出版社.1991.
    [23]HORNSBY P R, HINRICHSEN E, TARVERDI K. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers [J]. J Mater Sci,1997,32:443-449.
    [24]KHULBE K C, FENG C Y, MATSUURA T, et al. Characterization of surface-modified hollow fiber polyethersulfone membranes prepared at different air gaps[J]. J Appl Polym Sci,2007,104(1):710-721.
    [25]YANG H S, KIM D J, LEE Y K, et al. Possibility of using waste tire composites reinforced with rice straw as construction materials[J]. Bioresour Technol,2004,95(1):61-65.
    [26]刘壮,王勇,孙智慧.玉米秸秆纤维复合缓冲包装材料的研究[J].哈尔滨商业大学学报(自然科学版),2006,22(4):91-93LIU Z, WANG Y, SUN Z H. Study on composite cushioning packing material of corn stalk flax [J]. Journal of Harbin University of Commerce (Natural Sciences Edition),2006,22,4:91-93.
    [27]ABDELLATIF A. MOHAMED, V. L. FINKENSTADT, D. E. PALMQUIST. Thermal properties of extruded/injection-molded poly (lactic acid) and biobased composites [J]. Journal of Applied Polymer Science,2008,107, 2:898-908.
    [28]JENO B, BEATA T, MIKLOS Z. Biologically degradable fiber-reinforced urethane composites from wheat straw [J]. Polymer Composites,1999,4,20:511-514.
    [29]滕翠青,杨军,韩克清,等.秸秆纤维增强复合材料的可降解性能研究[J].东华大学学报(自然科学版),2002,28(1):83-86
    [30]RAY D, SARKAR B K, RANA A K, et al. The mechanical properties of vinylester resin matrix composites reinforced with alkali treated jute fibers [J].Composites:PartA,2001(32):119-127.
    [31]孙成栋.植物纤维水泥复合板[J].新型建筑材料,2000,(6):25-27. SUN C D. Vegetable fiber cements compound board [J]. New Building Materials,2000,6:25-27.
    [32]Yang H S, Kim D J, Kim H J. Rice straw wood particle composite for sound absorbing wooden construction materials[J]. Bio Resource Technology,2003,86,2:117-121.
    [33]WEN S W, XIAO J Y, CENG J C, et al. Effect of liquid nitrile-butadiene rubber on mechanical properties of unidirectional boron fiber/epoxy resin composites [J]. Acta Materiae Compositae Sinica,2007,4:8-12.
    [34]沃丁柱.复合材料大全[M].化学工业出版社,2000.
    [35]YANG H S, KIM D J, LEE Y K, et al. Possibility of using waste tire composites reinforced with rice straw as construction materials [J]. Bio Resource Technology,2004,95,1:61-65.
    [36]文思维,肖加余,曾竟成,等.橡胶改性对硼纤维/环氧单向复合材料力学性能的影响[J].复合材料学报,2007,4:8-12.
    [37]王再玉,喻国生.聚丙烯短切纤维增强不饱和聚酯树脂复合材料的性能研究[J]洪都科技,2006(1):45-48.
    [38]何继敏,陈卫红,丁玉梅.超高分子量聚乙烯注射成型技术的研制及应用[J].塑料,2000,29(6):18-22.
    [39]肖亚航,傅敏士.PP/秸秆复合材料的热压成型工艺研究[J].工程塑料应用,2005,33(1):34-37.XIAO Y H, FU M S. Forming Technology of PP/Straw Composites by Hot Pressing [J]. Engineering Plastics Application, 2005,33,1:34-37.
    [40]杨其,黄锐.硬质聚氯乙烯板层压成型中的传热问题[J].聚氯乙烯,2005,3(3):21-22.YANG Q, HUANG R. The heat transfer during the laminate molding of rigid PVC plate [J]. Polyvinyl Chloride,2005,3, 3:21-22.
    [41]PANTHAPULAKKAL S, ZERESHKIAN A, SAIN M. Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites [J]. Bio Resource Technology,2006,97(2):265-272.
    [42]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面[M].中国轻工业出版社,2001.
    [43]YU Hui, LIU Ruigang, SHEN Dawa, et al. Study on morphology and orientation of cellulose in the vascular bundle of wheat straw[J]. Polymer,2005,46(l):5689-5694.
    [44]Prasad B M, Sain M M. Mechanical properties of thermally treated hemp fibers in inert atmosphere for potential composite reinforcement [J]. Materials Research Innovations,2003,7,4:231-238.
    [45]CHIELLINI E, CINELLI P, CHIELLINI F. Environmentally degradable bio-based polymeric blends and composites[J]. Macromol Biosci,2004,4(1):218-231.
    [46]EMO C, PATRIZIA C, FEDERICA C. Environmentally Degradable Bio-Based Polymeric Blends and Composites [J]. Macromolecular Bioscience 2004,3,4:218-231.
    [47]DEEPANJAN B, LOUIS T G, WILLIAM T W. Isolation, preparation and characterization of cellulose microfibers obtained from bagasse[J]. Carbohydr Polym,2008,73(1):371-377. TENG C Q, YANG J, HAN K Q, et al. Study of Biodegradable Property of Straw Fibers Reinforced Composites [J]. Journal of Dong Hua University,2002,28,1:83-86.
    [48]LIU Z S, ERHAN S Z, AKIN D E, et al. "Green" composites from renewable resources:Preparation of epoxidized soybean oil and flax fiber composites [J]. Journal of Agricultural and Food Chmistry,2006,54,6:2134-2137.
    [49]PANTHAPULAKKAL S, SAIN M. Bioprocess preparation of wheat straw fibers and their characterization[J]. Industrial Crops and Products,2006,23(1):1-8.
    [50]SCHIRP A, LOGE F, AUST S. Production and characterization of natural fiber-reinforced thermoplastic composites using wheat straw modified with the fungus pleurotus ostreatus[J]. J Appl Polym Sci,2006,102(6):5191-5201.
    [51]邓杰,艾涛.树脂传递模塑工艺成型三维编织复合材料树脂体系研究[J].粘接,2006,4(27):7-9.DENG J, AI T. Study of resin system for RTM processes of three dimention braided composite [J]. Adhesion in China,2006, 4,27:7-9.
    [52]王孝顺.密封条挤出成型专用空气减压装置的开发应用[J].应用技术,2001,5:37-39.
    [53]杨静,谭允祯,顾景梅,等.动态接触角测定法研究润湿剂对煤尘的润湿性能[J].煤矿安全,2008(12):7-10.
    [54]牛盾,王林山,王育红,等.环氧氯丙烷改性稻草[J].应用化学,2005,9(25):1033-1035.
    [55]SYLWIA K W, JAKUB N, EDYTA W J, et al. Surface properties of barley straw[J].Colloids Surf B:Biointerfaces, 2003,29(2):131-142.
    [56]熊犍,叶君,梁文芷,等.微波对纤维素Ⅰ超分子结构的影响[J].华南理工大学学报:自然科学版,2000,28(3):84-89.
    [57]翟茂林,伊敏,哈鸿飞.高分子材料辐射加工技术及其进展[M].化学工业出版社,2004.
    [58]未友国,敖宁建,张渊明.植物纤维/蒙脱土/橡胶发泡复合材料微孔结构的研究[J].电子显微学报,2008,27(5):379-383.
    [59]HIROYUKI M, WOLFGANG G Cellulosic nanocomposites. Ⅱ. Studies by atomic force microscopy[J]. J Appl Polym Sci, 2000,78(1):2254-2261.
    [60]FRANCIS M M. Crystallization and melting of a polyethylene copolymer:In situ observation by atomic force microscopy[J]. J Appl Polym Sci,2008,108(1):987-994.
    [61]YU Hui, LIU Ruigang, SHEN Dawa, et al. Arrangement of cellulose microfibrils in the wheat straw cell wall[J]. Carbohydrate Polymers,2008,72(1):122-127.
    [62]Kim J, Tien J C. Effect of Coal Type on Wetting by Solutions of Nonionic Surfactant[J]. Internation Mining and Minenals, 1999,2(14):38-41.
    [63]张利波,彭金辉,涂建华.氯化锌活化烟杆制造活性炭及孔结构表征[J].炭素技术,2005,24(3):14-19.
    [64]王新平,陈志方.高分子表面动态行为与接触角时间依赖性[J].中国科学B辑化学2005,35(1):64-69.
    [65]李凤梅.微波辐射淀粉接枝共聚物研究[J].粮油食品科技,2009,17(4):67-69.
    [66]刘宗瑜,彭铁成,孙保平.微波辐射稻草浆蒸煮黑液处理技术的研究[J].天津理工大学学报,2009,25(4):33-36.
    [67]甘灰炉,尚海萍,邓宇,等.微波辐射碱法稻草制浆及其对纸浆性能的影响[J].中华纸业,2009,30(16):48-50.
    [68]DEEPANJAN B, LOUIS T G, WILLIAM T W. Isolation, preparation and characterization of cellulose microfibers obtained from bagasse [J]. Carbohydrate Polymers,2008,73 (1):371-377.
    [69]LI Y, MAI Y M, YE L. Effect of fiber surface treatmenton fracture mechanical properties of sisal-fiber composites[J]. Composites Interfaces,2005(12):141-163.
    [70]SARKAR B K, DIPA R. Effect of the defect concentration on the impact fatigue endurance of untreated and alkali treated jute-vinylester composites under normal and liquid nitrogen atmosphere[J]. Composites Science and Technology,2004(64): 2213-2219.
    [71]ADVANI S G, BRUSCHE M V RTM Simulation:Non-Isothermal Flow and Cure Kinetics for Complex 3-D Shell-Like
    Structures [J]. Composite Material.1994,10:465-515.
    [72]PANTHAPULAKKAL S, SAIN M, et al. Injection molded wheat straw and corn stem filled polypropylene composites [J]. J Polym Environ,2006,14,3:265-272.
    [73]赵磊,俞建勇,高晶.黄麻纤维毡的表面处理及其增强复合材料的力学性能[J].产业用纺织品,2009(7):10-14.
    [74]HE J M, CHEN W H, DING Y M. Development of Injection Molding Technique of Ultra High Molecular Weight Polyethylene and Its Application fields [J]. Plastics,2000,29,6:18-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700