用户名: 密码: 验证码:
改性棕榈丝吸附水中重金属的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以廉价的天然生物质材料棕榈丝(PT)为原料,制备了NaOH改性棕榈丝(NaOH-PT)、十二烷基苯磺酸钠改性棕榈丝(SDBS-PT)和低温焚烧棕榈丝(Ash-PT)三种棕榈丝衍生物吸附剂,并将其应用于对水中阳离子Ni(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)和阴离子Cr(Ⅵ)的吸附上,对吸附过程的影响因素及吸附机理进行了详细的探讨。
     本文通过考察在相同吸附条件下,不同改性条件所得的吸附剂对水中重金属的去除率得到:NaOH改性的最佳条件——NaOH浓度3%(w/w),改性温度25℃,改性时间5h; SDBS改性的最佳条件——SDBS浓度5g·L-1,改性温度35℃,改性时间5h。
     通过扫描电镜、比表面积测定、傅里叶红外光谱分析、X-ray衍射分析以及Bohem滴定等手段,对实验所用的吸附剂进行表面特性和活性基团的鉴定。分析结果表明:NaOH和SDBS改性使得棕榈丝原来闭合的孔道膨胀;低温焚烧处理的仍保留棕榈丝的基本骨架,呈蜂窝状。相对PT而言,NaOH-PT、SDBS-PT和Ash-PT的比表面积分别提高了232%、116%和408%。NaOH改性能够有效的提高吸附剂中纤维素的相对含量;SDBS被有效的接枝到棕榈丝的表面;低温焚烧使得活性SiO2更充分的暴露在外。同时三种吸附剂的的总酸性基团均有所下降,总碱性基团有所上升。
     在PT和NaOH-PT对Ni(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)、Cr(Ⅵ)的吸附研究方面,分别考察了时间、温度、初始浓度、溶液pH值、阳离子电解质、有机配位体以及其它重金属离子的竞争对吸附效果的影响。实验结果表明:在25℃下,PT和NaOH-PT对Ni(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)、Cr(Ⅵ)的吸附基本在300min之内完成;随着温度和初始浓度的升高,PT和NaOH-PT对Ni(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)、Cr(Ⅵ)的吸附量均逐渐增加;溶液pH值对吸附过程影响较大。该吸附过程能够很高的符合准二级动力学模型,吸附等温线其中Ni(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)同时符合Langmuir吸附等温模型和Freundlich吸附等温模型,Cr(Ⅵ)只满足Freundlich吸附等温模型。NaOH改性后对Ni(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)吸附量增大,分别提升了190%,96%,104%;对Cr(Ⅵ)略有降低,降低了1%。NaOH-PT吸附过程AG<0,△H在36-188kJ-mol-1范围内,△S值在90-217J·(mol·K)-1范围内,这些参数说明吸附过程为自发进行的吸热反应。
     在SDBS-PT吸附Ni(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)、Cr(Ⅵ)的方面,实验结果表明:在25℃下,SDBS-PT对四种重金属污染物的吸附基本在300min达到吸附平衡;且相对于PT的吸附量分别提高55%,45%,78%和17%。在实验考察的pH(0-7)范围内,SDBS-PT对Ni(Ⅱ)、Cd(Ⅱ)的吸附量逐渐增大,对Cr(Ⅲ)的吸附量先增加后下降,对Cr(Ⅵ)的却逐渐减小。准二级动力学模型能够很好的拟合25℃下SDBS-PT对Ni(Ⅱ)、Cd(Ⅱ)、 Cr(Ⅲ)、Cr(Ⅵ)的吸附过程,相关系数R2均大于0.99。Langmuir吸附等温模型能够更好的描述吸附过程。。
     对Ash-PT吸附Ni(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)的诸多影响因素和吸附特性进行了研究。实验结果:相对于PT, Ash-PT对Ni(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)的吸附量分别提高了2800%,1500%,1900%。溶液中阳离子电解质(Na+、Ca2+和Fe3+)的存在影响了Ash-PT对Ni(Ⅱ)、 Cd(Ⅱ)、Cr(Ⅲ)的吸附,且影响程度Fe3+>Ca2+>Na+;有机配位体的加入会降低吸附量,并且不同种类的重金属离子间存在着竞争吸附。该吸附过程的动力学在一定程度上都符合Elovich动力学模型,准一级动力学模型,准二级动力学模型。Langmuir吸附等温模型能够极好的描述Ash-PT对Ni(Ⅱ)、Cd(Ⅱ)、Cr(Ⅲ)的吸附过程,其R2值均>0.99。热力学研究表明,Ash-PT吸附过程为自发进行的吸热反应,升高温度有利于吸附过程的进行。
Three novel biosorbents, palm thread modified with NaOH(NaOH-PT), palm thread modified with SDBS(SDBS-PT), palm thread ash burned at low temperature, were prepared from the cheap natural biomass materials palm thread(PT). And were successfully applied to the adsorption of cationic Ni (Ⅱ), Cd (Ⅱ), Cr (Ⅲ) and anionic Cr (Ⅵ) from water. The influential factors and adsorption mechanism of adsorption process were detailedly discussed.
     The removal of heavy metals, sorbed by different adsorbents prepared under different conditions, was investigated.The results showed that the optimal modified conditions for NaOH were the concentration of NaOH3%(w/w), modified temperature25℃C, the modified time5h; and the optimal modified conditions for SDBS were the concentration of SDBS5g-L-', the modified temperature35℃, the modification time5h.
     The quality of biomaterial is the key factor that affects the sorption potential. The surface characteristics and active groups of adsorbents were identified by using scanning electron microscopy, specific surface area measurements, Fourier transform infrared spectroscopy, X-ray diffraction analysis, Bohem titration and so on. The analysis showed that: the palm thread modified with NaOH and SDBS became more rough and their microtoubule structure expanded; Ash-PT retained the basic framework of the palm thread.Compared to PT, specific surface areas of NaOH-PT, SDBS-PT and Ash-PT were increased by232%,116%and408%. NaOH modification could effectively improve the relative content of cellulose in adsorbent.Relative PT of NaOH-PT, SDBS-PT and Ash-PT specific surface area were increased by232%,116%and408%. NaOH modification can effectively improve the relative content of cellulose adsorbent; SDBS was effectively grafted onto the surface of the palm thread; the active SiO2of Ash-PT was fully exposed. The total acidic groups of the three adsorbents were reduced, while the total basic groups increased.
     PT and NaOH-PT were successfully appied to sorb Ni (Ⅱ), Cd (Ⅱ), Cr (Ⅲ) and Cr (Ⅵ). Many parameters that affected the sorption were investigated, such as contact time, temperature, initial concentration, solution pH, cation electrolytes, organic ligands and other heavy metal ions.The results showed:at25℃,300min was enough for PT and NaOH-PT to sorb Ni (Ⅱ), Cd (Ⅱ), Cr (Ⅲ) and Cr (Ⅵ) from solution; with the rise of temperature and initial concentration, the adsorption capacities of Ni (Ⅱ), Cd (Ⅱ), Cr (Ⅲ) and Cr (Ⅵ) onto the PT and NaOH-PT gradually increased. The solution pH had a severe influence on the adsorption process. The adsorption kinetics were well fitted the Lagergren pseudo-second order kinetic model; the data of Ni (Ⅱ), Cd (Ⅱ), Cr (Ⅲ) were well fitted both Langmuir isotherm model and Freundlich isotherm model, but the data of Cr (VI) just was well fitted Freundlich isotherm model. Compared to the PT, the adsorption capacities of Ni (Ⅱ), Cd (Ⅱ) and Cr (Ⅲ) onto NaOH-PT increased by190%,96%and104%; but for Cr (Ⅵ) was slightly reduced by1%. About adsorption process,△G<0,△H>0, AS>0,△H values was in the36-188kJ-mol-1range, AS values was in the90-217-(mol·K)-1range, the adsorption process is spontaneous and endothermic reaction.
     The SDBS-PT were used to sorb Ni (Ⅱ), Cd (Ⅱ), Cr (Ⅲ) and Cr (Ⅵ) from water. The effect of contact time, temperature, initial concentration and solution pH were investigated The results showed:at25℃, the adsorption could reach equilibrium about300min; compared to PT, the adsorption capacities of Ni (Ⅱ), Cd (Ⅱ), Cr (Ⅲ) and Cr (Ⅵ) increased by55%,45%,78%and17%。 The solution pH had different influences on the adsorption process of Ni (Ⅱ), Cd (Ⅱ), Cr (Ⅲ) and Cr (Ⅵ). The adsorption kinetics were well fitted the Lagergren pseudo-second order kinetic model and Langmuir isotherm model, the adsorption process belongs to chemical adsorption.
     The Ash-PT were applied to adsorb cation, such as Ni (Ⅱ), Cd (Ⅱ) and Cr (Ⅲ), and many parameters and adsorption characteristics were studied. Compared to PT, the capacities of Ni (Ⅱ), Cd (Ⅱ) and Cr (Ⅲ) onto Ash-PT increased by2800%,1500%and1900%. The cationic electrolytes (Na+, Ca2+and Fe3+)of the solution would effect the adsorptions of Ni (Ⅱ), Cd (Ⅱ) and Cr (Ⅲ), and the affected order was Fe3+>Ca2+>Na+; the organic ligand of solution would reduce the adsorption capacity, and the competitive adsorption was existed between the different heavy metal ions. The kinetics of the adsorption process were well fitted the Elovich kinetic model, pseudo-first-order kinetic model and pseudo-second order kinetic model. Langmuir isotherm model could simulate the experimental results very well(R2>0.99). The thermodynamic study showed that, Ash-PT adsorption processes were spontaneous endothermic reaction, and elevated temperatures were conducive to the adsorption process.
引文
[1]Friberg, L., Friberg, L., Nordberg, G. Handbook on The Toxicology of Metals [M]. New York:Elsevier/North-Holland Biomedical Press,1979:55.
    [2]U. S. EPA. EPA Treatability Manuals[M]. Washington, DC.;Office of Reasearch and Development,1981.
    [3]U. S. EPA. Metal Finishing Industry [M]. Washington, DC.:U. S. EPA,1983.
    [4]高太忠,李景印.土壤重金属污染研究与治理现状[J].土壤与环境,1999,8(2):137-140.
    [5]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工,2005,4:36-39.
    [6]熊佰炼.甘蔗渣吸附废水中Cd2+和Cr3+的研究[D].重庆:西南大学硕士学位论文,2009.
    [7]Potts, C. L.. Cadmium proteinuria-The healt of battery workers exposed to cadmium oxide dust[J]. Annual Occupation Hygiene.1965,8:55-61.
    [8]Kipling, M. D., Waterhouse, J. A. H.. Cadmium and prostatic carcinoma [J]. Lancet.1967,1:30-731.
    [9]Lemen, R. A., Wagoner, J. K., Blejer, H. P.. Cancer mortality among cadmium production workers[J]. Ann. N. Y. Acad. Sci..1976,271:273-279.
    [10]Kjellstrom, T., Friberg, L., Rahnster, B.. Mortality andcancer morbidity among cadmium-exposed workers [J]. Environmental Health Perspective.1979,28:199-204.
    [11]Sorahan, T., Waterhouse, J. A.. Mortality study of nickel-cadmium battery workers by the method of regression models in life tables[J]. Br. J. Ind. Med..1983,40:293-300.
    [12]Norseth, T., Piscator, M.. Handbook on the Toxicology of metals[M]. New York: Elsevier/North-Holland Biomedical Press,1979:541-553.,.
    [13]Deknudt, G., Deminatti, M.. Chromosome studies in human lymphocytes after in vitro exposure to metal salts [J]. Toxicology.1978,10:67-75.
    [14]徐承水.环境中有害微量元素对人体健康的影响[J].广东微量元素科学.1999,6(10):1-3.
    [15]I ARC. Monographs on the evaluation of carcinogenic risk of chemicals to man[J]. International Agency for Research on Cancer.1976,11:75-112.
    [16]Mojdeh Owlad. Removal of hexavalent chromium-contaminated water and wastewater: A Review[J]. Water Air Soil Pollut.2009,200:59-77.
    [17]赵堃,柴立元,王云燕等.水环境中铬的存在形态及迁移转化规律[J].工业安全与环保,2006,32(8):1-3.
    [18]刘恢.改性活性污泥处理含铬废水的研究[D].湖南:中南大学,2004.
    [19]张静.改性活性炭纤维吸附Cr(Ⅵ)离子[D].上海:同济大学,2008.
    [20]廖自基.微量元素的环境化学及生物效应[M].北京:中国环境出版社,1985.
    [21]杨国栋.花生壳对水中Cr(Ⅵ)的吸附性能研究[D].甘肃:兰州理工大学,2009.
    [22]郭顺勤.铬、锰的性质及其应用[M].高等教育出版社,1992:1-2.
    [23]李宝贵,杜霞.污水资源化及其农业利用的对策[J].中国农村水利水电,2001,11:9-12.
    [24]常学秀,施晓东.土壤重金属污染与食品安全[J].云南环境科学,2001,20:21-24.
    [25]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态,1999,10(3):21-27.
    [26]廖利.深圳盐田垃圾场对周围土壤污染状况分析[J].城市环境与城市生态,1999,12(3):51-53.
    [27]张辉,马东升.公路重金属污染的形态特征及其解吸、吸附能力探讨[J].环境化学,1998,17(6):564-567.
    [28]陈怀满,郑春荣.中国土壤重金属污染现状与防治对策[J].人类环境杂志,1999,28(2):130-134.
    [29]张书海,沈跃文.污灌区重金属污染对土壤的危害[J].环境监测管理技术,2000,12(2):22-24.
    [30]张乃明.太原污灌区土壤重金属污染研究[J].农业环境保护,1996,15(1):21-23.
    [31]黄海涛,梁延鹏,魏彩春,等.水体重金属污染现状及其治理技术[J],广西轻工业,2009,5(126):99-100.
    [32]Patterson, J. w.. Industrial wasterwater treatment technology[M]. Boston:Butterworth Publishers,1985.
    [33]Kim DS. The rnnoval by crab shell of mixed heavy metal ions in aqueous solution [J]. Bioresource Technology.2003,87:355-357.
    [34]刘剑彤,削邦定.曝气混一体法去除碱性废水中砷的研究[J].中国环境科学,1997,17(2):148-187.
    [35]王军,吴文远.荧光及氧化铂中杂质的控制[J].包头钢铁学院学报,2002,21(4):84-85.
    [36]Cushnie, G. C. Jr.. Electroplating wasterwater pollution control technology[M]. Park Ridge,1985.
    [37]Chaudhari S, Tare Ⅴ. Analysis and Evaluation of Heavy Metal Uptake and Release by Inso-luble Starch Xanthate in Aqueous Enviroment[J]. Wat. Sci. Tech..1996,34(10): 161-168.
    [38]Crisafully R., Milhome M. A. L., Cavalcante R. M., Silveira E. R., De Keukeleire D. Nascimento R. F.. Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin[J]. Bioresource Technology.2008,99(10):4515-4519.
    [39]Chaudharia S, Tare Ⅴ. Analysis and evaluation of heavy metal uptake and release by insoluble starch xanthate in aqueous environment[J]. Water Science and Technology.1996, 34(10):161-168.
    [40]郭嘉,陈延林,罗哗,等.新型离子交换纤维的应用研究及展望[J].高科技纤维与应用.2005,30(6):35-38.
    [41]Birkett, J. D. in De Renzo, D. J. Unit operations for treatment of hazardous industrial wastes. Pollution Technology Review,47, Noyes Data Corporation, Park Ridge, New Jersey, 1978.
    [42]Yang, J., Volesky, B. P.. Biosorption of uranium on Sargassum biomass[J]. Water Research.1999,33(15):357-3363.
    [43]张秀英.天然及改性膨润土对重金属废水处理效果的试验研究[J].中国矿业.2006,15(9):83-87
    [44]胡付欣,等.改性膨润土及其在含铬废水处理中的应用研究[J].非金属矿.2002,(1):47.
    [45]苏玉红,王强,等.有机膨润土对重金属离子的吸附性研究[J].新疆有色金属学报.2003,(3):67.
    [46]李可等. 膨润土的改性及在废水处理中的应用[J].化工环保.2004,24:111-113
    [47]蒋明琴,金晓英,等. 天然高岭土对Pb2+,Cd2+,Ni2+,Cu2+的吸附及解吸性能研究[J]. 福建师范大学学报(自然科学版).2009,25(2):55-59
    [48]Arias M, Barral MT, Mcjuto JC. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids [J]. ChemospHere.2002,48(10):1081-1088.
    [49]古映莹,程化,邓鹏,等.高岭土-MBT复合体对某些重金属离子吸附性能的研究[J].精细化工中间体.2002,(04):33-34.
    [50]吴大清,刁桂仪,彭金莲.阴离子表面剂与重会属离子在高岭矿物表面协间吸附效应[J].科学通报.2001,46(10):860-862.
    [51]Shah wan T, Akar D, Eroglu AE. Physicochemical characterization of the retardation of aqueous Cs+ ions by natural kaolinite and clinoptilolite minerals[J]. Journal of Colloid and Interface Science.2005,285:9-17
    [52]Parkman R H, Charnock J M, Livens F R, et al. A study of the interaction of strontium ions in aqueous solution with the surfaces of calcite and kaolinite[J]. Geochimica et Cosmochimica Acta.1998,62(9):1481-1492
    [53]吴宏海,刘佩红,张秋云等.高岭石对重金属离子的吸附机理及其溶液的pH条件[J].《高校地质学报》.2005(1):85-91
    [54]刘转年,周安宁.金奇庭.粘土吸附剂在废水处理中的应用[J].环境污染治理技术与设备.2003,4(2):54-58
    [55]Faust, S. D., Aly.O. M.. Processes for Water Treatment[M]. Butter worths, Boston, MA.1987.
    [56]刘益萱,钟亮洁.颗粒活性炭在饮用水深度处理中的应用[J].给水排水.2001,27(3):12-16.
    [57]Fieser L. F.. An indirect method of studying the oxidation-reduction potentiels of unstable systems, including those from the pHenols and amines[J]. J. Am. Chem. Soe..1930 (52):5204-5241.
    [58]Radovic L. R., Silva I F, Ume J Ⅰ.. An experimental and theoretical study of the adsorption of aromatics possessing electron functional groups by chemically modified aetivatod carbons [J]. Carbon.1997(35):1339-1348.
    [59]Haghseresht F, Nouri S, Lu G Q. Effects of carbon surface chemistry and solution pH On the adsorption of binary oromatic solutes[J]. Carbon.2003(41):881-892.
    [60]范延臻,王宝贞.活性炭表面化学[J].媒炭转化.2000,23(4):26-29.
    [61]王宝庆,陈亚雄,宁平.活性炭水处理技术应用[J]. 云南环境科学.2000,19(3):46-50.
    [62]Jia Y. F., Thomas K. M., Langmuir[J].2000,16(3):1114-1122.
    [63]张启伟,王桂仙.竹炭对溶液中汞(Ⅱ)离子的吸附行为研究[J].林业科学.2006,42(9):102-105.
    [64]Marek Majdan, Stanislaw Pikus. Equilibrium study of seleeted divalent d-electron metals adsorption on A-type zeolite [J]. Journal of Colloid and Interface Science.2003,262: 321-330.
    [65]Sag, y., Atacoglu, I. and Kustal, T.. Equilibrium parameters for the single and multicomponent biosorption of Cr(VI) and Fe(Ⅲ) ions on R-arrhizus in a packed column[J]. Hydrometallurgy.2000,55:165-179.
    [66]S. Babel, T. A. Kurniawan. Low-cost adsorbents for heavy metals uptake from contaminated water:areview[J]. J. Hazard. Mater. B.2003,97:219-248.
    [67]M. Iqbal, A. Saeed, N. Akhtar. Petiolar felt-seath of palm:a new biosorbent for the removal of heavy metals from contaminated water[J]. Bioresour. Technol..2002,81: 151-153.
    [68]K. S. Low, C. K. Lee, A.. Ng. Column study on the sorption of Cr(Ⅵ)using quarternized rice hulls[J]. Bioresour. Technol..1999,68:205-208.
    [69]S. Raji, T. S. Anirudhan. Removal of Hg (II) from aqueous solution by sorption on polymerized saw dust[J]. Ind. J. Chem. Technol..1996,3:49-54.
    [70]Brandao, P. C., Souza, T. C., Ferreira, C. A., Hori, C. E.. Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent[J]. Journal of Hazardous Materials.2010,175(13):1106-1112.
    [71]Chung, M. K., Tsuia, Martin T. K., Cheung, K. C., Tam, Nora F. Y., Wong, M. H.. Removal of aqueous phenanthrene by brown seaweed Sargassum hemiphyllum: Sorption-kinetic and equilibrium studies[J]. Separation and Purification Technology.2007, 54(3):355-362.
    [72]Adams, B. A., Holmes, E. L. Adsorptive properties of synthetic resins [J]. Ⅰ. J. Soc. Chem. Ind..1935,54:1-6.
    [73]Volesky, B., Holan, Z. R.. Biosorption of heavy metals[J]. Biotechnol. Prog..1995, 11:235-250.
    [74]Muzzarelli, R. A. A., Tanfani, F., Emanuelli, M., Gentile, S.. The chelation of cupric ions by chitosan membranes[J]. J. Appl. Biochem..1980,2:380-389.
    [75]Darnall, D. W., Greene, B., Henzl, M. T., Hosea, J. M., Mcpherson, R. A., Sneddon, J.. Selective reconvery of gold and other metal ions from an algal biomass[J]. Environ. Sci. Technol..1986,20:206-208.
    [76]Kuyucak, N., Volesky, B.. Accumulation of cobalt by marine alga [J]. Biotechnol. Bioeng..1989,33:809-814.
    [77]Sharma, D. C., Forster, C. F.. A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents[J]. Biores. Technol..1994,47:257-264.
    [78]Treen-Sears, M. E., Volesky, B., Neufeld, R. J.. Ion exchange/complexation of the uranyl ion by Rhizopus biosorbent[J]. Biotechnol. Bioeng..1984,26:1323-1329.
    [79]Crist, D. R., Crist, R. H., Martin, J. R., Watson, J.. Ion exchange system in proton-metal reactions with algal cell walls, in Metals-Microorganisms Relationships and Applications[F], FEMS Symposium Abstracts, Metz, France, May 5-7. Societe Francaise de Microbiologie, Paris, France,1993.
    [80]Crist, R.H., Oberholser,K., Schwartz,D., Marzoff, J., Ryder,D.. Interactions of metals and protons with algae[J]. Environ. Sci. Technol..1998,22:755-760.
    [81]Crist. R. H., Oberholser, K., Wong, B., Crist, D. R.. Amine-alagae interaction: Cation exchange and possible hydrogen binding. [J] Environ. Sci. Technol..1992,26: 1523-1526.
    [82]Volesky, B., Holan, Z.R.. Biosorption of heavy metals[J]. Biotechnol. Prog.1995, 11:235-250.
    [83]黄翔,宗浩,陈文祥,陈施羽.张翔花生壳对水溶液中铜离子的吸附特性[J].四川师范大学学报(自然科学版).2007,30(3):380-383.
    [84]Crisafully R.,Milhome M. A.L., Cavalcante R. M., Silveira E. R., De Keukeleire D. Nascimento R. F. Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin[J]. Bioresource Technology.2008, 99(10):4515-4519.
    [85]Randall J M. Variations on effectiveness of barks as scavengers for heavy metal ions[J]. Forest Prod J..1987,27(11):51-56.
    [86]刘志生.炭化稻壳吸附去除水中硝基苯的试验[J].环境科学.2008,27(2):190-192.
    [87]王宇,高宝玉.改性玉米秸秆对水中磷酸根的吸附动力学研究[J].环境科学.2008,3.
    [88]D. C. Sharma, C. F. Forster. Column studies into the adsorption of chromium(VI)using sphagnum moss peat[J]. Bioresource Technology.1995,52:261-267.
    [89]韩彬,薛罡,荣达.稻草秸秆基活性炭对苯酚和亚甲基蓝的吸附性能研究[J].安徽农业科学.2009,37(7):3196-3199.
    [90]Yang, J., Volesky, B. P.. Biosorption of uranium on Sargassum biomass[J]. Water Research.1999,33(15):3357-3363.
    [91]Leusch, A., Volesky, B.. The influence of film diffusion on cadmium biosorption by marine biomass[J]. J. Biotechnology.1995,43:1-10.
    [92]Figueira, M. M., Volesky, B., Ciminelli, V. S. T.. Biosorption of metals in brown seaweed biosorbent[J]. Water Research.2000,34(1):196-204.
    [93]Kratochvil, D., Volesky, B., Demopoulos, G.. Optimizing Cu removal/recovery in a biosorption column[J]. Water Research.1997,31(9):2327-2339.
    [94]Aderhold, D., Williams, C. J., Edyvean, R. G.. J.. The removal of heavy metal ions by seaweed and their derivatives [J]. Bioresource Technology.1996,58:1-6.
    [95]Lee, H. S., Volesky, B.. Interaction of light metals and protons with seaweed biosorbent[J]. Water Research.1997,31(12):3082-3088.
    [96]Thom, D, Grant, G., Morris, E. R., Rees, D. A.. Characterisation of cation binding and gelation of polyuronates circular dichroism[J]. J. Carbohydrate Research.1982,100: 29-42.
    [97]浩云涛,李建宏, 潘欣.椭圆小球藻(Chlorella ellipsoidea) 对 4 种重金属的耐受性及富集[J].湖泊科学.2001,13(2):158-162.
    [98]Sag, y., Atacoglu, Ⅰ., Kustal, T.. Equilibrium parameters for the single and multicomponent biosorption of Cr(Ⅵ) and Fe(Ⅲ) ions on R-arrhizus in a packed column[J]. Hydrometallurgy.2000,55:165-179.
    [99]Kapoor, A., Viraraghavan, T. Heavy metal biosorption sites in Aspergillus Niger[J]. Bioresource Technology.1997,61:221-227.
    [100]Stoll, A., Duncan, J. R. Comparison of the heavy metal sorptive properties of three types of immobilized, non-viable Sccaromyces cerevisiae biosorben[J]. Process Biochemistry.1997,32:467-472.
    [101]Bag, H., Turker, A. R., Lale, M., Tunceli, A. Separation and speciationof Cr(Ⅲ) and Cr(VI) with Sccaromyces cerevisiae immobilized on sepiolite and determination of both species in water by FAAS[J]. Talanta.2000,51:895-902.
    [102]Schneider, I. A. H., Smith, R. W., Rubio, J.. Effect of mining chemicals on biosorption of Cu(Ⅱ) by non-living biosorbent of the Macrophyte Potamogeton Lugens[J]. Minerals Engineering.1999,12(3):255-260.
    [103]Brown, P. A., Brown, J. M., Allen, S. J.. The application of kudzu as a medium for the adsorption of heavy metals from dilute aqueous wastestream[J]. Bioresource Technology.2001,78:195-201.
    [104]Gardea-Torresdey, J. L., Tiemann, K. J., Gamez, G., Dokken, K.. Effects of chemical competition for multi-metal binding by Medicago Sativa(alfalfa)[J]. Journal of Hazardous Materials B.1999,69:41-51.
    [105]张志杰,王志盈,凤眼莲.对铅,镉废水净化能力的研究[J].环境科学.1989,10(5):14-17.
    [106]周风帆,王新光.利用凤眼莲净化水中放射性核素60钴、65锌和137铯的研究[J].中国环境科学.1989,9(1):26-30.
    [107]招文锐,杨兵,朱新民等.人工湿地处理凡口铅锌矿金属废水的稳定性分析[J].态科学.2001,20(4):16-20.
    [108]郭敏杰,刘振,李梅.壳聚糖吸附重金属离子的研究进展[J].化工环保.2004,24(4):262-264.
    [109]罗道成,易平贵,刘俊峰等.改性壳聚糖对电镀废水中重金属离子的吸附[J].材料保护.2002,35(1):11-12
    [110]邵健,杨宇民.香兰醛改性壳聚糖处理含铅、镉工业废水[J].化工时刊.2000,(2):37-40
    [111]邵健,杨宇民.香草醛改性壳聚糖的制备及其吸附性能[J].中国环境科学.2000,20(1): 61-64
    [112]黄晓佳,袁光谱,王爱勤.模板交联壳聚糖对过渡金属离子吸附性能研究[J].离子交换与吸附.2000,16(3):262-266
    [113]S. K. S rivastava, A. K. Singh, A. Sharma. Studies on the uptake of lead and zinc by lignin obtained from black liquor-a paper industry waste material [J]. Environ. Technol..1994,15:3532-3611.
    [114]章燕豪.吸附作用[M].上海:上海科学技术文献出版社,1989:7-8.
    [115]Cheung C. W., PorterJ. F., Mckay G.. Sorption kinetics for the removal of copper and zince from effluents using bone char[J]. Separation and Purification Technology.2000, 19:55-64.
    [116]Zhang J S, Stanforth R.. Slowadsorption reaction betweenarsenic species and goethite (α-FeOOH):diffusion or heterogeneous surface reaction control [J]. Langmuir.2005,21: 2895-2901.
    [117]Nathalie C, Richard G, Eric D. Adsorption of Cu(Ⅱ) and Pb(Ⅱ) onto a grafted silica:isotherms and kinetic models[J]. Water Research.2003,37:3079-3086.
    [118]Ho Y S, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochem.1999,34:51-65.
    [119]Ozacar M. Equilibrium and kinetic modeling of adsorption of phosphorus on calcined alunite[J]. Adsorption.2003,9:25-32.
    [120]El-Shahawi M. S., Nassif H. A.. Retention and thermodynamic characteristics of mercury(Ⅱ) complexes onto polyurethane foams [J]. Analytica Chimica Acta.2003,481 : 29-39.
    [121]沈学优,卢瑛莹,朱利中.对-硝基苯酚在水/有机膨润土界面的吸附行为[J].中国环境科学.2003,23(4):367-370.
    [122]ZHAO Zhen-guo(赵振国).Adsorption Mechanism and Application(吸附作用应用原理)[M].Beijing:Chemical Industry Press(北京:化学工业出版社),2005.
    [123]汤烜祎.表面活性剂改性泥炭吸附水体中疏水性有机物及其机理研究[D].上海:华东理工大学,2010:25-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700