用户名: 密码: 验证码:
黄河泥沙基可降解生土材料结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河携带的大量泥沙沉积于下游河道,下游河床不断抬高,成为名副其实的“地上悬河”,这给沿岸居民生活造成安全隐患的同时,疏浚泥沙的大量堆存还带来严重的环境问题。为了缓解水利和环境压力,关于黄河泥沙资源化利用的探索和实践都相继展开,主要集中在建材、陶瓷和土工方面的应用研究,虽然也取得了一些成果,但是,还存在工艺复杂、二次污染和消纳量低的缺陷,并未真正实现黄河泥沙的资源化利用。
     本论文在国家自然科学基金“可降解粘土基胶凝材料物理力学性能研究”的资助下,制备了具有适宜力学性能和耐久性的黄河泥沙基可降解生土材料,分析了黄河泥沙的活化机理和生土材料强度网络体系的形成过程与退化机理,并就生土材料的力学性能、微观结构、水分传输机制和耐久性进行了深入研究。研究工作取得如下主要进展:
     1.通过对黄河下游不同河段河道泥沙的物理、化学和工程性质的研究,发现不同河段的黄河泥沙均呈弱碱性,化学组成中硅、铝和钙含量较高,矿物组成以石英、长石和碳酸盐矿物为主,活性组分含量极低;黄河泥沙颗粒集中,粉粒含量高于80%;这就造成泥沙可密实性、可塑性和可稳定性相对较低,制约了黄河泥沙的工程应用。
     2.研究了黄河泥沙的活性激发方法、效果和机理。结果表明,机械研磨作用能够显著改善黄河泥沙的可密实性和可塑性;NaHSO4能够通过酸解和化学风化作用加速黄河泥沙中长石的成土进程,释放出游离Si4+和A13+,活性率和活性指数分别由1.18和0.51增高至5.20和0.64;Ca(H2PO4)2·H2O通过H2P04-在粘粒表面发生的络合反应和专性吸附进一步活化强化黄河泥沙,活性指数提高至0.68。
     3.根据生土基墙体材料的组成和结构设计,建立了可降解生土基墙体材料三套强度网络体系设计理念和结构模型,并以墙体材料中各组分间的作用机理和结构特征为检验依据对其进行验证。研究表明,连续无机水化产物网络通过物理填充和化学增强作用固结泥沙,是承载墙体材料强度和耐水性的主体;有机聚合物与无机水化产物形成互穿网络,以半连续的强度网络强化黄河泥沙;植物纤维三维乱向分散于生土结构中,并与无机水化产物建立牢固的物理粘结,起到固结泥沙颗粒的作用;三套强度网络相辅相成,协同作用。通过制备工艺和配合比的优选,采用传统的振动成型和标准养护工艺,当各组分掺量为:活化泥沙65%、无机胶凝材料25%、砂10%、外掺1.8wt.%改性聚乙烯醇和1.2V%植物纤维时,制备出黄河泥沙基墙体材料,其28d抗压强度14.4MPa、抗折强度3.54MPa、软化系数0.87,导热系数0.38W/(m.K)。
     4.研究了生土材料在不同环境条件作用下的结构与性能的演变规律,探讨了生土材料的水分传输机制及其在可控制条件下的性能退化机理。结果显示,生土材料与水接触后吸水饱和之前的毛细吸水量与时间的平方根成正比,毛细吸收系数为42.08g/m2·S“2,水分表面渗入速率与t0.01线性相关;冻融循环后生土材料结构中的大孔和50-200nm的有害孔体积增加20%,裂纹内有大量针状的钙矾石;碳化试验得出抗压强度与碳化深度关于直线y=-0.23x+15.1线性相关;根据冻融循环和碳化作用的实验结果,得出生土材料抗压强度的拟合公式:fcuk≈-0.86(?)·(φn/φ0)0.9+15.1;冻融30次循环后的生土材料,经10wt.%硫酸铵浸泡150d结构崩解,当生土碎屑与土壤以3:7的比例混合时,种植的小麦能够顺利出苗和生长。
The Yellow River flows through the Loess Plateau carrying large amounts of sediment to the Lower Yellow River, which results in the riverbed of downstream constantly elevation. Undoubtedly, this kind of situation becomes a serious hidden danger to residents living on both sides of the lower Yellow River, and also brings about serious environmental problems. In order to alleviate social and environmental stress, the research and practice of realizing resources utilization the sediment, primarily focused on building materials, ceramics and geotechnical applications, are started in succession. Some results have been achieved, in facts, most of these products prepared by sintering and pressing process and consumed low volume sediment. Therefore, these have become a barrier for utilization of sediment with low energy consumption.
     This paper aims to realize resource utilization of the Yellow River channel sediment. Degradable stabilized earth concrete with suitable mechanical properties and durability was prepared from the Yellow River sediment. Activation mechanism of the sediment and the discussion of its products regarding the formation process and degradation mechanism of the strength network system were analyzed principally. And the mechanical properties, microstructure, moisture transport mechanisms and durability of stabilized earth concrete were conducted in-depth study. Moreover, this thesis is financially supported by National Natural Science Foundation of China under Grant No.50972099. The main progresses are as follows:
     1. The Yellow River sediment of in different channel of the lower reaches was characterized by physical, chemical and engineering properties. The results indicate that all the sediment show weak alkaline and contain silicon, aluminium and calcium in chemical composition. The particles are mainly concentrate in0.075-0.005mm silty soil (>80%), which is composed of quartz, feldspar and carbonate and active ingredient is very low. All characteristics of the Yellow River sediment result in shortcomings at compactibility, plasticity and stability, which determine and restrict the field of its engineering applications.
     2. Activity characterization methods, activating technique and activation mechanism of the Yellow River sediment were discussed. The results show that mechanical polishing improves compactibility and plasticity of the Yellow River sediment significantly. NaHSO4, accelerates the process of soil formation of feldspar by acid hydrolysis and chemical weathering. Free Si4+and Al3+and generating layered secondary minerals are released from feldspar which leads to pozzolanic activity index (PAI) and reactive rate increase from0.51and1.18to0.64and5.20, respectively. The sediment is further activated and strengthened by Ca(H2PO4)2·H2O through complexation reactions and specific adsorption of H2PO4-on the cosmid surface. The PAI of the Yellow River sediment reaches0.68.
     3. According to the materials and structural design of stabilized earth concrete, three sets of strength network system design concept and structure model was established in this paper, and these were verified by microstructure and interacted mechanism among various components. Studies have shown that, a continuous network of inorganic hydration product consolidates sediment through physical filling and chemical enhancement, which is the support component of the strength and water resistance of stabilized earth concrete. Interpenetrating network is formed by an organic polymer network with inorganic hydration network, strengthening stabilized earth concrete in a semi-continuous network. The plant fiber three-dimensional disorderly distributed in stabilized earth concrete and build strong physical bond with the inorganic hydration network playing a role in the consolidation the sediment particles. Three sets of strength network supplement and cooperate with each other. By means of optimization of preparation process and mix proportion, stabilized earth concrete was prepared from the Yellow River sediment. Its28d compressive strength is14.4MPa, flexural strength is3.54MPa, the softening coefficient is0.87, the thermal conductivity is0.38W/(m-K).when mixture ratio of activated silt/cementitious binder/sand is65/25/10supported by1.8wt.%modified polyvinyl alcohol and1.2V%plant fibers.
     4. The evolution of the structure and properties of stabilized earth concrete under different environmental conditions were studied, and its long-term moisture transport mechanism and performance degradation mechanism were explored. The results show, the capillary absorbent capacity is proportional to the square root of time from stabilized earth concrete in contact with water to water saturated. The capillary absorption coefficient is42.08g/m2·s1/2, water surface inflow velocity and t0.01is linearly related. There is a large number of needle-like ettringite in the large holes and cracks after freezing and thawing. The volume of harmful pore (50-200nm) increases20%. The results of carbonation experiment show that compressive strength and carbonation depth is linearly related with y=-0.23x+15.1. According to the experimental results of the freeze-thaw cycle and carbonation, compressive strength degradation calculation model of stabilized earth concrete was derivated: fcuk≈-0.86(?)·(φn/φ0)0.9+15.1. The formation of stabilized earth concrete experienced30freeze-thaw cycles disintegrated after being soaked in10wt.%(NH4)2SO4solution for150days. The wheat planted can emergence and grow smoothly when specimen debris and soil are mixed with a ratio of3:7.
引文
[1]丁力新.用土壤改良法对城乡交错带废弃地进行生态恢复的实验研究[D].硕士学位论文.吉林:东北师范大学,2007.
    [2]Dehaan R L, Taylor G R. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization [J]. Remote Sensing of Environment.2002, 80:406-418.
    [3]柴寿喜,王沛,韩文峰等.高分子材料固化滨海盐渍土的强度与微结构研究[J].岩土力学,2007,28(6):1067-1072.
    [4]苏群,徐渊博,张复实.国际以及国内土壤固化剂的研究现状和前景展望[J].黑龙江工程学院学报(自然科学版),2005,19(3):1-4.
    [5]Alekslev A. S., Longdon B., Christmas M. J.,et al. Individual choice of building material for nest construction by worker ants and the collective outcome for their colony [J]. Animal Behaviour,2007,74,559-566.
    [6]M I Cosarinsky, F Roces. Neighbor leaf-cutting ants and mound-building termites: Comparative nest micromorphology[J]. Geoderma,2007,141,224-234.
    [7]Verma K S, Saxena R K, Barthwal, et al. Remote sensing technique formapp ing salt affected soils [J]. International Journal of Remote Sensing,1994,15(9):1901-1914.
    [8]Aleksiev A. S. Sendova-Franks, A. B.,& Franks, N. R. The selection of building material for wall construction by ants [J]. Animal Behaviour,2007,73,779-788.
    [9]刘万铨.关于黄土高原水土流失治理方略的探讨[J].中国水土保持,2000,1:20~22.
    [10]刘东生.黄河中游黄土[M].北京:科学出版社,1964.
    [11]王萍,郑光和,邵菁,等.利用黄河泥沙制作防汛备防石的试验研究[J].人民黄河,2012:34(5):12-12,31.
    [12]江恩惠,赵胜利,冷元宝等.黄河下游滩区新农村建设生态建筑材料关键技术研究.科技成果,2008.11.
    [13]冉献强,景镇子,潘晓辉,等.黄河淤积泥沙性质分析及水热固化泥沙初探[J].材料导报,2010:24(5):442~446.
    [14]张金升,李嘉,刘英才等.建材研究的新热点-黄河淤泥沙综合利用进展及前景展望[J].材料导报,2003,16(3):1-3.
    [15]李其光,刘士进.黄河泥沙固化新技术研究与应用[J].山东水利,2009,3:29~31.
    [16]周城.利用黄河泥沙研制新一代陶瓷酒瓶[D].硕士学位论文.武汉:武汉理工大学,2007.
    [17]程科,徐斌,徐利华,等.黄河泥沙非传统资源制备O'-SiAlON/SiC耐火材料[J].稀有金属材料与工程,2007,36 (Suppl.2),369-372.
    [18]Jacobo Martinez-Reyes, Rafael Alavez-Ramire, et al. Mineralogical effect on the pozzolanic reactivity of a Mexican lacustrine soil [J]. Construction and Building Material,2010,24: 2650-2657.
    [19]陈鼎,严红革,黄培云.机械力化学技术研究进展[J].稀有金属,2003,27(2):293~298.
    [20]宋旭艳,宫晨琛,李东旭.煤矸石活化过程中结构特性和力学性能的研究[J].硅酸盐学报,2004,32(3):358-373.
    [21]王晓钧,杨南如,周洪庆.粉煤灰研磨过程中铝氧多面体结构变化的核磁共振研究[J].硅酸盐学报,2003,31(2):188~193.
    [22]司鹏.煤矸石酸法提铝的活化技术研究[D].博士学位论文.上海:华东理工大学,2011.
    [23]董涛,陶珍东,常青.几种激发剂对钢渣活性的影响[J].水泥工程,2012,5:27~29.
    [24]刘国志.固硫灰特性及其复合胶凝材料的研究[D].硕士学位论文.郑州:郑州大学,2010.
    [25]蔺喜强,王栋民,许晨阳,等.硫酸盐类及氯盐类激发剂对粉煤灰活性的影响[J].粉煤灰,2012,(1):4-7.
    [26]郭伟,李东旭,陈建华,等.热活化与机械力活化对煤矸石胶凝性的影响[J].建筑材料学报,2011,14(3):371-374.
    [27]万建华,孙恒虎,冯向鹏,等.热活化黄土胶凝性能研究[J].稀有金属材料与工程,2007,36(Suppl.2):577~579.
    [28]张喜,吴勇生,张剑波,等.建筑废弃混凝土细粉的活性激发及再利用可行性分析[J].江西科学,2011,29(1):70-74.
    [29]肖勇丽.辐射激发粉煤灰活性研究[J]硕士学位论文.重庆:重庆大学,2008.
    [30]朱明秀.煤矸石的复合活化研究[D].硕士学位论文.南京:南京工业大学,2006.
    [31]罗忠涛,马保国,杨久俊,等.高温对粉煤灰表面解聚作用研究[J].中国矿业大学学报,2011,40(5):793-798.
    [32]付凌雁,张召述,娄东民,等.铝土矿尾矿活化制备水泥基材料的研究[J].化学工程,2007,35(6):41-44.
    [33]段瑜芳,王培铭.碱激发煤矸石胶凝材料的早期水化过程[J].材料科学与工程学报,2008,26(4):511-515.
    [34]王军,吕东军.走向生土建筑的未来[J].西安建筑科技大学学报,2001,33(2):147-149.
    [35]Hall M, Djerbib Y. Moisture ingress in rammed earth:part 1-the effect of soil particle size distribution on the rate of capillary suction [J]. Construction and Building Materials.2004, 18:269-80
    [36]Hall M, Djerbib Y. Moisture ingress in rammed earth:part 2-the effect of soil particle size distribution on the absorption of static pressure driven water [J]. Construction and Building Materials,2006,20:374-83.
    [37]F. Pacheco-Torgal, Said Jalali. Earth construction:Lessons from the past for future eco-efficient construction [J]. Construction and Building Materials,2012,29:512-519.
    [38]MacDougall C. Natural building materials in mainstream construction:lessons from the UK [J]. J Green Build,2008,3:3-14.
    [39]Hall M, Allinson D. Assessing the effects of soil grading on the moisture content dependent thermal conductivity of stabilised rammed earth materials [J]. Appl Therm Eng,2009,29: 740-747.
    [40]尚建丽.传统夯土民居生态建筑材料体系的优化研究[D].博士学位论文.西安:西安建筑科技大学,2005.
    [41]卜永红,王毅红,李丽,等.不同夯筑方法的承重夯土墙体抗震性能试验[J].长安大学学报(自然科学版),2011(31),6:72-76.
    [42]阿肯江·托呼提,秦拥军等.木柱土坯组合墙体非线性数值计算分析[J].重庆大学学报,2008,31(11):1277-1284.
    [43]Steve Burroughs. Soil Property Criteria for Rammed Earth Stabilization [J]. Journal of Materials in Civil Engineering,2007,20(3):264-273.
    [44]Hall M, Allinson D. Assessing the effects of soil grading on the moisture content- dependent thermal conductivity of stabilised rammed earth materials[J]. Appl Therm Eng,2009,29: 740-747.
    [45]C. Jayasinghe, N. Kamaladasa. Compressive strength characteristics of cement stabilized rammed earth walls [J]. Construction and Building Materials,2007(21):1971-1976.
    [46]Nurhayat Degirmenci. The using of waste phosphogypsum and natural gypsum in adobe stabilization [J]. Construction and Building Materials,2008(22):1220-1224.
    [47]Silva B, Correia J, Nunes F, Tavares P, et al. Earth construction-Bird teaching[C].2nd WSEAS International Conference on Natural Hazards,2009,9:72-78.
    [48]C. Galan~Marin, C. Rivera~Gomez, J. Petric. Clay-based composite stabilized with natural polymer and fibre [J]. Construction and Building Materials,2010,24:1462-1468.
    [49]M. Achenza, L. Fenu. On earth stabilization with natural polymers for earth masonry construction [J]. Materials and Structures,2006,39:21-27.
    [50]Alfred B. Ngowi. Improving the traditional earth construction:a case study of Botswan [J]. Construction and Building Materials,1997,11(1):1-7.
    [51]周铁钢,穆钧,杨华.抗震夯土民居在灾后重建中的应用与实践[J].世界地震工程,2010,26(3):145-150.
    [52]王伟超.豫西北地区生土民居墙体材料的力学与热工特性研究[D].硕士学位论文.焦作:河南理工大学,2009.
    [53]钱觉时,王琴,贾兴文等.燃煤电厂脱硫废弃物用于改性生土材料的研究[J].新型建筑材料,2009,2:28-31.
    [54]刘军,盛国东,刘宇.固化剂掺量对生土墙体材料性能的影响[J].沈阳建筑大学学报(自然科学版),2010,26(3):517-521.
    [55]王赞.陕南生土材料改性试验研究[J].建筑科学,2011,27(11):49-50.
    [56]刘军,袁大鹏,周红红,等.狗尾草对加筋土坯力学性能的影响[J].沈阳建筑大学学报(自然科学版),2010,26(4):720-733.
    [57]焦春节.土坯、泥浆改性试验研究及生土墙体高厚比限值研究[D].硕士学位论文.昆明:昆明理工大学,2008
    [58]石坚,李敏,王毅红,王春英.夯土建筑土料工程特性的试验研究[J].四川建筑科学研究,2006,32(4):86~87.
    [59]Matthew R. Hall. Assessing the environmental performance of stabilised rammed earth walls using a climatic simulation chamber [J]. Building and Environment,2007,42:139-145.
    [60]Q. B. Bui,J. C. Morel, B. V. Venkatarama Reddy. Durability of rammed earth walls exposed for 20 years to natural weathering [J]. Building and Environment,2009,44:912-919.
    [61]A. Guettala, A. Abibsi, H. Houari. Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure [J]. Construction and Building Materials,2006, 20:119-127.
    [62]Olivier Cuisinier, Tangi Le Borgne, Dimitri Deneele. Quantification of the effects of nitrates, phosphates and chlorides on soil stabilization with lime and cement [J]. Engineering Geology,2011,117:229-235.
    [63]严耿升.干旱区土质文物劣化机理及材料耐久性研究[J].博士学位论文.兰州:兰州大学,2011.
    [64]严耿升,张虎元,王旭东等.古代生土建筑风蚀的主要影响因素分析[J].敦煌研究,2007,105(5):78~82.
    [65]谭晓倩.活化生土基低碳节能村镇建筑材料研究[D].大连理工大学博士学位论文,2011.
    [66]柏文峰.云南民居结构更新与天然建材可持续利用[D].博士学位论文.北京:清华大学,2009.
    [67]朱庭芸.灌区土壤盐渍化防治[M].北京:农业出版社,1992:32.
    [68]Maria Idalia Gomes, Mario Lopes, Jorge de Brito. Seismic resistance of earth construction in Portugal [J]. Engineering Structures,2011, (33):932-941.
    [69]王沛钦,郑山锁,柴俊等.走向生土建筑结构[J].工业建筑,2008,38(3):101-105.
    [70]王兆印,林秉南.中国泥沙研究的几个问题[J].中国泥沙研究,2003,(4):73-81.
    [71]王兆印,王文龙,田世民.黄河流域泥沙矿物成分与分布规律[J].泥沙研究,2007,5:1-8.
    [72]姚占勇.黄河冲淤积平原土的工程特性研究[D].博士学位论文.天津大学: 2006.
    [73]卢金伟,李占斌.土壤团聚体研究进展[J].水土保持研究,2002,9(1):81~85.
    [74]林素梅,王圣瑞,金相灿,等.湖泊表层沉积物可溶性有机氮含量及分布特性[J]. 湖泊科学),2009,21(5):623-630.
    [75]廉慧珍,张志龄,王英华.火山灰质材料活性的快速评定方法[J].建筑材料学报,2001,4(3):299~304.
    [76]王迎斌.镍铬铁合金渣粉的活性特征及其激发技术研究.硕士学位论文.武汉:武汉理工大学,2010.
    [77]L. D. Baver, Walter H. Gardner, Walford H. Gardner.(译:周传槐).土壤物理学[M].第1版.北京:农业出版社,1983:145-155.
    [78]李学垣.土壤化学[M].北京:高等教育出版社,2001.
    [79]钱文勋.粉煤灰早期活性激发及其机理研究[D].硕士学位论文.南京:南京水利科学研究院,2002.
    [80]方永浩.固体高分辨核磁共振在水泥化学研究中的应用[J].建筑材料学报,2003,6(]):54~60.
    [81]钱文勋,蔡跃波.活性激发过程中粉煤灰硅氧多面体结构变化的核磁共振研究[J].材料科学与工程学报,2004,22(4):561~563.
    [82]杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000:601
    [83]易志慧,蒋海清,王晓均,等.粉煤灰激活中ATR/FTIR和NMR的分析与比较[J].材料导报:2007,21(11):278~281.
    [84]薛纪越,蔡元峰,赵晓宁,等.碱性长石A1-Si有序化进程中微结构和29SiNMR谱的表现[J].矿物学报:1998,18(3):261-267.
    [85]聂轶苗,牛福生,刘淑贤,等.利用核磁共振对矿物聚合物材料中硅铝存在状态的研究[J].材料导报:2009,23(11):216~219,222.
    [86]于天仁,陈志诚.土壤发生中的化学过程[M].北京:科学出版社,1990:11-18,461-467.
    [87]李兴国,许仲生.分散性土的试验鉴别和改良[J].岩土工程学报,1989,11(1):62-64.
    [88]E. Acevedo-Martinez, L. Y. Gomez-Zamorano, J. I. Escalante-Garcia. Portland cement-blast furnace slag mortars activated using waterglass-Part 1:Effect of slag replacement and alkali concentration [J]. Construction and Building Materials,2012,37:462-469.
    [89]Ding Rui. Experimental study of the surface reactions between clay minerals and water-glass [J]. Chinese Journal of Geotechnical Engineering,1999,5:334-337.
    [90]胡康博.黄河泥沙沉积物的理化性质及其对磷的吸附行为研究[].硕士毕业论文.北京:北京林业大学,2011.
    [91]秦湘阁,马臣,孟祥才.磷酸钙生物陶瓷[J].佳木斯大学学报(自然科学版),2001.6(2):175-178.
    [92]拾兵,陈举,张芝永.植物根系对河道滩坡抗冲性影响的试验[J].水利水电科技进展,2012,32(2);50-53.
    [93]张波.生土建筑墙体改性材料探讨[J].攀枝花学院学报,2010,27(3):27~29.
    [94]朱大宇.水泥土力学性能的试验分析.建筑材料学报,2006,9(3):291-296.
    [95]Aly Ahmed, Keizo Ugai. Environmental effects on durability of soil stabilized with recycled gypsum[J]. Cold Regions Science and Technology,2011,66:84-92.
    [96]王伟超,王一新,陈兴义.豫西北地区改性生土建筑材料抗压试验研究[J].河南理工大学学报(自然科学版),2012,31(2):221-224.
    [97]Sazzad Bin-Shafiquea, K. Rahmanb, Mustafa Yaykirana, et al. The long-term performance of two fly ash stabilized fine-grained soil subbases [J]. Resources, Conservation and Recycling,2010,54:666-672.
    [98]Jin Liu, Bin Shi, Hongtao Jiang, et al. Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer [J]. Engineering Geology,2011,117:114-120.
    [99]黄晓乐,许文年,夏振尧.植被混凝土基材2种草本植物根-土复合体直剪试验研究[J]水土保持研究,2010,17(4):158-165.
    [100]刘一星,韩景泉,张显权,等.水泥基麦秸碎料复合材的制备工艺研究[J].建筑材料学报,2009,12(3):369~374.
    [101]邱谍,刘斌,赵春振.改性聚乙烯醇的力学性能[J].塑料,2010,33(3):34-36.
    [102]徐伟,杨锐,蒋涛.硼酸改性聚乙烯醇薄膜的制备及性能研究[J].胶体与聚合物,2012,30(3):109-111.
    [103]邓朝晖.建筑材料导热系数的影响因素及测定方法[J].工程质量,2008,4:15~18.
    [104]赵晖,吴晓明,高波,等.水泥细度对混凝土劣化性能的影响[J].建筑材料学报,2010,13(4):520~523.
    [105]Mathieu Robert, Brahim Benmokrane. Combined effects of saline solution and moist concrete.on long-term durability of GFRP reinforcing bars [J]. Construction and Building Materials,2013,38(1):274-284
    [106]杨久俊,海然,吴科如.钙矾石的结构变异对膨胀水泥膨胀性的影响[J].无机材料学报,2003,18(1):136-141.
    [107]G. Qu, A.de Varennes. Use of hydrophilic polymers from diapers to aid the establishment of Spergularia purpurea in amine soil[J]. Journal of Hazardous Materials,2010,178: 956-962.
    [108]李伟,李艳萍,王显艳,等.聚合物乳液混凝土在除险加固工程中的应用[J].混凝土,2009,4:110~112.
    [109]牛林,夏正斌,柯志烽,等.可再分散胶粉在水中再分散稳定性的研究[J].新型建筑材料,2010,9:58~60,64.
    [110]李应权,徐永模,韩立林.低聚灰比高弹性聚合物水泥防水涂料的研究[J].新型建筑材料,2002,9:47~50.
    [111]Peng Liu. Polymer modified clay minerals:A review [J]. Applied Clay Science,2007, 38(12):64-76.
    [112]姜崇喜,李敏,邹斌等.丙烯酸钙改善砂粘土工程性能的细观机理研究[J].电子显微报,2001,20(4):372~373.
    [113]刘志明,王逢瑚,苏润洲.麦秆表面形貌及表面元素分析[J].东北林业大学学报,2002,30(2):62~65.
    [114]Sayyed Mahdi Hejazi, Mohammad Sheikhzadeh, Sayyed Mahdi Abtahi, et al. A simple review of soil reinforcement by using natural and synthetic fibers [J]. Construction and Building Materials,2012,30:100-116.
    [115]戴葵.建筑墙体材料性能的工艺研究[J].武汉工业学院学报,2006,25(1):82~85.
    [116]Olivier Cuisinier, Jean-Claude Auriol, Tangi Le Borgne, et al. Microstructure and hydraulic conductivity of a compacted lime-treated soil [J]. Engineering Geology,2011,123:187-193.
    [117]王惠芬,周鹏,刘海燕.石灰土早期强度的影响因素试验研究[J].路基工程,2010, 2:73~75.
    [118]M. J. McCarthy, L. J. Csetenyi. A. Sachdeva, et al. Identifying the role of fly ash properties for minimizing sulfateheave in lime-stabilized soils [J]. Fuel,2012,92:27-36
    [119]姚旺.高炉矿渣、粉煤灰和黏土的混合土材料力学参数试验研究[D].硕士学位论文.沈阳:沈阳建筑大学,2012.
    [120]张慧莉,田堪良,石一彤.SY土壤固化剂对砂质粉土工程性能的影响研究[J].灌溉排水学报,2010,29(2):126-130.
    [121]Daniel Castro-Fresno, Diana Movilla-Quesada, Angel Vega-Zamanilloet al. Lime stabilization of bentonite sludge from tunnel boring [J]. Applied Clay Science,2011,51: 250-257.
    [122]G. Rajasekaran, S. Narasimha Rao. Compressibility behaviour of lime-treated marine clay [J]. Ocean Engineering 2002,29:545-559.
    [123]徐方,朱婧,陈建平,等.新型聚合物水泥胶浆界面剂粘结性能及作用机理研究[J].材料导报,2012,21(5):119~122.
    [124]杨久俊,严亮.PFCY沙土固结材料的结构与性能[J].功能材料,2010(41):881-885.
    [125]李家和,王政,祝瑜.水泥基稻草纤维材料性能及结构的研究[J].武汉理工大学学报,2009,31(5):13-23.
    [126]贾尚华.石灰水泥复合土固化机理及力学性能的试验研究[D].硕士学位论文.内蒙古:内蒙古农业大学,2011.
    [127]商庆森,姚占勇,刘树堂.提高石灰稳定粉土的强度及抗冻性的研究[J].山东工业大学学报,1997,27(1):8-11.
    [128]赵帅,李国忠,王英姿.聚丙烯纤维和聚合物乳液对水泥砂浆性能影响[J].建筑材料学报,2008,11(4):392~396.
    [130]P. C. Aitcin. The durability characteristics of high performance concrete:a review [J] Cement & Concrete Composites.2003,25:409-420.
    [131]王艳.一般大气环境多因素作用下钢纤维混凝土耐久性研究[D].博士学位论文.西安:西安建筑科技大学,2011.
    [132]李淑红,王立成.多孔建筑材料毛细吸水过程研究进展综述[J].水利与建筑工程学报,2010,8(6):16-20.
    [133]Lars-Olof Nilsson. Durability concept:pore structure and transport processes [J]. Advanced Concrete Technology Set,2003,1:329.
    [134]王立成.建筑材料吸水过程中毛细管系数与吸水率关系的理论分析[J].水利学报,2009,20(9):1084-1089.
    [135]Sabir B B, Wild S, Farrell MO. A water sorptivity test for mortar and concrete [J]. Materials and Structures,1998,31(8):568-574.
    [136]陈立军,窦立岩,张春玉,等.混凝土孔结构的分类命名与高性能混凝土的孔结构种类[J].混凝土,2012,7:28~30.
    [137]P. Kumar Mehata, Paulo J. M. Monteiro.(译:覃维祖,王栋民,丁建彤).混凝土微观结构、性能和材料[M].北京:中国电力出版社,2008.
    [138]C. Hall. Water sorptivity of mortar and concretes:a review [J]. Magazine of Concrete Research,1989,41(147):51-61.
    [139]Rose D. Water movement in unsaturated porous materials. Rilem Bulletin,1965, (29): 119-124.
    [140]Tang Luping, Lars-Olof Nilsson. A study of the quantitative relationship between permeability and pore size distribution of hardened cement pastes [J]. Cement and Concrete Research,1992,22(4):541-550.
    [141]Jennings H. A model for the microstructure of calcium silicate hydrate in cement paste [J]. Cement Concrete Research,2000,30(1):101-116.
    [142]刘军,邢锋,董必钦.混凝土孔结构和渗透性能关系研究[J].混凝土,2007,27:35-38
    [143]陶博.混凝土孔隙结构对氯离子扩散的影响[D].硕士学位论文.武汉:武汉理工大学,2009.
    [144]Garboczi E J, Bentz D P. Modelling of the microstructure and transport properties of concrete[J]. Construction and Building Materials,1995,10(5):293-300.
    [145]吕文舫,何云峰.水力学[M].同济大学出版社,1990.
    [146]Z. Q. Chen, M. H. Shi. Study of heat and moisture migration propertiesin porous building materials [J]. Applied Thermal Engineering,2005,25:61-71.
    [147]李春秋.干湿交替下表层混凝土中水分与离子传输过程研究[D].博士学位论文.北京:清华大学,2009.
    [148]Hans Janssen. Thermal diffusion of water vapour in porous materials:Fact or fiction? [J]. International Journal of Heat and Mass Transfer,2011,54(7-8):1548-1562.
    [149]石玉洁,杨文治,费维温.蒸发条件下土壤到税率和扩散系数的测定[J].水利学报,1984,2:33~38.
    [150]Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of American Journal,1980,44(5):892-898.
    [151]张智博,张君.混凝土收缩与环境湿度的关系研究[J].建筑材料学报,2006,9(6):720~723.
    [152]张君,侯东伟.基于内部湿度试验的早龄期混凝土水分扩散系数求解[J].清华大学学报(自然科学版),2008,48(12):2033-2035,2040.
    [153]Hall C, Yau MHR. Water movement in porous building materials-IX:the water absorption and sorptivity of concretes [J]. Build Environ,1987,22(1):77-82.
    [154]A. Leventis, D. A. Verganelakis, M. R. Halse, et al. Capillary imbibition and pore characterization in cement pastes. Transport in Porous Media,2000,39:143-157.
    [155]郑水林.粉体表面改性[M].北京:中国建材工业出版社,1995.22-25.
    [156]Matthew Hall, Youcef Djerbib. Moisture ingress in rammed earth:Part 3-Sorptivity, surface receptiveness and surface inflow velocity [J]. Construction and Building Materials, 2006,20:384-395.
    [157]钱春香,王育江,黄蓓.水在混凝土裂缝中的渗流规律[J].硅酸盐学报,2009,32(12): 2078~2082.
    [158]金珊珊,张金喜,张江,等.水在混凝土中扩散系数测定方法的研究[J].武汉理工大学学报,2009,31(16):31-35.
    [159]Akita H, Fujiwara T, Ozaka Y. A practical procedure for theanalysis of moisture transfer within concrete due to drying[J]. Magazine of Concrete Research,1997,49:129-137.
    [160]谈云志,孔令伟,郭爱国,等.压实红黏土水分传输的毛细效应与数值模拟岩土力学[J].2010,31(7):2289~2294.
    [161]C Hall. Water movement in porous building materials -1.* Unsaturated flow theory and its application [J]. Building Environment,1977,12:117-125.
    [162]王新友,蒋正武,高相东,等.混凝土中水分迁移机理与模型研究评述[J].建筑材料学报,2002,5(1):66-71
    [163]沈春华.水泥基材料水分传输的研究武汉[D].博士学位论文.武汉:武汉理工大学:2007.
    [164]高礼雄,孙国文,张云升,等.水泥基复合材料氯离子扩散系数与孔隙率之间的关系[J].重庆大学学报,2012,35(11):53~60.
    [165]V. G. Papadakis, C. G. Vayenas, M. N. Fardis. Fundamental Modeling and Experimental Investigation of Concrete Carbonation[J]. ACI Materials Journal,1991,88(4):2363-2373.
    [166]刘志勇,孙伟.多因素作用下混凝土碳化模型及寿命预测[J].混凝土,2003,12:3~7.
    [167]牛荻涛,陈立亭,张成中.混凝土中气体扩散系数的计算模型[J].西安建筑科技大学学报,2007,39(6):741-745.
    [168]陈惠苏,孙伟,Stroeven Piet.水泥基复合材料集料与浆体液面研究综述(一):实验技术[J].硅酸盐学报,2001,32(1):73-69.
    [169]陈胡星,马先伟,陈柏连.含粉煤灰或矿渣水泥石的孔结构[J].材料科学与工程学报,2003,21(3):360~363.
    [170]周永祥,阎培渝.固化盐渍土经干湿循环后力学性能变化的机理[J].建筑材料学报,2006,9(6):735-741.
    [171]郑军,阎长虹,夏文俊,等.干湿循环对新型固化土承载强度影响的试验研究[J].岩石力学与工程学报,2009,28(Supp.1):3051-3056.
    [172]慕现杰,张小平.干湿循环条件下膨胀土力学性能试验研究[J].岩土力学,2008,28(Supp.1):580-582.
    [173]潘钢华,秦鸿根,孙伟,等.粉煤灰混凝土冻融破坏机理研究[J].建筑材料学报,2002,5(1):37~41.
    [174]慕儒,田稳苓,周明杰.冻融循环条件下混凝土中的水分迁移[J].硅酸盐学报,2010,38(9):1713~1717.
    [175]Sellevold E J, Fast AD T. Frost/salt testing of concrete:Effect of test parameters and concrete moisture history[J]. Nordic Concrete Research,1991,(10):121-138.
    [176]赵霄龙,卫军,黄玉盈.混凝土冻融耐久性劣化与孔结构变化的关系[J].武汉理工大 学学报,2002,24(12):14~17.
    [177]K. A. Heathcote. Durability of earthwall buildings [J]. Construction and Building Materials [J].1995,9(3):185-189.
    [178]余红发,孙伟,鄢良圃,等.在盐湖环境中高强与高性能混凝土的抗冻性[J].硅酸盐学报,2004,32(7):842-848.
    [179]张国强.混凝土抗盐冻研究[D].硕士学位论文.北京:清华大学,2005.
    [180]Parrott L J. Variations of water absorption rate and porosity with depth from an exposed concrete surface:Effects of exposure conditions and cement type [J]. Cement and Concrete Research,1992,22(6):1077-1088.
    [181]刘斌.大掺量粉煤灰混凝土的抗碳化性能[J].混凝土,2003,3:44~48.
    [182]ROY S K., POH K B, NORTHWOOD D O. Durability of concrete accelerated carbonation and weathering studies [J]. Building and Environment,1999,34(5):597-606.
    [183]柳俊哲,吕丽华,李玉顺.混凝土碳化研究与进展(2)—碳化速度的影响因素及碳化对混凝土品质的影响[J].混凝土,2005,12:10-14.
    [184]Heukamp F H, Ulm F J, Germaine J T. Poroplastic properties of calcium-leached cement based materials [J]. Cement and Concrete Research,2003,33:1155-1173.
    [185]蔡新华,何真,孙海燕,等.溶蚀条件下水化硅酸钙结构演化与粉煤灰适宜掺量研究[J].水利学报,2012,43(3):302~327.
    [186]牛荻涛,陈亦奇,于澍.混凝土结构的碳化模式与碳化寿命分析[J].西安建筑科技大学学报,1995,27(4):365~369.
    [187]Ryu J S, Nobuaki O, Hiroshi M. Long-term Forecast of Ca Leaching from Mortar and Associated Degeneration[J]. Cement and Concrete Research,2002,32:1539-1544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700