用户名: 密码: 验证码:
胶凝材料组成和温度对补偿收缩混凝土变形性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对水泥-HCSA膨胀剂-粉煤灰三元复合胶凝材料体系,以补偿收缩砂浆和补偿收缩混凝土为研究对象,通过正交试验和平行试验,系统研究了各因素对膨胀剂膨胀效能发挥的的影响程度及影响规律,其中重点研究了高温养护对膨胀效能的影响;运用水化热、化学结合水量、XRD、SEM等微观测试手段讨论了补偿收缩复合胶凝材料的水化过程、水化产物及其微观形貌。主要的研究结论如下:
     常温下,硫铝酸钙-氧化钙类膨胀剂在补偿收缩砂浆中膨胀效能发挥迅速,早期膨胀大,稳定期早;膨胀剂掺量越大,粉煤灰掺量越小,限制膨胀率越大;采用水中限制膨胀率、干空限制膨胀率、干燥收缩落差率三个参数评价膨胀剂的膨胀效能时具有很好地一致性。三因素对膨胀效能的影响在7d后趋于稳定,其中膨胀剂掺量的影响最大,粉煤灰掺量居中,水胶比最小;膨胀剂掺量不是唯一的膨胀量决定因素,通过调整胶凝材料组成,可以达到不同的限制膨胀率目标。
     在水量充足的情况下膨胀剂与水泥的水化相互促进,如果水量不足,两者的关系转变为相互抑制,膨胀剂先于水泥水化,会优先争夺到水,产生理想的膨胀。高温虽然显著地促进了膨胀剂和水泥的水化,但也加剧了膨胀剂和水泥对有限水分的争夺,使得膨胀与强度的矛盾得以显现,室温下得出的各因素对限制膨胀率和强度的影响程度及影响规律,很多在高温下不再适应。高温时1d限制膨胀率接近或达到最大值,其后发展缓慢,早期较高的膨胀会抑制强度的发展,使得膨胀与强度发展不再如20℃时那么协调。在膨胀剂一定的情况下,水胶比对膨胀率的影响受温度影响很大,在40℃养护时,水胶比越大,膨胀率越大,与20℃和60℃时的规律相反;粉煤灰掺量越大,膨胀率越小,在不同温度下其影响规律不变。
     粉煤灰的掺加能促进膨胀剂在混凝土中膨胀效能的发挥,适量的粉煤灰可以显著地促进膨胀增长,掺量过大会因早期约束不足而减弱对膨胀的促进作用,对于高膨胀效率的硫铝酸钙-氧化钙类膨胀剂和粉煤灰复掺的补偿收缩混凝土,可以通过调整胶凝材料组成,使其不产生收缩,且膨胀剂的掺量要求可以适当降低。
     膨胀剂对低水胶比混凝土中的自收缩也有良好的补偿作用,在水化1d内没有补偿效果,之后开始发挥补偿作用,粉煤灰掺量越大,水胶比越大,其补偿效果越明显。水胶比0.34时,膨胀剂可以补偿全部的自收缩,使混凝土在30h后持续保持膨胀状态。
Expansive mortar and expansive concrete of composite cementitious materials wereinvestigated. The influence of factors on the expansion efficiency of expansive agentwas studied by orthogonal test and parallel test and the influence of high temperaturecuring on the expansive efficiency was discussed emphatically. The hydration process,hydration products, and microstructure of shrinkage-compensating composite binderwere studied by hydration heat, non-evaporable water, XRD, SEM. The main contentsand results are listed as follows:
     Sulfoaluminate–calcium expansive agent can produce a larger expansion and agreater expansion speed at early ages. The restrained expansion rate (RER) of mortarcured moistly, RER residue and expansion decline of mortars after dry shrinkage arewell consistent with each other to assess the expansion performance of expansive agent.The increased content of expansive agent and the decreased content of fly ash canincrease RER. The amount of expansive agent is the major factor of expansionperformance, followed by content of fly ash and water-binder ratio, but not the onlydecisive one. By adjusting composition of binding materials, different expansionexpectation can be achieved.
     During the hydration process, when the water is sufficient, expansive agent andcement promote hydration with each other in early ages. While the water is insufficient,the competitive demand of water between expansive agent and cement makes expansiveagent hinder hydration of cement. The hydration of expansive agent is faster than thecement, so it obtained the water firstly and produces appropriate expansion. Hightemperature can not only improve the hydration of expansive agent; but also make thecompetitive water-demanding show up, so the conclusions got under the condition ofroom temperature don’t work at high temperature. In high temperature the RER can beclose to or reach the maximum value at1d,but develop very slowly at later ages; thelarge expansion in the early stage can hinder compressive strength of mortar, make itselfno longer agree with the development of strength.Temperature has an important role inthe influence trend of water-binder ratio on the RER of mortar. The effect that RERincreases with water-binder ratio rising at40℃is opposite to that at20℃and60℃. The RER declines with the increase of fly ash; this influence trend of fly ash on theRER of mortar is the same under different temperatures;
     The addition of fly ash can promote the expansion of expansive agent, properdosage of fly ash can increase expansion significantly, but larger dosage of fly ashdecreases the increase variation of expansion because of low early strength. Forconcrete with fly ash and HCSA, the minmum dosage of expansive agent can be lowerand shrinkage can be totally compensated by appropriate composition of bindingmaterials
     Expansive agent can reduce the autogenous shrinkage of concrete with lowwater-binder ratio after1d. The elevated fly ash amount and water-binder ratio canimprove the compensating efficiency of expansive agent.6%HCSA can generateenough expansion to compensate all autogenous shrinkage of concrete underwater-binder ratio of0.34, make concrete expand after30h.
引文
[1]刘强.浅谈影响混凝土强度的主要因素.山西建材,2011,37(26):135-137.
    [2]吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社,1999.
    [3]许馨元.全球水泥产业进展及展望.中国水泥,2011,(3):19-21.
    [4]张誉,蒋利学,张伟平,等.混凝土结构耐久性概论,上海:上海科技文献出版社,2003.
    [5]覃维祖.混凝土结构耐久性的整体论.建筑技术,2003,34(1):19-22.
    [6] Mehta P K. Durability-Critical Issue for the Future. Concrete International,1997,(7):27-33.
    [7] Neville A M. Properties of Concrete, Fourth edition, UK: Pearson Education,1995.
    [8]王铁梦.工程结构裂缝控.北京:中国建筑工业出版社,1997.
    [9]朱伯芳.大体积混凝土温度应力与温度控制.北京:中国电力出版社,1999.
    [10]南京化工学院等.胶凝物质工学.北京:中国工业出版社,1961.
    [11]刘冰梅.混凝土裂缝产生的主要原因——浅议混凝土收缩.山西建筑,2004,30(18):47-48.
    [12]胡曙光.先进水泥基复合材料.北京:科学出版社,2009.
    [13] ACI305R-10Guide to Hot Weather Concreting, ACI Committee.
    [14]彭卫兵,何真,梁文泉.对高性能混凝土的认识及混凝土开裂的问题.中国水泥,2003,(1):40-44.
    [15] Powers T C. Causes and control of volume change. Journal of portland cementassociation research and development laboratories,1959,(1):1.
    [16] Lee F M. The Chemistry of Concrete and Cement. London: Arnold Ltd,1956.
    [17] Lyman C G. Growth and movement in Portland cement concrete. London, UK: OxfordUniversity Press,1934.
    [18] Davis H E. Autogenous volume change of concrete. Proceeding of the43th AnnualAmerican Society for Testing Materials. Atlantic city, USA: ASTM,1940:1103-1113.
    [19] Tazawa E, Miyzawa S. Influence of cement and mixture on antogeneous shrinkage ofconcrete. Cement and Concrete Research,1995,25(2):281-287.
    [20]吴中伟,张鸿直.膨胀混凝土.北京:中国铁道出版社,1990.
    [21]游宝坤.中国混凝土膨胀剂研究及其开发概况.首届全国混凝土膨胀剂学术交流会论文集,泰安,1994:7-13.
    [22]赵顺增,游宝坤,刘立.混凝土膨胀剂行业的现状和发展方向.混凝土与水泥制品,2009,(6):1-3.
    [23] GB23439-2009《混凝土膨胀剂》,北京:中国标准出版社,2009.
    [24] GB/T8075-2005《混凝土外加剂分类、命名与定义》,北京:中国标准出版社,2005.
    [25]廉慧珍,童良,陈恩义.建筑材料物相研究基础.北京:清华大学出版社,1996.
    [26]熊大玉,王小虹.混凝土外加剂.北京:化学工业出版社,2002.
    [27]游宝坤.李乃珍.膨胀剂及其补偿收缩混凝土.北京:中国建材工业出版社,2005.
    [28]张雄主编.建筑功能外加剂.北京:化学工业出版社,2004.
    [29]李承木,袁明道.外掺MgO微膨胀混凝土筑坝技术应用综述.水利水电科技进展.2003(6):57-63.
    [30] Mehta P K. Magnesium oxide additive for producing selfsrtess in mass concrete.7thInternational Congress on the Chemistry of Cement. Paris: III,1980:6-9.
    [31]陈胡星,叶青,王宇青,等.双膨胀水泥研究.材料科学与工程,2000,(2):49-52.
    [32]叶青,陈胡星,楼宗汉.钙矾石膨胀和水镁石膨胀的相干性.建筑材料学报,1999,(3):230-234.
    [33]楼宗汉,叶青,陈胡星,等.水泥熟料中氧化镁的水化和膨胀性能.硅酸盐学报,1998,26(4):430-436.
    [34]石云兴,王泽云.钙矾石的形成条件与稳定性.混凝土,2000,(8):52-53.
    [35]薛君玕,吴中伟.膨胀和自应力水泥及其应用.北京:中国建筑工业出版社,1983.
    [36]薛君玕.水化硫铝酸钙的稳定性.膨胀剂与膨胀混凝土,2007,(1):5-7.
    [37]杨建森.混凝土中钙矾石作用的二重性及其发生条件.土木工程学报,2003,(2):100-103.
    [38]薛君玕,陈雯浩,童雪莉,等.论水泥石的硫铝酸盐膨胀——兼论液相中CaO低于饱和浓度时硫铝酸钙膨胀的特点.硅酸盐学报,1979,(2):58-74.
    [39] Nagitaki S, Gomi H. Expansive admixtures. Cement and Concrete Composites,1998,20(2):163-170.
    [40]游宝坤,席耀忠.钙矾石的物理化学性能与混凝土的耐久性.中国建材科技,2002,(3):13-18.
    [41] Mehta P K, Wang S B. Expansion of ettringite by water adsorption. Cement andConcrete Research,1982,12(1):121-122.
    [42]刘崇熙.钙矾石晶体结构剖析.长江科学院.1985,(3):12-18.
    [43]叶青.含钙矾石和水镁石双膨胀源水泥硬化浆体及其混凝土的体积稳定性分析.混凝土与水泥制品,2001,(1):12-15.
    [44]彭振宾.纤维补强膨胀混凝土在道路建设中的应用.交通标准化,2010,(219):95-97.
    [45]游宝坤,李乃珍.膨胀剂及其补偿收缩混凝土.北京:中国建材工业出版社,2006.
    [46]袁润章.胶凝材料学(第二版).武汉理工大学出版社,1996.
    [47] Bogue R H.波特兰水泥化学.北京:中国工业出版社,1963.
    [48] Chatter J S. Jeffery J W. Volume expansion of setting plaster. Transaction of the FaradaySociety,1964,60(503):1947-1950.
    [49] Chartterji S. Mechanism of expansion of concrete due to the presence of dead-burnt CaO andMgO. Cement and Concrete Research,1995,25(1):51-56.
    [50]邓敏,崔雪华,刘元湛,等.水泥中氧化镁的膨胀机理.南京化工学院学报,1990,(4):1-11.
    [51]赵顺增,刘立,郑万廪,等.高性能补偿收缩混凝土用膨胀剂——HCSA的特点及其应用.膨胀剂与膨胀混凝土,2009,(2):2-5.
    [52]赵顺增,郑万廪,刘立.环境湿度和矿物组成对膨胀剂变形性能的影响.膨胀剂与膨胀混凝土,2010,(3):5-8.
    [53]游宝坤.关于膨胀剂颗粒级配对膨胀剂性能的影响.第四届全国混凝土膨胀剂学术交流会论文集,深圳,2006.
    [54]赵顺增,刘立.膨胀剂颗粒组成对膨胀收缩性能的影响.膨胀剂与膨胀混凝土,2005,(4):3-8.
    [55]李乃珍,刘翠华,谢敬坦,等.含硫铝酸钙、铝酸钙熟料膨胀剂颗粒级配对性能的影响.膨胀剂与膨胀混凝土,2008,(1):3-7.
    [56]赵顺增,刘立. HCSA膨胀剂与化学外加剂、水泥的适应性研究.膨胀剂与膨胀混凝土,2006,(3):1-6.
    [57]刘松柏,柴天红,丁蕴斌,等.水泥与混凝土膨胀剂适应性探讨.膨胀剂与膨胀混凝土,2008,(2):55-57.
    [58]李乐民,郑远林.粉煤灰等矿物掺合料对UEA-H膨胀剂膨胀效能的影响.四川建材,2005,(1):15-19.
    [59]赵顺增,吴万春.使用补偿收缩混凝土工程实践.游宝坤.混凝土膨胀剂及其应用.中国建材工业出版社,2002.
    [60]曹蕾,杨子玉,姚翔.复掺剂对硫铝酸盐型膨胀剂效能的影响.山西建筑,2010,36(23):194-195.
    [61]张圣菊.外加剂对硫铝酸盐型膨胀剂效能的影响[硕士学位论文].西安:西安建筑科技大学,2007.
    [62]赵顺增,刘立,吴勇,等.补偿收缩混凝土有效膨胀的研究.膨胀剂与膨胀混凝土,2007,(4):1-6.
    [63]杨峻芳,余林文,钟科.水胶比和拆模时间对混凝土限制膨胀率的影响研究.重庆建筑,2010,9(6):32-34.
    [64]宋开伟,黄波,李志坤.养护条件对掺膨胀剂混凝土收缩率影响的研究.山西建筑,2009,35(13):155-156.
    [65]姚利君,阮海涛,时略,等.混凝土膨胀剂在不同养护条件下的膨胀性能研究.商品混凝土,2006,(3):29-32.
    [66]张向军,陈华良,叶青.养护条件对掺膨胀剂高性能混凝土体积稳定性的影响.混凝土,2003,(4):16-18.
    [67]姜正平,韩静云,张秀志.不同养护条件下膨胀剂对水泥砂浆收缩性影响的研究.混凝土与水泥制品,2003,(3):12-14.
    [68]韦润锋,邓敏,莫立武.高温养护和粉煤灰掺量对外掺氧化镁混凝土膨胀和劈裂抗拉强度的影响东华理工大学学报(自然科学版),2010,(3):83-87.
    [69]阎培渝,陈广智.养护温度和胶凝材料组成对膨胀剂限制膨胀率的影响.建筑技术,2001,32(1):22-23.
    [70]刘江宁.膨胀水泥石的孔结构和限制条件对其影响.膨胀剂与膨胀混凝土,2008,(2):11-16.
    [71] Brown P W, Bothe J V. The stability of ettringite. Advances in Cement Research,1993,5(18):47-63.
    [72] Yan P Y, Zheng F, Peng J, Qin X. Relationship between delayed ettringite formationand delayed expansion in massive shrinkage-compensating concrete. Cement andConcrete Composites,2001,26(6):687-693.
    [73]阎培渝,覃肖.大体积补偿收缩混凝土与延迟钙矾石生成.混凝土,2000,(6):18-21.
    [74]席耀忠.关于膨胀混凝土若干问题的讨论.混凝土与水泥制品,2007,(5):1-5.
    [75]游宝坤,李光明,韩立林.大体积补偿收缩混凝土的结构稳定性问题.混凝土,2001,(5):7-10.
    [76]阎培渝,彭江,陈广智.大体积补偿收缩混凝土中的延迟钙矾石生成现象-答游宝坤同志的质疑.混凝土,2002,(1):17-18.
    [77]中国土木工程学会.混凝土结构耐久性设计与施工指南.北京:中国建筑工业出版社,2005.
    [78] Davis R E, Carlson R W, Kelly J W, et al. Properties of cements and concretescontaining fly ash, Journal of American Concrete Institute,1937,33(5):577–612.
    [79] Dunstan M R H. Fly Ash as the ‘Fourth Ingredient’ in Concrete Mixtures. ACI Journalproceedings,1986,2:171-200.
    [80] Malhotra V M, Mehta P K. High performance of high volume fly ash concrete.2ndEdition. Ottawa, Canada,2005.
    [81] Malhotra V M. Making Concrete greener with fly ash. Concrete International,2001,23(10):61-66.
    [82] Malhotra, V M, Ramenzanianpour A A. Fly Ash in Concrete. CANMET, Ottawa,Canada,1985.
    [83]阎培渝.粉煤灰在复合胶凝材料水化过程中的作用机理.硅酸盐学报,2007,35:167-171.
    [84]钱觉时.粉煤灰特性与粉煤灰混凝土.北京:科学出版社,2002.
    [85] Malhotra V M. Durability of concrete incorporating high-volume of low-calcium flyash. Cememt Concrete Composites,1990,12(4):271-277.
    [86]赵铁军,刘淑梅.活化掺合料混凝土的研究.青岛建筑工程学院学报,1996,(1):25-31.
    [87] Ramlochan T, Zacarias P, Thomasc M D A, et al. The effect of pozzolans and slag onthe expansion of mortars cured at elevated temperature Part I: Expansive behavior.Cement and Concrete Research,2003,33(6):807-814.
    [88]王栋民.高性能膨胀混凝土.北京:中国水利水电出版社,2006.
    [89]王栋民,金欣,欧阳世翕.水泥-膨胀剂-粉煤灰复合胶凝材料膨胀与强度发展的协调性研究.硅酸盐学报,2002,30(10):59-63.
    [90]李飞,覃维祖.膨胀剂在高掺量粉煤灰混凝土中作用效果的试验研究.工业建筑,2009,39(5):89-95.
    [91]李乃珍,刘翠华,谢敬坦,等. DEA高膨胀、低收缩混凝土膨胀剂-兼谈相对膨胀落差与补偿效率.膨胀剂与膨胀混凝土,2008,(2):22-2.
    [92]李响.复合水泥基材料水化性能与浆体微观结构稳定性[博士学位论文].北京:清华大学土木系,2010.
    [93]周达,杨伟军.高性能砂浆的抗裂性能试验研究.建筑砌块与砌块建筑,2007,(1):6-9.
    [94]于述强.粉煤灰掺量对限制膨胀率、自由膨胀率和强度的影响.中国石油大学胜利学院学报,2009,(2):6-9.
    [95]吕慧君,邓朝飞,李江华.浅析掺膨胀剂混凝土限制膨胀率的影响因素.混凝土,2010,(10):31-33.
    [96]胡建勤,管斌君,何庆丰.粉煤灰对混凝土补偿收缩性能的影响.混凝土与水泥制品,2001,(2):15-17.
    [97]王智,钱觉时,卢浩.石灰对粉煤灰活性激发作用的研究进展.粉煤灰综合利用,1999,(1):27-30.
    [98] Mehta P K, Paulo J M M. Concrete Microstructure, Properties and Materials. McGraw-Hill,Third Edition,2005.
    [99]刘崇熙.低热微膨胀水泥研究中若干哲学问题.水泥基复合材料科学与技术——吴中伟院士从事科教工作六十年学术讨论会论文集,中国建材工业出版社,1999.
    [100] Tinnea J, Young J F. Journal of American Ceramic Society,1977,(60):387.
    [101]陈志城,阎培渝.补偿收缩混凝土的自收缩特性.硅酸盐学报,2010,(4):568-573.
    [102]温国梁,张昕,白梅荣.高性能混凝土自收缩的试验与应用.水利规划与设计,2007,(2):47-50.
    [103]朱建强,张士萍,邓敏.抑制水泥浆体早期自收缩的方法,硅酸盐通报,2008,(2):1-5.
    [104]郑峰.水泥基材料自收缩动力学研究[博士学位论文].北京:清华大学土木系,2006.
    [105]王强,陈志城,阎培渝.等强度条件下水胶比和粉煤灰掺量对混凝土自收缩的影响.混凝土,2006,(12):1-3.
    [106]安明喆.高性能混凝土自收缩研究[博士学位论文].北京:清华大学土木系,1999.
    [107] Bj ntegaard, Hammer T A, Sellevold E J. On the measurement of free deformationof early age cement paste and concrete. Cement and Concrete Composites,2004,(26):427-435.
    [108] Lerch W. Heat of Hydration of Cement by Simple Apparatus, Engineering NewsRecord,1934,113:523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700