用户名: 密码: 验证码:
基于弹性变形的曲面重建和平滑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机辅助几何设计的不断发展,曲线曲面造型方法的研究热点经历了从表达方式到控制变形再到仿真变形的演变。经典的弹性变形方法以其简单、仿真效果好、直观、快速等特点,成为沟通几何变形与物理变形的桥梁,在各领域内得到了广泛应用。根据应用条件的不同,弹性变形方法对于外部数据的刻画、处理和交互都有不同的要求,因而需要进行具有针对性的改进。本文以弹性变形方法为基础,在空间曲线曲面立体重建和网格平滑及增强方面进行了研究;另外,给出了一种处理工业生产中复杂区域标注问题的快速方法。本文的主要工作包括:
     1.本文基于弹性变形方法的思想来处理空间曲线曲面的立体重建问题。在立体重建中,我们以变形方法为基础,采用具有透视不变性的NURBS表达方式,从反向优化的角度来演化曲线曲面进行重建。这样可以更好地利用投影曲线曲面的局部性质,降低对不同像平面中图像曲线曲面数据的匹配需求,同时提高重建精度。考虑到重建二维图像数据存在不可避免的误差,我们讨论了其对立体重建的影响。最后使用所提立体重建方法对理想数据和真实数据进行了实验,得到了令人满意的重建效果。此外,重建二维图像数据中,提出了一种将图像目标边界信息和区域信息相结合的新的变分水平集图像分割方法。它有效利用了图像信息且不需重新初始化水平集函数,能够对多种类型图像进行有效分割。
     2.定义弹性变形所使用的曲面基本形式描述了曲面的局部微分特征,从网格信号处理角度对这种特征进行处理则可以得到具有真实造型效果的优质网格。本文基于线性弹性变形方法对局部微分特征的描述,对网格曲面的基本形式特征进行调整,然后在约束最小二乘意义下重建网格,并使用快速的线性系统求解器,达到了实时响应的平滑、增强效果。实验结果表明本文方法简单快速并可有效防止体积收缩和形状畸变。
     3.对复杂区域标注问题进行了研究,给出了一种快速的基于链码的复杂区域标注方法FCBL (Fast Code-Based Labeler)使用指定标注字符尺寸对复杂区域进行离散,然后通过编码技术对区域信息进行处理以减少存储量并根据具体情况对链码加以增强。采用基于链码的搜索机制并针对各种约束进行了扩展,进一步使用最小二乘估计最优方向来提高速度和精度。基于大量工业数据的实验验证了FCBL的可行性和稳定性。
With the development of Computer Aided Geometric Design, the research focus of curve and surface modeling methods has changed from representation to controllable de-formation, and then to simulation deformation. The classic elastic deformation methods become the bridge of communication between geometric deformation and physical defor-mation, and illuminate extensive applications in various fields, due to their advantages in simplicity, effective simulation, intuition and speed. According to different applica-tion conditions, elastic deformation methods require distinct representations, processing schemes and interactions with respect to exterior data, and hence they need to be im-proved contrapuntally. In this dissertation, elastic deformation methods are employed as the base of studying space curve/surface stereo reconstruction and mesh smoothing together with enhancement. In addition, a fast approach dealing with industrial prob-lems of labeling in complex irregular regions is proposed as well. The main work can be summarized as follows:
     1. The idea of elastic deformation methods is first used to handle space curve/surface stereo reconstruction problem. In the step of stereo reconstruction, based on deformation method and perspective invariant NURBS representation, we evolute the curve/surface from the view of inverse optimization to finish reconstruction. This manner can obtain more effective use of local properties from projected curve/surface, reduce the need of matching curve/surface data in multiview images, meanwhile improve the reconstruction precision. Considering the 2D data reconstruction inevitably exists error, a discussion on its influence to stereo reconstruction is given next. Finally, the proposed approach is ex-perimented with ideal and real data, and gains a satisfying reconstruction effect. Besides, in the step of image data reconstruction, a variational level set segmentation approach which integrates the image information from both boundary gradient and region is pre-sented. It effectively utilizes the image information and does not need re-initialization. Experiments illustrate its abilities in segmenting different kinds of images.
     2. Surface fundamental forms which are used to define elastic deformation describe the local differential features of surface. From the perspective of mesh signal processing, high quality mesh with real modeling effect can be obtained by processing this type of features. Based on the description of local differential features given by elastic deformation methods, we modify the fundamental form features of mesh surface. The new mesh is reconstructed in the least square sense with proper constraints added. With the help of fast linear system solver, the algorithm can achieve real-time smoothing and enhancement effect. Experimental results demonstrate that the proposed method is simple, fast and able to prevent volume shrinkage and shape distortion to some extent.
     3. Labeling in complex irregular regions is studied and a fast code-based labeler (FCBL) is proposed to accomplish this objective. The region is discretized by specified labeling character size, and then encoded by the Freeman encoding technique for decreas-ing the storage. We enhance the encoding scheme to make it more suitable for our complex problem. Based on the codes, searching algorithms are designed and can be extended with customized constraints. In addition, by introducing a smart optimal direction estimation, the labeling speed and accuracy of FCBL are significantly improved. Experiments with a large range of real data gained from industrial factories demonstrate the feasibility and stability of FCBL.
引文
[1]Farin G, Hoschek J, Kim M S. Handbook of Computer Aided Geometric Design. North Holland:Elsevier Science,2002.
    [2]施法中.计算机辅助几何设计与非均匀有理B样条.北京:高等教育出版社,2001.
    [3]王国瑾,汪国昭,郑建民.计算机辅助几何设计.北京:高等教育出版社,2001.
    [4]朱心雄等.自由曲线曲面造型技术.北京:科学出版社,2000.
    [5]鲍虎军,金小刚,彭群生.计算机动画的算法基础.杭州:浙江大学出版社,2000.
    [6]Bajaj C L, Xu G. Anisotropic diffusion of subdivision surfaces and functions on surfaces. ACM Transactions on Graphics,2003,22(1):4-32.
    [7]陈发来.代数曲面的几何连续性、Blending及求交的研究:博士学位论文.中国科技大学,1994.
    [8]孙家广,胡事民.计算机图形学基础教程.北京:清华大学出版社,2005.
    [9]苏步青,刘鼎元.计算几何.上海:上海科学技术出版社:1981.
    [10]王仁宏,施锡泉,罗钟铉,苏志勋.多元样条函数及其应用.北京:科学出版社,1994.
    [11]徐国良.计算几何中的几何偏微分方程方法.北京:科学出版社,2008.
    [12]周蕴时,苏志勋,奚涌江,程少春.CAGD中的曲线与曲面.长春:吉林大学出版社,1993.
    [13]张彩明,杨兴强,李学庆.计算机图形学.北京:科学出版社,2005.
    [14]Barr A H. Global and local deformations of solid primitives. Computer Graphics, 1984,18(3):21-30.
    [15]Sederberg T W, Parry S R. Free-form deformation of solid geometric models. ACM SIGGRAPH Computer Graphics,1986,20(4):151-160.
    [16]Coquillart S. Extended free-form deformation:A sculpturing tool for 3D geometric modeling. Computer Graphic,1990,24(4):187-196.
    [17]Hsu W M, Hughes J F, Kaufman H. Direct manipulation of free-form deformation. Computer Graphics,1992,26(2):177-184.
    [18]Lamousin H J, Jr W N W. NURBS-based free-form deformations. Computer Graph-ics and Applications,1994,14(6):59-65.
    [19]Lazarus F, Coquillart S, Jancene P. Axial deformations:An intuitive deformation technique. Computer-Aided Design,1994,26(8):607-613.
    [20]Peng Q, Jin X, Feng J. Arc-length-based axial deformation and length preserving deformation. Proceedings of the Computer Animation. IEEE Computer Society, 1997:86-92.
    [21]计忠平,刘利刚,王国瑾.无局部自交的轴变形新方法.计算机学报,2006,29(5):828-834.
    [22]Watt A, Watt M. Advanced animation and rendering techniques. New York:ACM, 1991.
    [23]金小刚,鲍虎军,彭群生.一种新的基于factor curve的变形控制方法.软件学报,1996,7(9):53-541.
    [24]Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. ACM Transactions on Graphics,2005,24(3):561-566.
    [25]Joshi P, Meyer M, DeRose T, Green B, Sanocki T. Harmonic coordinates for char-acter articulation. ACM Transactions on Graphics,2007,26(3):Artical No.71.
    [26]Huang J, Liu X, Jiang H, Wang Q, Bao H. Gradient-based shell generation and deformation. ACM Transactions on Graphics,2007,18(4-5):301-309.
    [27]Lipman Y, Levin D, Cohen-Or D. Green coordinates. ACM Transactions on Graph-ics,2008,27(3):Artical No.78.
    [28]Angelidis A, Singh K. Space deformations and their application to shape modeling. ACM SIGGRAPH 2006 Courses. ACM,2006:10-29.
    [29]Alexa M. Local control for mesh morphing. Proceedings of the International Con-ference on Shape Modeling & Applications. IEEE Computer Society,2001:209-215.
    [30]Lipman Y, Sorkine O, Cohen-Or D, Levin D, Rossl C, Seidel H P. Differential coor-dinates for interactive mesh editing. Proceedings of Shape Modeling International. IEEE Computer Society,2004:181-190.
    [31]Sorkine O, Lipman Y, Cohen-Or D, Alexa M, Rossl C, Seidel H P. Laplacian surface editing. Symposium on Geometry Processing. ACM,2004:179-188.
    [32]Fu H, Au O K C, Tai C L. Effective derivation of similarity transformations for implicit laplacian mesh editing. Computer Graphics Forum,2007,26(1):34-45.
    [33]Zhou K, Huang J, Snyder J, Liu X, Bao H, Guo B, Shum H Y. Large mesh de-formation using the volumetric graph laplacian. ACM Transactions on Graphics, 2005,24(3):496-503.
    [34]Yu Y, Zhou K, Xu D, Shi X, Bao H, Baining G, Shum H Y. Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics,2004, 23(3):644-651.
    [35]Zayer R, Rossl C, Karni Z, Seidel H P. Harmonic guidance for surface deformation. Computer Graphics Forum,2005,24(3):601-609.
    [36]Sorkine O, Alexa M. As-rigid-as-possible surface modeling. Proceedings of Euro-graphics symposium on Geometry processing. Eurographics Association,2007:109-116.
    [37]Lipman Y, Sorkine O, Levin D, Cohen-Or D. Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics,2005,24(3):479-487.
    [38]Lipman Y, Cohen-Or D, Gal R, Levin D. Volume and shape preservation via moving frame manipulation. ACM Transactions on Graphics,2007,26(1):Artical No.5.
    [39]Sheffer A, Kraevoy V. Pyramid coordinates for morphing and deformation. Proceed-ings of the 3D Data Processing, Visualization, and Transmission. IEEE Computer Society,2004:68-75.
    [40]Botsch M, Sorkine O. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics,2008,14(1):213-230.
    [41]Zorin D, Schroder P, Sweldens W. Interactive multiresolution mesh editing. Pro-ceedings of ACM SIGGRAPH. ACM,1997:259-268.
    [42]Lee A, Moreton H, Hoppe H. Displaced subdivision surfaces. Proceedings of ACM SIGGRAPH. ACM,2000:85-94.
    [43]Kobbelt L, Campagna S, Vorsatz J, Seidel H P. Interactive multi-resolution modeling on arbitrary meshes. Proceedings of ACM SIGGRAPH. ACM,1998:105-114.
    [44]Botsch M, Kobbelt L. Multiresolution surface representation based on displacement volumes. Computer Graphics Forum,2003,22(3):483-491.
    [45]Guskov I, Sweldens W, Schroder P. Multiresolution signal processing for meshes. Proceedings of ACM SIGGRAPH:ACM,1999:325-334.
    [46]Lasseter J. Principles of traditional animation applied to 3D computer animation. Proceedings of ACM SIGGRAPH. ACM,1987:35-44.
    [47]Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable models. Com-puter Graphics,1987,21(4):205-214.
    [48]Nealen A, Miiller M, Keiser R, Boxerman E, Carlson M. Physically based deformable models in computer graphics. Computer Graphics Forum,2006,25(4):809-836.
    [49]Chan T F, Shen J J, Vese L. Variational PDE models in image processing. Notices of the American Mathematical Society,2003,50(1):14-26.
    [50]Kass M, Witkin A, Terzopoulos D. Snakes:Active contour models. International Journal of Computer Vision,1988,1(4):321-331.
    [51]Caselles V, Catte F, Coll T, Dibos F. A geometric model for active contours in image processing. Numerische Mathematik,1993,66(1):1-31.
    [52]Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation:A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(2):158-175.
    [53]Osher S, Sethian J A. Fronts propagating with curvature-dependent speed:Algo-rithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988,79(1):12-49.
    [54]Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision,1997,22(1):61-79.
    [55]Xu C, Prince J L. Gradient vector flow:A new external force for snakes. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 1997:66-71.
    [56]Mumford D, Shah J. Optimal approximations by piecewise smooth functions and as-sociated variational problems. Communications on Pure and Applied Mathematics, 1989,42(5):577-685.
    [57]Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing,2001,10(2):266-277.
    [58]李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法.计算机学报,2002,25(11):1175-1183.
    [59]Vemuri B, Chen Y. Geometric Level Set Methods in Imaging, Vision, and Graphics, vol. V. New York:Springer,2003, pp.251-269.
    [60]Li C, Xu C, Gui C, Fox M D. Level set evolution without re-initialization:A new variational formulation. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society,2005:430-436.
    [61]Lowe D G. Fitting parameterized three-dimensional models to images. IEEE Trans-actions on Pattern Analysis and Machine Intelligence,1991,13(5):441-450.
    [62]Taylor C J. Reconstruction of articulated objects from point correspondences in a single uncalibrated image. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,80(3):349-363.
    [63]Jelinek D, Taylor C J. Reconstruction of linearly parameterized models from sin-gle imageswith a camera of unknown focal length. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(7):767-773.
    [64]Ding M, Xiao Y, Peng J, Schomburg D, Krebs B, Wahl F M.3D reconstruction of free-formed line-like objects using NURBS representation. Pattern Recognition, 2003,36(6):1255-1268.
    [65]Kahl F, August J. Multiview reconstruction of space curves. Proceedings of the Ninth IEEE International Conference on Computer Vision. IEEE Computer Society, 2003:1017-1024.
    [66]C B, JF M, H L, T F. Feature correspondences from multiple views of coplanar ellipses.2nd International Symposium on Visual Computing. Springer-Verlag Berlin, 2006:364-373.
    [67]Boufama B, Mohr R, Veillon F. Euclidean constraints for uncalibrated recon-struction. International Conference on Computer Vision. IEEE Computer Society, 1993:466-470.
    [68]Pollefeys M, Koch R, Gool L V. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. International Conference on Computer Vision. IEEE Computer Society,1998:90-95.
    [69]Shum H Y, Han M, Szeliski R. Interactive construction of 3D models from panoramic mosaics. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society,1998:427-433.
    [70]Criminisi A, Reid I, Zisserman A. Single view metrology. International Journal of Computer Vision,2000,40(2):123-148.
    [71]Raman B, Sukhendu D, K S. Reconstruction of quadratic curves in 3-D from two or more perspective views. Mathematical problems in Engineering,2002,8(3):207-219.
    [72]Kumar S, Raman B, Sukavanam N. Reconstruction of cubic curves from two or more images using geometric intersection. International Journal of Information and System Sciences,2009,5(1):98-111.
    [73]dong Zheng J, yan Zhang L, yu Du X, an Ding Z.3D curve structure reconstruction from a sparse set of unordered images. Computers in Industry,2009,60(2):126-134.
    [74]Taubin G. A signal processing approach to fair surface design. Proceedings of ACM SIGGRAPH. ACM,1995:351-358.
    [75]Desbrun M, Meyer M, Schroder P, Barr A H. Implicit fairing of irregular meshes us-ing diffusion and curvature flow. Proceedings of ACM SIGGRAPH. ACM,1999:317-324.
    [76]Liu X, Bao H, Heng P, Wong T, Peng Q. Constrained fairing for meshes. Computer Graphics Forum,2001,20(2):115-122.
    [77]Vollmer J, Mencl R, Miiller H. Improved laplacian smoothing of noisysurface meshes. Computer Graphics Forum,1999,18(3):131-138.
    [78]Vallet B, Levy B. Spectral geometry processing with manifold harmonics. Computer Graphics Forum,2008,27(2):251-260.
    [79]Hildebrandt K, Polthier K. Anisotropic filtering of non-linear surface features. Com-puter Graphics Forum,2004,23(3):391-400.
    [80]Yagou H, Ohtake Y, Belyaev A. Mesh smoothing via mean and median filtering applied to face normals. Proceedings of the Geometric Modeling and Processing. IEEE Computer Society,2002:124-131.
    [81]Sun X, Rosin P L, Martin R R, Langbein F C. Random walks for feature-preserving mesh denoising. Computer Aided Geometric Design,2008,25(7):437-456.
    [82]Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising. ACM Transactions on Graphics,2003,22(3):950-953.
    [83]Yoshizawa S, Belyaev A, Seidel H P. Smoothing by example:Mesh denoising by averaging with similarity-based weights. IEEE International Conference on Shape Modeling and Applications. IEEE Computer Society,2006:38-44.
    [84]Liu L, Tai C L, Ji Z, Wang G. Non-iterative approach for global mesh optimization. Computer-Aided Design,2007,39(9):772-782.
    [85]Su Z, Wang H, Cao J. Mesh denoising based on differential coordinates. IEEE International Conference on Shape Modeling and Applications. IEEE Computer Society,2009:1-6.
    [86]Shen J, Maxim B, Akingbehin K. Accurate correction of surface noises of polyg-onal meshes. International Journal for Numerical Methods in Engineering,2005, 64(12):1678-1698.
    [87]Chen C Y, Cheng K Y. A direction-oriented sharpness dependent filter for 3D polygon meshes. Computers & Graphics,2008,32(2):129-140.
    [88]Yagou H, Belyaev A, Wei D. High-boost mesh filtering for 3-D shape enhancement. Journal of Three Dimensional Images,2003,17(1):170-175.
    [89]Museth K, Breen D E, Whitaker R T, Barr A H. Level set surface editing operators. ACM Transactions on Graphics,2002,21(3):330-338.
    [90]Wolff A. The map labeling bibliography. http://illwww.iti.uni-karlsruhe.de/ awolff/map-labeling/bibliography/,2009.
    [91]Binucci C, Didimo W, Liotta G, Nonato M. Orthogonal drawings of graphs with vertex and edge labels. Computational Geometry,2005,32(2):71-114.
    [92]Dogrusoz U, Kakoulis K G, Madden B, Tollis I G. On labeling in graph visualization. Information Sciences,2007,177(12):2459-2472.
    [93]Kakoulis K G, Tollis I G. Algorithms for the multiple label placement problem. Computational Geometry,2006,35(3):143-161.
    [94]Lan X, Jiang Y, Lu G, Deng H. Automatic placement of GIS vector map annotation in area feature by long-diagonal. Geo-Spatial Information Science,2005,8(4):276-281.
    [95]Mote K. Fast point-feature label placement for dynamic visualizations. Information Visualization,2007,6(4):249-260.
    [96]Cravo G L, Ribeiro G M, Lorena L A N. A greedy randomized adaptive search proce-dure for the point-feature cartographic label placement. Computers & Geosciences, 2008,34(4):373-386.
    [97]Alvim A C F, Eric D Taillard. POPMUSIC for the point feature label placement problem. European Journal of Operational Research,2009,192(2):396-413.
    [98]Ramesh Babu A, Ramesh Babu N. Effective nesting of rectangular parts in multiple rectangular sheets using genetic and heuristic algorithms. International Journal of Production Research,1999,37(7):1625-1643.
    [99]Wu T H, Chen J F, Low C, Tang P T. Nesting of two-dimensional parts in multiple plates using hybrid algorithm. International Journal of Production Research,2003, 41(16):3883-3900.
    [100]Assaf Y A. Human strategies based allocation of two-dimensional irregular shapes. Journal of Intelligent & Fuzzy Systems,2003,14(4):181-190.
    [101]Ramesh Babu A, Ramesh Babu N. A generic approach for nesting of 2-D parts in 2-D sheets using genetic and heuristic algorithms. Computer-Aided Design,2001, 33(12):879-891.
    [102]Lee W C, Ma H, Cheng B W. A heuristic for nesting problems of irregular shapes. Computer-Aided Design,2008,40(5):625-633.
    [103]Egeblad J, Nielsen B K, Odgaard A. Fast neighborhood search for two-and three-dimensional nesting problems. European Journal of Operational Research,2007, 183(3):1249-1266.
    [104]Yang H H, Lin C L. On genetic algorithms for shoe making nesting-a Taiwan case. Expert Systems with Applications,2009,36(2):1134-1141.
    [105]Liang L, Ye J. A solution of irregular parts nesting problem based on immune genetic algorithm. International Symposium on Computational Intelligence and Design,2008,1:217-220.
    [106]Bennell J A, Oliveira J F. The geometry of nesting problems:A tutorial. European Journal of Operational Research,2008,184(2):397-415.
    [107]Kobayashi S, Nomizu K. Foundations of Differential Geometry. New York:Wiley-Interscience,1996.
    [108]梅向明,黄敬之.微分几何.北京:高等教育出版社,2002.
    [109]Nocedal J, Wright S. Numerical Optimization. New York:Springer-Verlag,2006.
    [110]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,1997.
    [111]Lanczos C. The Variational Principles of Mechanics. New York:Dover Publications, 1986.
    [112]老大中.变分法基础.北京:国防工业出版社,2007.
    [113]Sharf A, Lewiner T, Shamir A, Kobbelt L, Cohen-Or D. Competing fronts for coarse-to-fine surface reconstruction. Computer Graphics Forum,2006,25(3):389-398.
    [114]Wang W, Pottmann H, Liu Y. Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Transactions on Graphics,2006, 25(2):214-238.
    [115]Celniker G, Gossard D. Deformable curve and surface finite-elements for free-form shape design. ACM SIGGRAPH Computer Graphics,1991,25(4):257-266.
    [116]Welch W, Witkin A. Variational surface modeling. ACM SIGGRAPH Computer Graphics,1992,26(2):157-166.
    [117]Carmo M P A D. Differential Geometry of Curves and Surfaces. London:Prentice Hall,1976.
    [118]Botsch M, Kobbelt L. An intuitive framework for real-time freeform modeling. ACM Transactions on Graphics,2004,23(3):630-634.
    [119]Perez P, Gangnet M, Blake A. Poisson image editing. ACM Transactions on Graph-ics,2003,22(3):313-318.
    [120]Meyer M, Desbrun M, Schroder P, Barr A H. Discrete differential-geometry opera-tors for triangulated 2-manifolds, Visualization and Mathematics, vol. III. Heidel-berg:Springer-Verlag,2003, pp.138-148.
    [121]Tsai R Y. A versatile camera calibration technique for high-accuracy 3D machine vi-sion metrology using off-the-shelf TV cameras and lenses. IEEE Journal on Robotics and Automation,1987,3(4):323-344.
    [122]Sturm P F, Maybank S J. On plane-based camera calibration:A general algo-rithm, singularities, applications. IEEE Conference on Computer Vision and Pat-tern Recognition. IEEE Computer Society,1999:432-437.
    [123]Xiao Y J, Li Y F. Optimized stereo reconstruction of free-form space curves based on a nonuniform rational B-spline model. Optical Society of America,2005,22(9):1746-1762.
    [124]徐江玲.基于非平行双目视觉的三维重建:硕士学位论文:大连理工大学,2009.
    [125]Aszodi B, Czuczor S, Szirmay-Kalos L. NURBS fairing by knot vector optimization. Journal of WSCG,2004,12(1-3):19-26.
    [126]Zhang J, Feng S, Cui H. Optimized NURBS curve and surface fitting using simulated annealing. International Symposium on Computational Intelligence and Design. IEEE Computer Society,2009:324-329.
    [127]Zhang R, Tsai P S, Cryer J E, Shah M. Shape from shading:A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(8):690-706.
    [128]Courteille F, Crouzil A, Durou J D, Gurdjos P.3D-spline reconstruction using shape from shading:Spline from shading. Image and Vision Computing,2008, 26(4):466-479.
    [129]Hasegawa J K, Tozzi C L. Shepe from shading with perspective projection and camera calibration. Computers & Graphics,1996,20(3):351-364.
    [130]Xia S, Zhou X, Su Z. Application of B-spline to 2D wave surface measurement. Journal of Information & Computational Science,2004,1(1):143-149.
    [131]Antonio F. Faster Line Segment Intersection, Graphics Gems, vol. III. San Diego, CA, USA:Academic Press Professional, Inc.,1992, pp.199-202 and 500-501.
    [132]Hill F. The Pleasures of'Perp Dot'Products, Graphics Gems, vol. IV. San Diego, CA, USA:Academic Press Professional, Inc.,1994, pp.138-148.
    [133]Nealen A, Igarashi T, Sorkine O, Alexa M. Laplacian mesh optimization. Pro-ceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia. ACM,2006:381-389.
    [134]Moreton H P, Sequin C H. Functional optimization for fair surface design. Proceed-ings of ACM SIGGRAPH. ACM,1992:167-176.
    [135]Jones T R, Durand F, Desbrun M. Non-iterative, feature-preserving mesh smooth-ing. ACM Transactions on Graphics,2003,22(3):943-949.
    [136]Fu H B. Cholmod wrapper. http://sweb.cityu.edu.hk/hongbofu/software.html, 2007.
    [137]Shapira L, Shamir A, Cohen-Or D. Consistent mesh partitioning and skeletonization using the shape diameter function. The Visual Computer,2008,24(4):249-259.
    [138]Tang G Y, Lien B. Region filling with the use of the discrete green theorem. Com-puter Vision, Graphics, and Image Processing,1988,42(3):297-305.
    [139]Henrich D. Space-efficient region filling in raster graphics. The Visual Computer, 1994,10(4):205-215.
    [140]Freeman H. On the encoding of arbitrary geometric configurations. IEEE Transac-tions on Electronic Computers,1961,10(2):260-268.
    [141]Hearn D, Baker M P. Computer Graphics, C Version. London:Prentice Hall,1996.
    [142]Bevington P R, Robinson D K. Data Reduction and Error Analysis for the Physical Sciences. Boston:WCB/McGraw-Hill,1992.
    [143]Draper N R, Smith H. Applied Regression Analysis. New York:John Wiley & Sons, 1998.
    [144]Farouki R T, Neff C A. Analytic properties of plane offset curves. Computer Aided Geometric Design,1990,7(1-4):83-99.
    [145]Pham B. Offset curves and surfaces:A brief survey. Computer-Aided Design,1992, 24(4):223-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700