用户名: 密码: 验证码:
基于细胞和群落特征的湖泊水华预警因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过研究与细胞生长变化同步的细胞色素含量、细胞碳水化合物含量、细胞磷含量和细胞体积等细胞自身特征的变化,建立了基于细胞自身特征的生长速率预测模型;研究了水华发生前浮游植物群落的演替和水体理化性质的变化,以及浮游植物色素的变化情况,结果显示可以用色素指示浮游植物主要藻类群体的变化情况,而浮游植物物种多样性有可能做为蓝藻水华早期预警的群落水平上的因子。
     首先研究了物理因素光照和化学因素氮、磷营养盐浓度对典型水华蓝藻铜绿微囊藻生长的影响,以及在生长变化过程中细胞色素含量、细胞碳水化合物含量、细胞N含量、细胞P含量和细胞体积等细胞自身特征的变化情况。采用单种分批培养的方式,以常见水华藻种铜绿微囊藻(FACHB 905)为研究对象,试验采用不同的光强和不同的氮或磷营养浓度。结果发现光照与N浓度对铜绿微囊藻的比生长速率、细胞N含量、细胞叶绿素a含量、细胞P含量和细胞碳水化合物含量均有明显影响,它们表现出同步的变化趋势;光照与磷对铜绿微囊藻的比生长速率、细胞叶绿素a含量、细胞P含量、细胞碳水化合物含量和细胞体积均表现出交互作用;研究发现在光照和N或者P交互影响蓝藻生长的过程中,细胞色素含量、细胞碳水化合物含量、细胞N含量、细胞P含量和细胞体积等细胞自身特征也都发生明显的同步变化,这表明,生长与细胞色素色素含量、细胞碳水化合物含量、细胞N含量、细胞P含量和细胞体积等细胞自身特征之间可能存在着相关关系。
     论文研究了Fe和Cu、Mn、Zn等微量金属营养元素对铜绿微囊藻生长的影响,以及在生长变化过程中细胞色素含量、细胞碳水化合物含量、细胞N含量、细胞P含量和细胞体积等细胞自身特征的变化情况。采用单种分批培养的方式,以常见水华藻种铜绿微囊藻(FACHB 912,从太湖分离)为研究对象,分别通过改变BG-11培养基中柠檬酸铁铵、CuSO4·5H2O、MnCl2·4H2O和ZnSO4·7H2O的加入量来调节Fe3+、Cu2+、Mn2+、Zn2+的浓度。结果发现,在合适的范围内,提高这些元素的浓度可促进细胞生长以及提高细胞色素含量、细胞碳水化合物含量、细胞N含量、细胞P含量和细胞体积,但过高的浓度也会导致对这些特征的抑制作用;最适合铜绿微囊藻生长的Fe、Cu、Mn、Zn浓度分别约为12.3μmol Fe/L、0.079μmol Cu/L、3.57μmol Mn/L、0.386μmol Zn/L,高于这些浓度则出现了不同程度的抑制现象;与蓝藻细胞生长变化同步,细胞色素含量、细胞碳水化合物含量、细胞N含量、细胞P含量和细胞体积等细胞自身特征也都发生明显的同步变化。
     分批培养条件下铜绿微囊藻的生长呈现明显的4个阶段,即迟缓期、对数生长期、稳定生长期、衰老期。不同生长阶段的比生长速率、细胞分裂率、显微图像周长和面积、圆度、细胞叶绿素a含量等均呈现不同的变化规律,这表明细胞生长的环境条件会影响细胞的生长和自身特征。此外,比生长速率与分裂率、细胞体积、细胞圆度等特征可能存在一定变换关系。
     本研究发现,蓝藻比生长速率与细胞碳水化合物含量成负相关关系,因此细胞生长较快时其细胞碳水化合物含量较低、有利于上浮,从而容易导致水华的发生;在控制P浓度的条件下,本研究建立了基于细胞P含量、细胞碳水化合物含量和细胞体积的耦合模型来预测比生长速率,可以达到较好的预测效果(Adjusted R2=0.698, P<<0.001)。细胞自身特征是环境因子对细胞综合作用在细胞自身上的直接反映。依据细胞特征预测生长速率可以避免不同水域环境因子差别较大的问题。
     最后,本研究通过围隔中营养浓度的调控,原位诱发了蓝藻(主要是钝顶节旋藻,Arthrospira platensis)水华。研究了水华发生前浮游植物群落的演替、水体理化性质的变化和色素的变化。研究认为,单纯通过监测水化学参数难以预测蓝藻水华的发生,而前期水体浮游植物的多样性有可能作为预警因子对蓝藻水华的发生进行预警。研究进一步指出了通过测定浮游植物群落色素含量及比例的方法来指示环境中不同微藻群体的演替,从而监测浮游植物群落结构的动态。
A combined model was constructed for the prediction of cyanobacterial growth based on the relationship between growth and cell characteristics such as cell pigment content, cell phosphorus content, cell carbohydrate content and cell size. And also, the indicator of diversity index may be considered for the early-warning of cyanobacterial blooms; furthermore, the ratio of characteristic pigment to cholorphyll a was suggested to be used to indicate the variation of the structure of phytoplankton community, which should be useful for studying the dynamics of phytoplankton community.
     Firstly, the effects of irradiance as a physical factor and ambient nitrogen or phosphorus concentrations as chemical factors on the growth of typically bloom-forming Microcystis aeruginosa (FACHB 905), as well as the simultaneous variations of cell pigment content, cell phosphorus content, cell nitrogen content, cell carbohydrate content and cell size with the variation of growth, were studied. The experiments were carried out by adopting uni-algal batch culture, and the typically bloom-forming Microcystis aeruginosa (FACHB 905) was employed. Different phosphorus or nitrogen concentrations in the medium were set, and a gradient of 6 irradiances was employed. Under N-controlled condition, the specific growth rate, cell nitrogen content, and cell cholorphyll a content were affected by N concentration and irradiance intensity, which showed simultaneous and similar variation. There existed interactive effects of irradiance and phosphorus on the growth rate, cell cholorphyll a content, cell phosphorus content, cell carbohydrate content and cell size. The cell characteristics such as cell pigment content, cell phosphorus content, cell nitrogen content, cell carbohydrate content and cell size showed simultaneous variation with growth rate, which indicated that there may exist some relationship between them.
     The bloom-forming Microcystis aeruginosa (FACHB 912) that was isolated from Lake Taihu was used for the study of the effect of Fe, Cu, Mn and Zn on the growth of cyanobacteria. The experiments were carried out by adopting uni-algal batch culture, and different concentrations of Fe, Cu, Mn and Zn were employed. It was found that Fe, Cu, Mn and Zn were essential micronutrient for the growth of cyanobacteria, which would promote the growth, as well as the cell size and cell content of pigment, carbohydrate, nitrogen, and phosphorus. However, excess concentration of these metals would be toxic and inhibited the growth. The optimal concentrations for the growth of M. aeruginosa were about 12.3μmol Fe/L、0.079μmol Cu/L、3.57μmol Mn/L、0.386μmol Zn/L, higher than which will be toxic. The cell characteristics such as cell pigment content, cell phosphorus content, cell nitrogen content, cell carbohydrate content and cell size showed simultaneous variation with growth rate, which indicated that there may exist some relationship between them.
     The growth of M. aeruginosa in batch culture showed four phases as lag phase, exponential phase, steady phase, senescence phase. The specific growth rate, division ratio, the microscopic photo perimeter and area of the cell, cell roundness, cell cholorophyll a content showed different variation patterns in the four growth phases, which indicated that the surrounding conditions could impact the growth and cell characteristics. On the other hand, the variation of specific growth rate was in relation to that of cell characteristics such as division ratio, cell size, cell roundness, etc.
     Based on the variations of growth rate and cell carbohydrate content, it was found that the specific growth rate was inversely proportional to cell carbohydrate content. The growth rate was relatively high when the cell carbohydrate content was low. It can be indicated that high growth occurs when cells are buoyant, which favors blooms. Under P controlled condition, a combined model was constructed for the prediction of cyanobacterial growth, and a better prediction was achieved by the combined model (Adjusted R2=0.698, P<<0.001) than the prediction model using any one factor of cell pigment content, cell phosphorus content, cell carbohydrate content or cell size. Cell characteristics are the reflection of the combined effect of environmental parameters on cells. It will be suitable to be applied in various environments to predict the growth.
     Finally, a cyanobacterial(Arthrospira platensis) bloom was induced in situ by nutrient manipulation in an enclosure. The succession of the phytoplankton community and the water chemistry variations before the appearance of bloom, as well as their relationship, were investigated. The cell pigment variations were studied simultaneously. The Pearson's correlation analysis showed that there was no significant correlation between water chemistry and green algal or cyanobacterial composition, indicating that water chemistry variations were not suitable to be used as indicators for cyanobacterial-bloom early-warning. However, the diversity index of the phytoplankton community decreased sharply before the bloom appeared. Therefore, the diversity index of phytoplankton community may be considered as an indicator for cyanobacterial-bloom early-warning. In addition, the cell pigment variations represented the changes of community structure, which should be useful for studying the dynamics of phytoplankton community.
引文
[1]Sellner K Q Doucette G J, Kirkpatrick G J. Harmful algal blooms:causes, impacts and detection [J]. Journal of Industrial Microbiology and Biotechnology,2003,30(7): 383-406.
    [2]Jewett E B, Lopez C B, Dortch Q, et al., National Assessment of Efforts to Predict and Respond to Harmful Algal Blooms in U.S. Waters. Interim Report [R]. Washington, DC.: Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology,2007.
    [3]Carmichael W W. Health effects of toxin-producing cyanobacteria:"The CyanoHABs" [J]. Human and Ecological Risk Assessment,2001,7(5):1393-1407.
    [4]秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J].地球科学进展,2007,22(9):896-906.
    [5]殷福才,张之源.巢湖富营养化研究进展[J].湖泊科学,2003,15(4):377-384.
    [6]柘元蒙.滇池富营养化现状、趋势及其综合防治对策[J].云南环境科学,2002,21(1):35-38.
    [7]韩涛,彭文启,李怀恩,等.洱海水体富营养化的演变及其研究进展[J].中国水利水电科学研究院学报,2005,3(1):71-73.
    [8]Howard A. Problem cyanobacterial blooms:explanation and simulation modelling [J]. Transactions of the Institute of British Geographers,1994,19(2):213-224.
    [9]Reynolds C S. Cyanobacterial water-blooms [M]//Callow J A. Advances in botanical research (Vol 13). London:Academic Press.1987:67-143.
    [10]Pinckney J L, Millie D F, Vinyard B T, et al. Environmental controls of phytoplankton bloom dynamics in the Neuse River Estuary, North Carolina, U.S.A [J]. Canadian Journal of Fisheries and Aquatic Sciences,1997,54(11):2491-2501.
    [11]Inamori Y, Sugiura N, Iwami N, et al. Degradation of the toxic cyanobacterium Microcystis viridis using predaceous micro-animals combined with bacteria [J]. Phycological Research,1998,46(SUPPL.):37-44.
    [12]Sugiura N, Iwami N, Inamori Y, et al. Significance of attached cyanobacteria relevant to the occurrence of musty odor in Lake Kasumigaura [J]. Water Research,1998,32(12): 3549.3554.
    [13]Wei B, Sugiura N, Maekawa T. Use of artificial neural network in the prediction of algal blooms [J]. Water Research,2001,35(8):2022-2028.
    [14]Paerl H W, Huisman J. CLIMATE:Blooms Like It Hot [J]. Science,2008,320(5872): 57-58.
    [15]Smith V H. Phytoplankton response to eutrophication in inland waters [M]//Akatsuka I. Introduction to Applied Phycology. Hague:SPB Academic Publishing.1990:231-249.
    [16]Ferber L R, Levine S N, Lini A, et al. Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? [J]. Freshwater Biology,2004,49(6):690-708.
    [17]Oberholster P J, Botha A M, Cloete T E. Toxic cyanobacterial blooms in a shallow, artificially mixed urban lake in Colorado, USA [J]. Lakes and Reservoirs:Research and Management,2006,11(2):111-123.
    [18]Paerl H W, Fulton R S, Ⅲ, Moisander P H, et al. Harmful freshwater algal blooms, with an emphasis on cyanobacteria [J]. TheScientificWorld,2001,1:76-113.
    [19]Jin X C, Xu Q J, Huang C Z. Current status and future tendency of lake eutrophication in China [J]. Science in China Series C-Life Sciences,2005,48(Special Issue):948-954.
    [20]李世杰.应重视湖泊科学的建设与发展[J].中国科学院院刊,2006,21(05):399-405.
    [21]孟红明,张振克.我国主要水库富营养化现状评价[J].河南师范大学学报(自然科学版),2007,35(02):133-141.
    [22]虞孝感,Nipper J,燕乃玲.从国际治湖经验探讨太湖富营养化的治理[J].地理学报,2007,62(09):899-906.
    [23]Lopez C B, Jewett E B, Dortch Q, et al., Scientifc Assessment of Freshwater Harmful Algal Blooms [R]. Washington, DC., USA:Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology,2008.
    [24]Paerl H. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum [M]//Hudnell H K. Cyanobacterial Harmful Algal Blooms:State of the Science and Research Needs. Springer.2008:217-237.
    [25]Roelke D, Buyukates Y. The diversity of harmful algal bloom-triggering mechanisms and the complexity of bloom initiation [J]. Human and Ecological Risk Assessment, 2001,7(5):1347-1362.
    [26]Paerl H W. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters [J]. Limnology and Oceanography,1988,33(4):823-847.
    [27]Sellner K G. Physiology, ecology, and toxic properties of marine cyanobacteria blooms [J]. Limnology and Oceanography,1998,42(5 Ⅱ):1089-1104.
    [28]Zohary T, Pais-Madeira A M, Robarts R, et al. Interannual phytoplankton dynamics of a hypertrophic African lake [J].Archiv fur Hydrobiologie,1996,136(1):105-126.
    [29]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(03):589-595.
    [30]孔繁翔.太湖水华与中国的水危机[J].文明,2007,(10):8-9.
    [31]陈宇炜,高锡云.西太湖北部微囊藻时空分布及其与光温等环境因子关系的研究[M]//蔡启铭.太湖环境生态研究(一).北京:气象出版社.1998:142-148.
    [32]Tsujimura S, Ishikawa K, Tsukada H. Effect of temperature on growth of the cyanobacterium Aphanizomenon flos-aquae in Lake Biwa and Lake Yogo [J]. Phycological Research,2001,49(4):275-280.
    [33]华锦彪,宗志祥.洋河水库“水华”发生的实验研究[J].北京大学学报(自然科学版),1994,30(04):476-484.
    [34]Reynolds C S. The Ecology of Freshwater Phytoplankton [M]. Cambridge:Cambridge University Press,1984.
    [35]Johnk K D, Huisman J, Sharples J, et al. Summer heatwaves promote blooms of harmful cyanobacteria [J]. Global Change Biology,2008,14(3):495-512.
    [36]Elliott J, Jones I, Thackeray S. Testing the Sensitivity of Phytoplankton Communities to Changes in Water Temperature and Nutrient Load, in a Temperate Lake [J]. Hydrobiologia,2006,559(1):401-411.
    [37]Oliver R L, Ganf G G. Freshwater blooms [M]//Whitton B A, Potts M. The Ecology of Cyanobacteria:Their Diversity in Time and Space. Dordrecht, the Netherlands:Kluwer Academic Publishers.2000:150-194.
    [38]Huisman J, Jonker R R, Zonneveld C, et al. Competition for light between phytoplankton species:Experimental tests of mechanistic theory [J]. Ecology,1999, 80(1):211-222.
    [39]Reynolds C S, Oliver R L, Walsby A E. Cyanobacterial dominance:the role of buoyancy regulation in dynamic lake environments [J]. New Zealand Journal of Marine and Freshwater Research,1987,21(33):379-390.
    [40]Wallace B B, Hamilton D P. Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa [J]. Journal of Plankton Research,2000,22(6): 1127-1138.
    [41]Davis J R, Koop K. Eutrophication in Australian rivers, reservoirs and estuaries-a southern hemisphere perspective on the science and its implications [J]. Hydrobiologia, 2006,559:23-76.
    [42]Nielsen E S. Growth of plankton algae as a function of N-concentration, measured by means of batch technique [J]. Marine Biology,1978,46(3):185-189.
    [43]Takamura N, Iwakuma T, Yasuno M. Uptake of 13C and 15N (ammonium, nitrate and urea) by Microcystis in Lake Kasumigaura [J]. Journal of Plankton Research,1987,9(1): 151-165.
    [44]郑朔方,杨苏文,金相灿.铜绿微囊藻生长的营养动力学[J].环境科学,2005,26(02):152-156.
    [45]Baldia S, Evangelista A, Aralar E, et al. Nitrogen and phosphorus utilization in the cyanobacterium Microcystis aeruginosa isolated from Laguna de Bay, Philippines [J]. Journal of Applied Phy col ogy,2007,19(6):607-613.
    [46]Smith V H. Low Nitrogen to Phosphorus Ratios Favor Dominance by Blue-Green Algae in Lake Phytoplankton [J]. Science,1983,221(4611):669-671.
    [47]Bulgakov N G, Levich A P. The nitrogen:phosphorus ratio as a factor regulating phytoplankton community structure [J]. Archiv fur Hydrobiologie,1999,146(1):3-22.
    [48]Smith V H, Bennett S J. Nitrogen:phosphorus supply ratios and phytoplankton community structure in lakes [J]. Archiv fur Hydrobiologie,1999,146(1):37-53.
    [49]Levine S N, Schindler D W. Influence of nitrogen to phosphorus supply ratios and physicochemical conditions on cyanobacteria and phytoplankton species composition in the Experimental Lakes Area, Canada [J]. Canadian Journal of Fisheries and Aquatic Sciences,1999,56(3):451-466.
    [50]Schindler D W, Hecky R E, Findlay D L, et al. Eutrophi cation of lakes cannot be controlled by reducing nitrogen input:Results of a 37-year whole-ecosystem experiment [J]. Proceedings of the National Academy of Sciences,2008,105(32):11254-11258.
    [51]Reynolds C S. Non-determinism to Probability, or N:P in the community ecology of phytoplankton [J]. Archiv fur Hydrobiologie,1999,146(1):23-35.
    [52]Xie L, Xie P, Li S, et al. The low TN:TP ratio, a cause or a result of Microcystis blooms? [J]. Water Research,2003,37(9):2073-2080.
    [53]谢平.论蓝藻水华的发生机制:从生物进化、生物地球化学和生态学观点[M].北京:科学出版社,2007.
    [54]Quiros R. The nitrogen to phosphorus ratio for lakes:A cause or a consequence of aquatic biology? [M]//Cirelli A F, Marquisa G C. El Agua en Iberoamerica:De la Limnologia a la Gestion en Sudamerica. Buenos Aires, Argentina:CYTED XVII, Centro de Estudios Transdiciplinarios del Agua, Facultad de Veterinaria, Universidad de Buenos Aires.2002:11-26.
    [55]Rueter J Q Petersen R R. Micronutrient effects on cyanobacterial growth and physiology [J]. New Zealand Journal of Marine and Freshwater Research,1987,21: 435-445.
    [56]阎峰,储昭升,金相灿,等.Fe(III)对太湖铜绿微囊藻和四尾栅藻竞争的影响[J].环境科学研究,2007,20(5):61-65.
    [57]Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean [J]. Nature,1994,371(6493):123-129.
    [58]陆开形.Cu2+、Zn2+、Pb2+对雨生红球藻生长的影响[J].上海交通大学学报(农业科学版),2004,22(1):59-63.
    [59]况琪军,夏宜铮,惠阳.重金属对藻类的致毒效应[J].水生生物学报,1996,20(3):277-282.
    [60]连民,刘颖,俞顺章.氮磷铁锌对铜绿微囊藻生长及产毒的影响[J].上海环境科学,2001,21(4):167-170.
    [61]吕秀平,张栩,康瑞娟,等.Fe3+对铜绿微囊藻生长和光合作用的影响[J].北京化工大学学报,2006,33(1):27-30.
    [62]Mann E L. Trace metals and the ecology of marine cyanobacteria [D]. Cambridge, Massachusetts, USA:Woods Hole Oceanographic Institution & the Massachusetts Institute of Technology,2000.
    [63]Humble A V, Gadd G M, Codd G A. Binding of copper and zinc to three cyanobacterial microcystins quantified by differential pulse polarography [J]. Water Research,1997, 31(7):1679-1686.
    [64]Anderson D M. Prevention, control, and mitigation of harmful algal blooms:multiple approaches to HAB management [C]//Hall S, Etheridge S, Anderson D, et al. Harmful Algae Management and Mitigation,2004, Singapore. Singapore:Asia-Pacific Economic Coooperation (Singapore), c2004:123-130.
    [65]Shapiro J. The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes [J]. Freshwater Biology,1997,37(2):307-323.
    [66]徐涛,宋立荣.三株铜绿微囊藻对外源无机碳利用的研究[J].水生生物学报,2007,31(2):245-250.
    [67]金相灿,李兆春,郑朔方,等.铜绿微囊藻生长特性研究[J].环境科学研究,2004,17(Suppl.):52-54,61.
    [68]Sanchez-Luna L D, Bezerra R P, Matsudo M C, et al. Influence of pH, temperature, and urea molar flowrate on Arthrospira platensis fed-batch cultivation:A kinetic and thermodynamic approach [J]. Biotechnology and Bioengineering,2007,96(4):702-711.
    [69]杨波,储昭升,金相灿,等.CO2/pH对三种藻生长及光合作用的影响[J].中国环境科学,2007,27(1):54-57.
    [70]Shapiro J. Current Beliefs Regarding Dominance by Blue-Greens:The Case for the Importance of CO2 and pH [J]. Internationale Vereinigung fur Theoretische und Angewandte Limnologie:Verhandlungen,1990,24(1):38-54.
    [71]Healey F P. Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (Cyanophyceae) [J]. Journal of Phycology,1985,21(1): 134-146.
    [72]Sterner R W, Elser J J, Fee E J, et al. The light:nutrient ratio in lakes:The balance of energy and materials affects ecosystem structure and process [J].American Naturalist, 1997,150(6):663-684.
    [73]Rhee G-Y, Gotham I J. The effect of environmental factors on growth:Light and the interactions of light with nitrate limitation [J]. Limnology and Oceanography,1981, 26(4):649-659.
    [74]刘春光,金相灿,邱金泉,等.光照与磷的交互作用对两种淡水藻类生长的影响[J].中国环境科学,2005,25(01):32-36.
    [75]Baird M E, Emsley S M, McGlade J M. Modelling the interacting effects of nutrient uptake, light capture and temperature on phytoplankton growth [J]. Journal of Plankton Research,2001,23(8):829-840.
    [76]Lapointe B, Dawes C, Tenore K. Interactions between light and temperature on the physiological ecology of Gracilaria tikvahiae(Gigartinales:Rhodophyta)II. Nitrate uptake and levels of pigments and chemical constituents [J]. Marine Biology,1984, 80(2):171-178.
    [77]Boumnich L, Derraz A, Naji B, et al. Influence of light-temperature and nutrient conditions on the growth and intracellular storage (nitrogen and phosphorus) of Microcystis aeruginosa Kutzing isolated from the El Kansera (Morocco) eutrophic impoundment [J]. Annales De Limnologie-International Journal of Limnology,2001, 37(3):191-198.
    [78]Cao H S, Kong F X, Luo L C, et al. Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of Microcystis aeruginosa in Lake Taihu [J]. Journal of Freshwater Ecology,2006,21(2):231-238.
    [79]Sharples J, Ross O N, Scott B E, et al. Inter-annual variability in the timing of stratification and the spring bloom in the North-western North Sea [J]. Continental Shelf Research,2006,26(6):733-751.
    [80]Mongin M, Nelson D M, Pondaven P, et al. Potential phytoplankton responses to iron and stratification changes in the Southern Ocean based on a flexible-composition phytoplankton model [J]. Global Biogeochemical Cycles,2007,21(4):GB4020.
    [81]Dore J E, Letelier R M, Church M J, et al. Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre:Historical perspective and recent observations [J]. Progress in Oceanography,2008,76(1):2-38.
    [82]Bormans M, Maier H, Burch M, et al. Temperature stratification in the lower River Murray, Australia:implication for cyanobacterial bloom development [J]. Marine and Freshwater Research,1997,48(7):647-654.
    [83]Ahn C Y, Chung A S, Oh H M. Rainfall, phycocyanin, and N:P ratios related to cyanobacterial blooms in a Korean large reservoir [J]. Hydrobiologia,2002,474(1-3): 117-124.
    [84]Honjo M, Matsui K, Ueki M, et al. Diversity of virus-like agents killing Microcystis aeruginosa in a hyper-eutrophic pond [J]. Journal of Plankton Research,2006,28(4): 407-412.
    [85]Deng L, Hayer P K. Evidence for cyanophages active against bloom-forming freshwater cyanobacteria [J]. Freshwater Biology,2008,53(6):1240-1252.
    [86]Reynolds C S, Walsby A E. Water blooms [J]. Biological Reviews of the Cambridge Philosophical Society,1975,50(4):437-481.
    [87]Dokulil M T, Teubner K. Cyanobacterial dominance in lakes [J]. Hydrobiologia,2000, 438(1-3):1-12.
    [88]Downing J A, Watson S B, McCauley E. Predicting Cyanobacteria dominance in lakes [J]. Canadian Journal of Fisheries and Aquatic Sciences,2001,58(10):1905-1908.
    [89]Brookes J D, Ganf G G. Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light [J]. Journal of Plankton Research,2001,23(12): 1399-1411.
    [90]Ibelings B W, Mur L R, Walsby A E. Diurnal changes in buoyancy and vertical distribution in populations of Microcystisin two shallow lakes [J]. Journal of Plankton Research,1991,13(2):419-436.
    [91]Kromkamp J C, Mur L R. Buoyant density changes in the cyanobacterium Microcystis aeruginosa due to changes in the cellular carbohydrate content [J]. FEMS Microbiology Letters,1984,25(1):105-109.
    [92]Thomas R H, Walsby A E. Buoyancy regulation in a strain of Microcystis [J]. Journal of General Microbiology,1985,131(4):799-809.
    [93]Roelke D, Buyukates Y. Dynamics of phytoplankton succession coupled to species diversity as a system-level tool for study of Microcystis population dynamics in eutrophic lakes [J]. Limnology and Oceanography,2002,47(4):1109-1118.
    [94]NOAA. Algal Bloom Forecasting System [EB/OL]. [2007-09-04]. http://tidesandcurrents.noaa.gov/hab/
    [95]潘德炉,毛天明,李淑菁,等.卫星遥感监测我国沿海水色环境的研究[J].第四纪研究,2000,20(3):240-246.
    [96]国家高技术研究发展计划(863计划),2002年年度报告(资源环境技术领域)[R].北京:国家高技术研究发展计划(863计划),2002.
    [97]马荣华,孔繁翔,段洪涛,等.基于卫星遥感的太湖蓝藻水华时空分布规律认识[J].湖泊科学,2008,20(6):687-694.
    [98]Bartram J, Burch M, Falconer I R, et al. Situation Assessment, Planning and Management [M]//Chorus I, Bartram J. Toxic Cyanobacteria in Water:A guide to their public health consequences, monitoring and management London:E & FN Spon.1999: 179-209.
    [99]矫晓阳.透明度作为赤潮预警监测参数的初步研究[J].海洋环境科学,2001,20(1):27-31.
    [100]王正方,张庆,吕海燕,等.长江口溶解氧赤潮预报简易模式[J].海洋学报(中文版),2000,22(04):125-129.
    [101]周勇,刘凡,吴丹,等.湖泊水环境预测的原理与方法[J].长江流域资源与环境,1999,8(03):305-311.
    [102]曾勇,杨志峰,刘静玲.城市湖泊水华预警模型研究[J].水科学进展,2007,18(1):79-85.
    [103]李崇明,黄真理,张晟,等.三峡水库藻类“水华”预测[J].长江流域资源与环境,2007,16(1):1-6.
    [104]陈宇炜,秦伯强,高锡云.太湖梅梁湾藻类及相关环境因子逐步回归统计和蓝藻水华的初步预测[J].湖泊科学,2001,13(1):63-71.
    [105]Kneale P E, Howard A. Statistical analysis of algal and water quality data [J]. Hydrobiologia,1997,349:59-63.
    [106]Recknagel F, French M, Harkonen P, et al. Artificial neural network approach for modelling and prediction of algal blooms [J]. Ecological Modelling,1997,96(1-3): 11-28.
    [107]Yabunaka K-i, Hosomi M, Murakami A. Novel application of a back-propagation artificial neural network model formulated to predict algal bloom [J]. Water Science and Technology,1997,36(5):89-97.
    [108]Recknagel F. ANNA-Artificial Neural Network model for predicting species abundance and succession of blue-green algae [J]. Hydrobiologia,1997,349:41-51.
    [109]Ibelings B W, Vonk M, Los H F J, et al. Fuzzy modeling of cyanobacterial surface waterblooms:Validation with NOAA-AVHRR satellite images [J]. Ecological Applications,2003,13(5):1456-1472.
    [110]Laanemets J, Lilover M J, Raudsepp U, et al. A fuzzy logic model to describe the cyanobacteria Nodularia spumigena blooms in the Gulf of Finland, Baltic Sea [J]. Hydrobiologia,2006,554(1):31-45.
    [111]Lilover M J, Laanemets J. A simple tool for the early prediction of the cyanobacteria Nodularia spumigena bloom biomass in the Gulf of Finland [J]. Oceanologia,2006, 48(SUPPL.):213-229.
    [112]Maier H R, Dandy G C. Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks [J]. Mathematics and Computers in Simulation, 1997,43(3-6):377-386.
    [113]Chau K W. Algal Bloom Prediction with Particle Swarm Optimization Algorithm [M]//Hao Y, Liu J, Wang Y, et al. Computational Intelligence and Security. Berlin: Springer Berlin/Heidelberg 2005:645-650.
    [114]裴洪平,罗妮娜,蒋勇.利用BP神经网络方法预测西湖叶绿素a的浓度[J].生态学报,2004,24(02):246-251.
    [115]刘载文,杨斌,黄振芳,等.基于神经网络的北京市水体水华短期预报系统[J].计算机工程与应用,2007,43(28):243-245.
    [116]Cerco C F, Noel M R, Tillman D H. A practical application of Droop nutrient kinetics (WR 1883) [J]. Water Research,2004,38(20):4446-4454.
    [117]Droop M R. Vitamin B12 and marine ecology, IV The kinetics of uptake, growth and inhibition in Monochrysis lutheri [J]. Journal of the Marine Biological Association of the United Kingdom,1968,48:689-733.
    [118]Laws E A, Chalup M S. A microalgal growth model [J]. Limnology and Oceanography, 1990,35(3):597-608.
    [119]Reynolds C S, Irish A E. Modelling phytoplankton dynamics in lakes and reservoirs:the problem of in-situ growth rates [J]. Hydrobiologia,1997,349(1):5-17.
    [120]Reynolds C S, Irish A E, Elliott J A. The ecological basis for simulating phytoplankton responses to environmental change (PROTECH) [J]. Ecological Modelling,2001, 140(3):271-291.
    [121]Elliott J A, Reynolds C S, Irish A E. An investigation of dominance in phytoplankton using the PROTECH model [J]. Freshwater Biology,2001,46(1):99-108.
    [122]Lewis D M, Elliott J A, Lambert M F, et al. The simulation of an Australian reservoir using a phytoplankton community model:PROTECH [J]. Ecological Modelling,2002, 150(1-2):107-116.
    [123]Lewis D M, Elliott J A, Brookes J D, et al. Modelling the effects of artificial mixing and copper sulphate dosing on phytoplankton in an Australian reservoir [J]. Lakes and Reservoirs:Research and Management,2003,8(1):31-40.
    [124]Elliott J A, Thackeray S J. The simulation of phytoplankton in shallow and deep lakes using PROTECH [J]. Ecological Modelling,2004,178(3-4):357-369.
    [125]许秋瑾,秦伯强,陈伟民,等.太湖藻类生长模型研究[J].湖泊科学,2001,13(2):149-157.
    [126]Kromkamp J, Walsby A E. A computer model of buoyancy and vertical migration in cyanobacteria [J]. Journal of Plankton Research,1990,12(1):161-183.
    [127]Visser P M, Passarge J, Mur L R. Modelling vertical migration of the cyanobacterium Microcystis [J]. Hydrobiologia,1997,349(1):99-109.
    [128]Guven B, Howard A. Modelling the growth and movement of cyanobacteria in river systems [J]. Science of The Total Environment,2006,368(2-3):898-908.
    [129]Sarmento H, Descy J-P Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes [J]. Journal of Applied Phycology,2008, 20(6):1001-1011.
    [130]Seppala J, Balode M. The use of spectral fluorescence methods to detect changes in the phytoplankton community [J]. Hydrobiologia,1997,363(1):207-217.
    [131]Greisberger S, Teubner K. Does pigment composition reflect phytoplankton community structure in differing temperature and light conditions in a deep alpine lake? An approach using HPLC and delayed fluorescence techniques [J]. Journal of Phycology, 2007,43(6):1108-1119.
    [132]Morabito Q Oggioni A, Caravati E, et al. Seasonal morphological plasticity of phytoplankton in Lago Maggiore (N. Italy) [J]. Hydrobiologia,2007,578(1):47-57.
    [133]Naselli-Flores L, Padisak J, Albay M. Shape and size in phytoplankton ecology:do they matter? [J]. Hydrobiologia,2007,578(1):157-161.
    [134]Tang E P Y. The allometry of algal growth rates [J]. Journal of Plankton Research,1995, 17(6):1325-1335.
    [135]Geider R J, Piatt T, Raven J A. Size dependence of growth and photosynthesis in diatoms:a synthesis [J]. Marine Ecology Progress Series,1986,30:93-104.
    [136]Kagami M, Urabe J. Phytoplankton growth rate as a function of cell size:an experimental test in Lake Biwa [J]. Limnology,2001,2(2):111-117.
    [137]Nielsen S L. Size-dependent growth rates in eukaryotic and prokaryotic algae exemplified by green algae and cyanobacteria:comparisons between unicells and colonial growth forms [J]. Journal of Plankton Research,2006,28(5):489-498.
    [138]Henriksen P, Riemann B, Kaas H, et al. Effects of nutrient-limitation and irradiance on marine phytoplankton pigments [J]. Journal of Plankton Research,2002,24(9): 835-858.
    [139]Wever A D, Muylaert K, Langlet D, et al. Differential response of phytoplankton to additions of nitrogen, phosphorus and iron in Lake Tanganyika [J]. Freshwater Biology, 2008,53(2):264-277.
    [140]USEPA.In Vitro Determination of Chlorophylls a, b, c1+c2 and Pheopigments in Marine and Freshwater Algae by Visible Spectrophotometry. Method 446.0, Revision 1.2 [M]. Cincinnati, OH:U.S. Environmental Protection Agency,1997.
    [141]APHA. Standard Methods for the Examination of Water and Wastewater [M].20th Ed. ed. Washington, DC:American Public Health Association,1998.
    [142]Herbert D, Phipps P J, Strange R E. Chemical Analysis of Microbial Cells [M]//Norris J R, Ribbons D W. Methods in Microbiology. London:Academic Press.1971:209-344.
    [143]Sun J, Liu D. Geometric models for calculating cell biovolume and surface area for phytoplankton [J]. Journal of Plankton Research,2003,25(11):1331-1346.
    [144]Hillebrand H, Durselen C D, Kirschtel D, et al. Biovolume calculation for pelagic and benthic microalgae [J]. Journal of Phycology,1999,35(2):403-424.
    [145]韩博平,韩志国,付翔.藻类光合作用机理与模型[M].北京:科学出版社,2003.
    [146]Meseck S L, Alix J H, Wikfors G H. Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429) [J]. Aquaculture,2005,246(1-4):393-404.
    [147]Hill W R, Fanta S E. Phosphorus and light colimit periphyton growth at subsaturating irradiances [J]. Freshwater Biology,2008,53(2):215-225.
    [148]Geider R J, MacIntyre H L, Kana T M. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature [J]. Limnology and Oceanography,1998, 43(4):679-694.
    [149]Sterner R W, Elser J J. Ecological stoichiometry:the biology of elements from molecules to the biosphere [M]. Princeton, NJ:Princeton University Press,2002.
    [150]Spilling K, Markager S. Ecophysiological growth characteristics and modeling of the onset of the spring bloom in the Baltic Sea [J]. Journal of Marine Systems,2008, 73(3-4):323-337.
    [151]Cuhel R L, Ortner P B, Lean D R S. Night synthesis of protein by algae [J]. Limnology and Oceanography,1984,29(4):731-744.
    [152]Stramski D, Sciandra A, Claustre H. Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana [J]. Limnology and Oceanography,2002,47(2):392-403.
    [153]曾艳艺,黄翔鹊.温度、光照对小环藻生长和叶绿素“含量的影响[J].广东海洋大学学报,2007,27(06):36-40.
    [154]Hessen D O, F(?)r(?)vig P J, Andersen T. Light, nutrients, and P:C ratios in algae:Grazer performance related to food quality and quantity [J]. Ecology,2002,83(7):1886-1898.
    [155]Dickman E M, Vanni M J, Horgan M J. Interactive effects of light and nutrients on phytoplankton stoichiometry [J]. Oecologia,2006,149(4):676-689.
    [156]Thingstad T F, Krom M D, Mantoura R F C, et al. Nature of Phosphorus Limitation in the Ultraoligotrophic Eastern Mediterranean [J]. Science,2005,309(5737):1068-1071.
    [157]Mateo P, Douterelo I, Berrendero E, et al. Physiological differences between two species of cyanobacteria in relation to phosphorus limitation [J]. Journal of Phycology, 2006,42(1):61-66.
    [158]易文利,金相灿,储昭升,等.不同质量浓度的磷对铜绿微囊藻生长及细胞内磷的影响[J].环境科学研究,2004,17(S1):58-61.
    [159]陈国永,杨振波,马昱,等.氮和磷对铜绿微囊藻细胞生长的影响[J].环境与健康杂志,2007,24(09):675-679.
    [160]Oliver R L. Floating and sinking in gas-vacuolate cyanobacteria [J]. Journal of Phycology,1994,30(2):161-173.
    [161]Behrenfeld M J, Falkowski P G.A consumer's guide to phytoplankton primary productivity models [J]. Limnology and Oceanography,1997,42(7):1479-1491.
    [162]Jassby A D, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton [J]. Limnology and Oceanography,1976, 21(4):540-547.
    [163]Markager S. Open-water measurement of areal photosynthesis in a dense phytoplankton community [J]. Archiv fur Hydrobiologie,1994,129(4):405-424.
    [164]Stoyneva M, Descy J-P, Vyverman W. Green algae in Lake Tanganyika:is morphological variation a response to seasonal changes? [J]. Hydrobiologia,2007, 578(1):7-16.
    [165]Fujiki T, Taguchi S. Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance [J]. Journal of Plankton Research, 2002,24(9):859-874.
    [166]Finkel Z V, Irwin A J. Modeling size-dependent photosynthesis:Light absorption and the allometric rule [J]. Journal of Theoretical Biology,2000,204(3):361-369.
    [167]Ciotti A M, Lewis M R, Cullen J J. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient [J]. Limnology and Oceanography,2002,47(2):404-417.
    [168]Tang E P Y, Peters R H. The allometry of algal respiration [J]. Journal of Plankton Research,1995,17(2):303-315.
    [169]Smith R E H, Kalff J. The Effect of Phosphorus Limitation on Algal Growth Rates: Evidence from Alkaline Phosphatase [J]. Canadian Journal of Fisheries and Aquatic Sciences,1981,38(11):1421-1427.
    [170]Kirk J T O. Light and Photosynthesis in Aquatic Ecosystems [M].2nd ed. Cambridge, UK:Cambridge University Press,1994.
    [171]Naselli-Flores L, Barone R. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily) [J]. Hydrobiologia,2007,578(1):87-95.
    [172]O'Farrell I, de Tezanos Pinto P, Izaguirre I. Phytoplankton morphological response to the underwater light conditions in a vegetated wetland [J]. Hydrobiologia,2007,578(1): 65-77.
    [173]Cody G D, Boctor N Z, Filley T R, et al. Primordial Carbonylated Iron-Sulfur Compounds and the Synthesis of Pyruvate [J]. Science,2000,289(5483):1337-1340.
    [174]Michel K-P, Pistorius E K. Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency:The function of IdiA and IsiA [J]. Physiologia Plantarum,2004,120(1):36-50.
    [175]Hyenstrand P, Rydin E, Gunnerhed M. Response of pelagic cyanobacteria to iron additions--enclosure experiments from Lake Erken [J]. Journal of Plankton Research, 2000,22(6):1113-1126.
    [176]Boyd P W, Jickells T, Law C S, et al. Mesoscale Iron Enrichment Experiments 1993-2005:Synthesis and Future Directions [J]. Science,2007,315(5812):612-617.
    [177]Coale K H, Johnson K S, Fitzwater S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean [J]. Nature,1996,383(6600):495-501.
    [178]Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic [J]. Nature,1988,331(6154):341-343.
    [179]Home A J, Goldman C R. Limnology [M].2nd ed. Singapore:McGraw-Hill,1994.
    [180]Murphy T, Lean D, Nalewajko C. Blue-green algae:their excretion of iron-selective chelators enables them to dominate other algae [J]. Science,1976,192(4242):900-902.
    [181]Geider R, Roche J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea [J]. Photosynthesis Research,1994, 39(3):275-301.
    [182]Lin C K, Schelske C L. Seasonal variation of potential nutrient limitation to chlorophyll production in southern Lake Huron [J]. Canadian Journal of Fisheries and Aquatic Sciences,1981,38(1):1-9.
    [183]Parparova R, Yacobi Y Z. Chelatable iron in the sub-tropical Lake Kinneret:Its seasonal variation and impact on carbon uptake by natural algal assemblages and monoalgal cultures [J]. Aquatic Sciences-Research Across Boundaries,1998,60(2):157-168.
    [184]Baron M, Arellano J B, Gorge J L. Copper and photosystem II:A controversial relationship [J]. Physiologia Plantarum,1995,94(1):174-180.
    [185]van Assche F, Clijsters H. Effects of metals on enzyme activity in plants [J]. Plant, Cell & Environment,1990,13(3):195-206.
    [186]Harrison M D, Jones C E, Dameron C T. Copper chaperones:Function, structure and copper-binding properties [J]. Journal of Biological Inorganic Chemistry,1999,4(2): 145-153.
    [187]Fernandes J, Henriques F. Biochemical, physiological, and structural effects of excess copper in plants [J]. The Botanical Review,1991,57(3):246-273.
    [188]Ouzounidou Q Eleftheriou E P, Karataglis S. Ecophysiological and ultrastructural effects of copper in Thlaspi ochroleucum (Cruciferae) [J]. Canadian Journal of Botany, 1992,70:947-957.
    [189]Walker C D, Webb J. Copper in plants:Forms and behaviour [J]. Copper in Soils and Plants,1981:189-212.
    [190]Kennedy C D, Gonsalves F A N. The action of divalent zinc, cadmium, mercury, copper and lead on the trans-root potential and H+efflux of excised roots [J]. Journal of Experimental Botany,1987,38(190):800-817.
    [191]Maksymiec W, Bednara J, Baszynski T. Responses of runner bean plants to excess copper as a function of plant growth stages:Effects on morphology and structure of primary leaves and their chloroplast ultrastructure [J]. Photosynthetica,1995,31(3): 427-435.
    [192]Lidon F C, Ramalho J C, Henriques F S. Copper inhibition of rice photosynthesis [J]. Journal of Plant Physiology,1993,142:12-17.
    [193]Maksymiec W, Baszynski T. The role of Ca2+ions in modulating changes induced in bean plants by an excess of Cu2+ions. Chlorophyll fluorescence measurements [J]. Physiologia Plantarum,1999,105(3):562-568.
    [194]Li H, Murphyc T, Guoc J, et al. Iron-stimulated growth and microcystin production of Microcystis novacekii UAM 250 [J]. Limnologica,2008:
    [195]Alaoui-Soss B, Genet P, Vinit-Dunand F, et al. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents [J]. Plant Science,2004,166(5):1213-1218.
    [196]Cavet J S, Borrelly G P M, Robinson N J. Zn, Cu and Co in cyanobacteria:selective control of metal availability [J]. FEMS Microbiology Reviews,2003,27(2-3):165-181.
    [197]Beutler M, Wiltshire K H, Meyer B, et al. A fluorometric method for the differentiation of algal populations in vivo and in situ [J]. Photosynthesis Research,2002,72(1):39-53.
    [198]Lee T-y, Tsuzuki M, Takeuchi T, et al. Quantitative determination of cyanobacteria in mixed phytoplankton assemblages by an in vivo fluorimetric method [J]. Analytica Chimica Acta,1995,302(1):81-87.
    [199]Lee T, Tsuzuki M, Takeuchi T, et al. In vivo fluorometric method for early detection of cyanobacterial waterblooms [J]. Journal of Applied Phy col ogy,1994,6(5):489-495.
    [200]Kumawat R N, Rathore P S, Nathawat N S, et al. Effect of Sulfur and Iron on Enzymatic Activity and Chlorophyll Content of Mungbean [J]. Journal of Plant Nutrition,2006,29(8):1451-1467.
    [201]Wilhelm S W. Ecology of iron-limited cyanobacteria:a review of physiological responses and implications for aquatic systems [J]. Aquatic Microbial Ecology,1995, 09(3):295-303.
    [202]Sherman D M, Sherman L A. Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans [J]. Journal of Bacteriology,1983,156(1):393-401.
    [203]Gupta U C. Copper in agricultural crops [M]//Nriagu J O. Copper in the Environment PartⅠ:Ecological Cycling. New York:John Wiley & Sons.1979:255-288.
    [204]Clijsters H, van Assche F. Inhibition of photosynthesis by heavy metals [J]. Photosynthesis Research,1985,7(1):31-40.
    [205]Maksymiec W. Effect of copper on cellular processes in higher plants [J]. Photosynthetica,1997,34(3):321-342.
    [206]Yruela I, Alfonso M, Baron M, et al. Copper effect on the protein composition of photosystem II [J]. Physiologia Plantarum,2000,110(4):551-557.
    [207]Yruela I, Gatzen Q Picorel R, et al. Cu(II)-Inhibitory Effect on Photosystem II from Higher Plants. A Picosecond Time-Resolved Fluorescence Study [J]. Biochemistry, 1996,35(29):9469-9474.
    [208]Gupta S L. Copper uptake and inhibition of growth, photosynthetic pigments and macromolecules in the cyanobacterium Anacystis nidulans [J]. Photosynthetica,1986, 20(4):447-453.
    [209]Wong P K, Chang L. Effects of copper, chromium and nickel on growth, photosynthesis and chlorophyll a synthesis of Chlorella pyrenoidosa 251 [J]. Environmental Pollution, 1991,72(2):127-139.
    [210]Ciscato M, Valcke R, van Loven K, et al. Effects of in vivo copper treatment on the photosynthetic apparatus of two Triticum durum cultivars with different stress sensitivity [J]. Physiologia Plantarum,1997,100(4):901-908.
    [211]Kiipper H, Setlik I, Spiller M, et al. Heavy metal-induced inhibition of photosynthesis: Targets of in vivo heavy metal chlorophyll formation [J]. Journal of Phycology,2002, 38(3):429-441.
    [212]Wu Z-x, Gan N-q, Huang Q, et al. Response of Microcystis to copper stress-Do phenotypes of Microcystis make a difference in stress tolerance? [J]. Environmental Pollution,2007,147(2):324-330.
    [213]马小妮,薛文通,魏军艳,等.铁、锰对微囊藻生长及产毒的影响[J].农业工程技术-农产品加工,2007,(7):60-63.
    [214]张铁明.微量元素—锌、铁、锰对淡水浮游藻类增殖的影响[D].北京:首都师范大学,2006.
    [215]王海明,王宁,王晓蓉,等.不同浓度Mn2+对铜绿微囊藻的生长及其生物可利用性的影响[J].环境污染与防治,2008,30(1):13-16.
    [216]Tsujimura S. Application of the frequency of dividing cells technique to estimate the in situ growth rate of Microcystis (Cyanobacteria) [J]. Freshwater Biology,2003,48(11): 2009-2024.
    [217]Jezberova J, Komarkova J. Morphometry and growth of three Synechococcus-like picoplanktic cyanobacteria at different culture conditions [J]. Hydrobiologia,2007, 578(1):17-27.
    [218]Langdon C. The significance of respiration in production measurements based on oxygen [J]. ICES Marine Science Symposia,1993,197:69-78.
    [219]Sterner R W. Elemental stoichiometry of species in ecosystems [M]//Jones C J, Lawton J H. Linking Species and Ecosystems. New York:Chapman and Hall.1995.
    [220]Droop M R. The nutrient status of algal cells in continuous culture [J]. Journal of the Marine Biological Association of the United Kingdom,1974,54:825-855.
    [221]Flynn K J. Use, abuse, misconceptions and insights from quota models:the Droop cell-quota model 40 years on [M]//Gibson R N, Atkinson R J A, Gordon J D M. Oceanography and Marine Biology:An Annual Review, Volume 46. New York:CRC Press.2008.
    [222]Leadbeater B S C. The'Droop Equation'-Michael Droop and the Legacy of the Cell-Quota Model'of Phytoplankton Growth [J]. Protist,2006,157(3):345-358.
    [223]Morin S, Coste M, Delmas F. A comparison of specific growth rates of periphytic diatoms of varying cell size under laboratory and field conditions [J]. Hydrobiologia, 2008,614(1):285-297.
    [224]Elliott J A, Thackeray S J, Huntingford C, et al. Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes [J]. Freshwater Biology,2005,50(8):1404-1411.
    [225]陈丽,周颖,吴毅凌,等.以黄浦江为水源的管网末梢水中微量有机物污染现状[J].卫生研究,2008,37(2):137-143.
    [226]胡鸿钧,魏印心.中国淡水藻类--系统分类及生态[M].北京:科学出版社,2006.
    [227]Cremen M, Martinez-Goss M, Corre V, et al. Phytoplankton bloom in commercial shrimp ponds using green-water technology [J]. Journal of Applied Phycology,2007, 19(6):615-624.
    [228]Carini S A, Joye S B. Nitrification in Mono Lake, California:Activity and community composition during contrasting hydrological regimes [J]. Limnology and Oceanography, 2008,53(6):2546-2557.
    [229]Sollie S, Verhoeven J T A. Nutrient cycling and retention along a littoral gradient in a Dutch shallow lake in relation to water level regime [J]. Water, Air and Soil Pollution, 2008,193(1-4):107-121.
    [230]Sthapit E, Ochs C, Zimba P. Spatial and temporal variation in phytoplankton community structure in a southeastern U.S. reservoir determined by HPLC and light microscopy [J]. Hydrobiologia,2008,600(1):215-228.
    [231]Ahn C Y, Joung S H, Yoon S K, et al. Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant [J]. Journal of Microbiology,2007,45(2): 98-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700