用户名: 密码: 验证码:
陆地棉核雄性不育基因的分子标记定位及相关基因的克隆和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是一种重要的经济作物,在人们的生活中占有重要地位。棉花的杂种优势十分明显,可显著提高棉花的产量、品质、抗病和抗逆性。在生产上,棉花杂种优势利用主要是通过人工去雄杂交制种和利用棉花核雄性不育系杂交制种两种方法。利用核雄性不育,可以减少去雄用工,降低制种成本,所利用杂种一代集抗病、优质、高产等优点于一体,因而对棉花核雄性不育系的研究有着非常大的意义,在生产上有广泛的发展前景。因此,寻找到与核雄性不育(GMS)基因紧密连锁的分子标记将极大地推动GMS在棉花杂种优势上的应用。同时核雄性不育表达相关基因的克隆也将有助于了解雄性不育的作用机制,这无论对基础研究还是应用研究都具有重要意义。
     本研究以陆地棉单隐性核雄性不育系阆A和重叠隐性核雄性不育中抗A为材料,分别构建了F_2和BC_1群体,通过分子标记技术对三个GMS基因进行了分子定位。以阆A的不育株(ms_(15)ms_(15))和可育株(Ms_(15)ms_(15))连续多代姐妹交培育而成的近等基因系的花药为材料,围绕小孢子减数分裂时期重点取材,利用差异显示技术克隆了一些可能与雄性不育表达的相关基因,并通过qRT-PCR验证了4个阳性差异片段。利用5′RACE和TAIL等方法克隆了一个差异片段的全长,命名为棉花过氧化酶基因Ghpod,该基因在花药中强优势表达,在营养器官中不表达。对另外一个差异基因Phi-1进行了转基因功能分析。目前取得如下研究进展:
     1、棉花核雄性不育基因的分子标记定位
     本研究利用SSR、SRAP等分子标记技术,对控制棉花核雄性不育系阆A和中抗A的三个核雄性不育基因ms_(15)、ms_5和ms_6进行了分子标记定位。
     构建了(阆A×海7124)F_2群体,该群体大小为145株,育性分离比例符合3:1(x_c~2=2.21,0.10<P<0.25)。运用Joinmap将ms_(15)基因定位于棉花的第12号染色体中间部位。整个连锁群长度114.5 cM,标记间的平均距离为3.3 cM;ms_(15)被定位在NAU1278_270和NAU2176_240两个标记之间,遗传距离分别为1.9 cM和0.8 cM。共有13个SSR标记和2个SRAP标记与ms_(15)距离小于10.0 cM。
     由于控制中抗A育性的是重叠隐性基因ms_5ms_6,直接定位ms_5ms_6有很大的难度。因此我们将(抗A×海7124)BC_1分离出的可育株再与中抗A不育株杂交,将符合3:1的BC_2家系对应的BC_1单株(基因型应该为Ms_5ms_5Ms_6ms_6)与BC_1中分离出的不育株重新构建成一个BC_1群体,用于定位ms_5╱ms_6基因,经卡方测验,这个新(抗A×海7124)BC_1群体也符合1:1(x_c~2=2.31,0.10<P<0.25)分离比例。运用Joinmap将ms_5定位在棉花第12染色体上,ms_6定位在第26染色体上。位于ms_5两侧标记为NAU3561,NAU2176和NAU2096,遗传距离分别为1.4 cM,1.8 cM和1.8 cM。位于ms_6两侧标记为BNL1227b和NAU460,遗传距离分别为1.5 cM和1.8 cM。
     由于ms_5和ms_(15)被定位到棉花同一条染色体上,因此使用Joinmap整合功能构建了ms_5和ms_(15)的整合图谱,长度为117.0cM,平均标记间距离为3.34 cM;ms_(15)和ms_5在整合图谱上的距离为6.0cM,推测ms_5和ms_(15)可能不是等位基因。
     本研究获得的与3个不育基因连锁的分子标记(多为SSR标记),可以应用于分子标记辅助选择育种,尤其是对重叠隐性核不育基因的分子定位,能够在早世代进行分子标记辅助选择,将大大提高育种效率。同时,对此3个核雄性不育基因的分子定位为图位克隆这3个不育基因奠定了基础。
     2、DDRT-PCR技术克隆陆地棉阆A核雄性不育表达的相关基因
     以陆地棉单隐性核雄性不育系阆A的不育株(ms_(15)ms_(15))与可育株(Ms_(15)ms_(15))的花药为材料,围绕小孢子减数分裂时期重点取材,利用差异显示技术(DDRT-PCR)克隆陆地棉阆A核雄性不育表达的相关基因,通过DDRT分析,获得了75个差异片段,对分子量大于150bp的65个片段进行测序及BLAST功能预测。通过对9个差异片段实时荧光定量PCR(qRT-PCR)分析,仅有4个基因符合DDRT结果。这4个阳性基因的BLAST功能预测结果为:
     (1)2个与RNA结合蛋白(RNA-binding protein)基因相关:C7与富含氨基乙酸RNA结合蛋白(Glycine-rich RNA-binding protein)高度同源(97%);C17与含KH保守域RNA结合蛋白(KH-domain-containing protein)高度同源(93%)。RNA结合蛋白参与了RNA代谢的所有过程,包括细胞核加工、核-细胞质运输、稳定以及转录起始,RNA结合蛋白在基因调控过程中扮演了重要角色。在多细胞生物中,含KH保守域的蛋白往往参与转录、mRNA的稳定、翻译水平的沉默和mRNA的定位。含KH保守域的蛋白的突变往往会导致发育缺陷。(2)C103与钙结合蛋白(Calcium-binding protein)相关,可能与花粉管发育及细胞降解死亡有关。(3)C18与磷酸诱导蛋白基因Phi-1高度同源(99%)。
     通过差异显示我们获得了一些可能与育性相关的片段,这些基因的功能需要进一步研究。
     3、棉花过氧化酶基因Ghpod的克隆与特征分析
     利用5′RACE和TAIL-PCR的方法,我们克隆了一个过氧化物酶基因,将其命名为Ghpod。该基因cDNA全长为1355bp,ORF为993bp,编码一个由330个氨基酸组成的蛋白;基因组全长为1588 bp,包含3个内含子和4个外显子。该基因翻译的蛋白包含保守的活性位点(66-77:AASLLRLHFHDC),一个近端的血红素配合基(194-204:DMIALSGAHTL),8个保守的半胱氨酸残基(C44,C77,C82,C124,C130,C209,C236,C326),组成4个2硫键(C44-C124,C77-C82,C130-C326,C209-236)(在http://www.expasy.ch/prosite中预测)。这些特征存在于绝大多数的ClassⅢ过氧化酶中。BLAST分析表明,该基因同血红素过氧化酶以及拟南芥过氧化酶具有很高的相似性。Ghpod氨基酸序列信号肽预测表明Ghpod具有一个22个氨基酸序列的信号肽(MAKCSVLLFLCLVMVSFNVANT),剪切位点介于Thr22和Met23之间。Ghpod与棉花中已报道的20个过氧化酶的多重比较显示Ghpod与它们的氨基酸序列相似性很低,介于28%和49%之间。RT-PCR和Northern表明该基因为花器官特异表达基因,在花药中强优势表达,在营养器官中不表达。Ghpod与花器官、花药发育的关系需要进一步的功能验证。Ghpod的特异表达模式表明该基因的启动子在花器官特异表达的调控机制研究中非常有用。Ghpod基因的克隆和表达特征的分析为我们研究生殖器官特异表达的植物过氧化酶提供了基础。
     4、棉花Phi-1基因的克隆及功能分析
     DDRT片段C18同棉花的Phosphate induced protein 1(Phi-1)基因同源性达99%,因而利用电子克隆的方法,获得了该基因的全长ORF。qRT-PCR分析结果显示Phi-1基因在花药发育的花粉母细胞减数分裂期至四分体时期,可育花药中的表达量高于不育花药中的表达量,尤其在减数分裂期差异显著,暗示Phi-1可能与棉花小孢子的败育有一定的相关性。Sano推测Phi-1基因是磷酸诱导型细胞周期特异性蛋白,在向因缺磷酸而导致的细胞周期停止的细胞中加入磷酸时,细胞周期重新启动,而Phi-1基因的表达也迅速启动。为了进一步研究Phi-1基因的功能,我们进行了转拟南芥功能验证。棉花Phi-1基因与拟南芥Phi-1基因的同源性比棉花Phi-1与Cell cycles-relatedgene(EXO)的同源性低,因而我们仅用构建的正义载体转拟南芥。T1、T2代过量表达Phi-1基因的植株育性正常,因而Phi-1基因的过量表达不能影响育性。过量表达Phi-1基因的植株的indole-3-pyruvate decarboxylase gene(ipdc)表达量明显低于野生型WT中的表达量,ipdc作为IAA合成的关键酶,我们推测ipdc表达量的降低可能导致IAA含量的减少,从而生长素IAA参与的植物生长的一系列过程可能受到影响。激素测定结果表明IAA含量明显降低,其它激素含量也有所变化。实验中我们观测到转基因的拟南芥主根长度比对照WT短、花期比对照WT晚,花序高度比对照WT低,可能原因是Phi-1基因的过量表达破坏了植物自身的细胞周期及影响了植物激素的表达,进而调节植物的细胞周期和发育进程。
Cotton is an important cash crop in the world and plays an important role in our life. The heterosis in cotton is very significant,especially in increasing yield,fiber quality and disease and stress resistance.The heterosis in practice production was mainly used by hand emasculation and male sterility.To use hand emasculation and pollination,utilization of male sterility is more effective and economical in producing commercial hybrid seeds,and can integrate the excellent traits of disease resistance,high quality and high yield in the hybrid F_1.Therefore,utilization of male sterility in heterosis has a good developmental prospect.An enhanced understanding of the genetics of GMS at the molecular level and the identification of linked molecular markers will greatly facilitate heterosis applications in cotton.The cloning of genes associated with the male sterility will also help to understand the mechanism of male sterility,which is greatly important to both basic and applied researches in cotton.
     In this research,two populations,a F_2 and a new BC_1,were developed to map the ms_(15) and ms_5ms_6 male sterile genes.DDRT-PCR was performed between fertile and sterile pollens of Lang,A to look for male sterile related genes.To evaluate the accuraty of DDRT, 9 DDRT fragments were selected to perform Real-time quantitative PCR(qRT-PCR) and only 4 were positive fragments.A peroxidase gene,Ghpod,was cloned using 5'-RACE and TAIL-PCR,and was expressed in pollens and absent in vegetative tissues by RT-PCR and Northern analysis.Functional analysis of Phi-1 gene was performed by transgenic Arabidopsis.The results are following:
     Molecular Mapping of male sterile genes ms_(15),ms_5 and ms_6:Three GMS genes,ms_(15)、ms_5 and ms_6,were mapped using SSR and SRAP in this research.
     GMS line LangA was controlled by single recessive male sterile gene ms_(15) and ZhongkangA was controlled by duplicate gene,ms_5 and ms_6.The ms_(15) gene was mapped on chr.12,and was flanked by two SSR markers,NAU2176 and NAU1278,with a genetic distance of 0.8 cM and 1.9 cM,respectively.The ms_5 and ms_6 genes were mapped to one pair of homoeologous chromosomes,ms_5 on chr.12 flanked by three SSR markers, NAU3561,NAU2176 and NAU2096,with genetic distances of 1.4 cM,1.7 cM and 1.7 cM, respectively,and ms_6 on chr.26 flanked by two SSR markers,BNL1227 and NAU460,with a genetic distance of 1.3 cM and 1.7 cM,respectively.These markers were tightly linked with the ms_(15),ms_5 and ms_6 genes.Therefore they can be used in the marker-assisted selection of male-sterile plants among segregating populations in a breeding program,and provides the foundation for gene isolation by map-based cloning for these three genes.
     Molecular cloning of male sterility related genes in upland cotton:Uing mRNA differential display,we obtained 65 cDNA fragments(>150bp) differentially expressed in fertile and sterile pollen pools of isogenic lines ms_(15).To evaluate the accuraty of DDRT,9 DDRT fragments were selected to perform Real-time quantitative RT-PCR(qRT-PCR). Only 4 were basically associated with specificity found by DDRT.Sequencing and BLAST analysis showed that,among them there were 2 ESTs were homologous to RNA-binding protein:C7 was highly similar to Glycine-rich RNA-binding protein;C17 was highly similar to KH domain-containing protein.In metazoa,proteins containing KH domains have been implicated in transcription,mRNA stability,translational silencing and mRAN localization.Mutations of KH domain proteins usually result in developmental defects.We found two types of RNA-binding proteins in this study.The relation between them and the male sterility in cotton needed to be further studied.C103 was similar to Calcium-binding protein,which might be involved pollen tube development and apotosis in pollens.1 EST (C18) was highly similar to Phi-1 which was specific to phosphate-induced cell cycle activity,and played a role in causing phosphate-starved cells to re-enter the cell cycle.
     We got some fragments which might be related to male sterility through DDRT-PCR technology,however the function of these fragments needed to be further investigated.
     Moleculor cloning and charictorization of a flower-organ specific classⅢperoxidase gene in G.hirsutum:A cDNA clone encoding a 330 amina acid,designed Ghpod was isolated from the anthers of male sterility line LangA by using 5' RACE and TAIL-PCR technologies.Bioinform analysis indicated that Ghpod was high similarity to classⅢperoxidase.Ghpod has a signal peptide in the N terminal and a conserved active site residues,a proximal heme-ligand signature,eight conserved cysteine residues which yield the four disulfide bridges common in most classⅢperoxidase.Both the RT-PCR and Northern blots results showed that Ghpod was a flower-specific gene and predominantly expressed in pollen.The relationship between Ghpod and pollen development need further investigate.The Ghpod promoter will be useful for future studies of regulatory mechanisms controlling floral organ-specific expression.Specifically,it should be a useful tool for characterizing the spatial distribution patterns of transgenic pollen,to determine pollination mechanisms and to monitor gene flow in field conditions.
     Over-expression of Phi-1 in transgenic Arabidopsis:The fragment of C18 got from DDRT has the 99%identity with cotton Phi-1 gene,so we obtained the full-length cDNA of this fragment using in silico cloning technique,qRT-PCR was performed to examine the Phi-1 expression pattern,qRT-PCR results demonstrated that Phi-1 was higher significantly expressed in fertile pollens development stages from meiosis to tetraspore stage than that of sterile pollens,especially in meiosis stages.It was supposed to be related to male sterility.It was reported that Phi-1 was specific to phosphate-induced cell cycle activity,and played a role in causing phosphate-starved ceils to re-enter the cell cycle.Based on the result that the sequence similarity between cotton Phi-1 and Arabidopsis Phi-1 was lower(62%) than its sequence similarity with Arabidopsis cell-cycle related protein(EXO)(70%),antisense might be not available to silence the gene in Arabidopsis.Therefore,the sense expression voctor of PBI121- Phi-1 were constructed to transfor Arabidopsis for further functional analysis of Phi-1.We got 2 T1 transgenic plants through Kan~+ selection and PCR identification.The T1 and T2 transgenic plants had no obvious change of pollen fertility. However,the expression of ipdc gene which was very important for IAA synthesis was decreased greatly in the over-expression transgenic Arabidopsis than in the WT Arabidosis. The comparative analysis of endogenous hormone contents in WT and transgenic Arabidopsis showed that IAA content was reduced obviously in transgenic Arabidopsis. The flowering time of T2 transgenic Arabidopsis was delayed about 6 days than that of WT. And the inflorescence/stem height of T2 transgenic Arabidopsis were reduced about 2.2 cM than that of WT.It was supposed that over-expression of Phi-1 in Arabidopsis might disturb the internal cell-cycle of plants and homeostasis of endogenous hormones,and therefore affected the growth and development of plants.
引文
1.邹勇,朱桢明,杨仁松,等.核不育组合鄂杂棉8号选育及特征特性[J].中国棉花,2004,31(7):17
    2.邹勇,李明吴,朱茂翠,等.杂交棉新组合华惠103简介[J].江西棉花,2006,28(6):37
    3.冯福祯.棉花雄性不育种质系简介[J].中国棉花,1988,15(3):15-16
    4.高夕全,张子学,夏凯,等.雄性不育辣椒中几种内源植物激素的含量变化[J].植物生理学通讯,2001,37(1):31-32
    5.顾增义,焦明玺.鲁棉13的制种技术[J].中国棉花,1995,23(7):27
    6.郭立平,深蓉,邢朝柱,等.抗虫杂交棉新品种—中棉所38.中国棉花,2000,27(1):29
    7.阚画春,何团结,路曦结.棉花杂种优势利用的研究进展[J].江西棉花,2001,23(3):3-8
    8.侯磊,肖月华,李先碧,等.棉花洞A雄性不育系花药发育的mRNA差别显示[J].遗传学报,2002,29(4):359-363
    9.胡瑞娟,何纪荣,何奕騉,等.棉花“洞A”雄性不育小孢子败育与蛋白质代谢关系的研究—不育株和可育株花药内氨基酸含量的比较分析[J].南充师范学报,1985,(1):43-50
    10.黄观武,苟云高,张东铭,等.棉花核不育保持系的选育[J].中国农业科学,1989,22(6):13-17
    11.黄观武,施尚泽.棉花核雄性不育杂交种—川杂4号[J].中国棉花,1988,3:19
    12.黄厚哲,楼士林,王候聪,等.植物生长素亏缺与雄性不育的发生[J].厦门大学学报,1984,23(4):466-477
    13.黄双领,孟清芹,李根源,等.中棉所38制种田双行种植模式试验研究[J].中国棉花,2003,30(1):28-33
    14.黄双领,张玉花,孟清芹,等.Bt抗虫双隐性核不育系中抗58A[J].中国棉花,2007,1:14
    15.深蓉,邢朝柱,袁有禄,等.棉花核不育系的培育研究[J].中国农业科学,1998,31(1):84-86
    16.蓝家样,詹先进,张兴中,等.棉花核雄性不育系的培育与利用研究进展[J].中国农学通报,2006,22(12):152-156
    17.李宗霆,周燮.植物激素及其免疫检测技术[M].南京:江苏科技出版社,1996
    18.李英贤,张爱民,梁振兴.小麦雄性不育的发生与花药组织内源激素平衡的关系[J].农业生物技术学报,1998,6(1):71-75
    19.李学斌.棉花雄性不育的生化研究[J].湖南农学院学报,1987,(3):15-23
    20.刘金兰,聂以春,黄观武,等.棉花洞A型雄性不育材料花粉败育的细胞学观察[J].棉花学报,1994,6(2):70-73
    21.吕淑平,赵元明.具有标记性状的棉花核不育系的创建初探[J].中国农学报,2004,120(12):8-9
    22.陆建农,姜伟,肖宇强.棉花细胞核不育两型系在华南地区天然制种试验[J].农业科技通讯,2007,11:54-56
    23.毛树春.2006棉花增产原因浅析-人努力,天帮忙,科技兴棉显威力.中国棉花生产景气报告,第21期年
    24.毛正轩,黄观武,江卫,等.棉花核不育二级法新型高优势杂交种川优1号[J].中国棉花,1999,26(7):26
    25.毛正轩,牟方生,杨泽湖,等.棉花抗虫核不育高优势杂交种川杂13[J].中国棉花,2003,30(11):31-32
    26.孟金陵,刘定富,罗鹏,等.植物生殖遗传学[M].北京:科学出版社,1997,147-167
    27.牟方生,毛正轩,张超,等.棉花抗虫核不育杂交种川杂棉14[J].中国棉花,2005,33(7):16
    28.牟方生,毛正轩,张超,等.抗虫核不育杂交棉川杂棉16[J].中国棉花,2007,34(7):19
    29.倪德祥,邓志龙.植物激素对基因表达的调控[J].植物生理学通讯,1992,28(6):461-466
    30.潘家驹,闽留芳,刘康,等.陆地棉芽黄基因应用于杂种棉的研究[J].南京农业大学学报,1998,21(3):7-14
    31.庞居勤,张军,宋庆奇,等.陆地棉洞A型核雄性不育材料在山东不同气候条件下育性变化初报[J].山东棉业,1995,1):16-17
    32.邵圣才.棉花温敏雄性不育两用系研究与利用[J].中国棉花,2000,27(12):18-20
    33.施尚泽.四川棉花核不育杂交种利用研究进展与前景[J].中国棉花,1994,21(3):19
    34.宋宪亮,孙学振,刘英欣.棉花ms_5ms_5和雄性不育花药中碳水化合物和游离氨基酸的变化[J].棉花学报,2001,13(6):334-336
    35.宋宪亮,孙学振,王洪刚,等.棉花洞A型核雄性不育系花药败育过程中的生化变化[J].西北植物学报,2004,24(2):243-247
    36.宋宪亮,孙学振,王明林,等.陆地棉双隐性核不育系(ms_5ms_6)花药发育过程中POD活性和内源激素动态变化初探[J].中国农业科学,2003,36(7):861-863
    37.隋玉君.高产优质抗虫杂交棉鲁RH-1[J].中国棉花,2004,31(5):22
    38.隋玉君.高产优质抗虫杂交棉鲁RH-1[J].农业科技通讯,2005,8:31
    39.汤泽生,杜素琼,王祖秀,等.棉花“洞A”雄性不育小孢子败育的细胞学研究[J].中国农业科学,1981,5:47-52
    40.王斌,杨洪理,费德友.川杂7号的选育及应用[J].中国棉花,1997,24(1):27
    41.王国英.4个陆地棉核不育系的育性稳定性观察和1355A核不育基因定位[A].华中农业大学硕士学位论文,2007
    42.邢朝柱,郭立平,深蓉,等.棉花抗虫核不育系-中抗A组合优势及昆虫传粉研究[J].作物学报,2002,28(4):574-576
    43.徐孟亮,刘义芳,肖翊华,等.湖北光核不育水稻幼穗发育中内源IAA的变化[J].华中农业大学学报,1990(4):381-386
    44.杨伯祥,王治斌.棉花双隐性核不育F_2杂种优势研究[J].中国棉花,2004,31(11):9-11
    45.杨伯祥,周宜军,王治斌,等.棉花双隐性核雄性不育系的研究与利用[J].中国棉花,1999,26,(3):11-12
    46.杨业华,刘海燕,吴征彬,等.棉花转Rol基因雄性不育系研究初报[J].中国棉花,2005,32(2):17
    47.易成新,郭旺珍,朱协飞,等.陆地棉分子标记辅助轮回选择聚合育种I.群体创建与基础群体的评价[J].中国农业科学,2004,37(5):634-641
    48.宇文璞.棉花不育系对温度反应研究初报[J].中国棉花,1990,17(2):19-20
    49.余筱南,陈金湘,李瑞莲,等.棉花温敏雄性不育系的选育与应用研究简报[J].棉花学报,2003,15(6):380-381
    50.岳福良,张相琼,熊鹰,等.转基因抗虫杂交种川杂棉15的选育[J].中国棉花,2005,32(9):23
    51.张东铭,张相琼,周宏俊.棉花抗枯萎核不育两用系抗A1的选育[J].中国棉花,1995,23(3):11-12
    52.张家明,刘金兰,孙济中.通过组织培养获得棉花不育株[J].作物学报,1998,24(2):172-17
    53.张建丰,张战奇,宇文璞.棉花单隐性光温敏细胞核雄性不育系芽黄396A[J].农业科技通讯,2006,4:33
    54.张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12(5):267-269
    55.张天真,冯义军,潘家驹.我国发现的四个棉花核不育系的遗传分析[J].棉花学报,1992,4(1):1-8
    56.张天真.陆地棉1355A和104-7A不育系的细胞学研究[J].棉花学报,1995,7(2):73-75
    57.张天真.陆地棉洞A核雄性不育系及其MB保持系的遗传模式讨论[J].遗传,1995,17(6):30-33
    58.张天真,潘家驹.陆地棉473A核雄性不育系小孢子败育的细胞学研究[J].南京农业大学学报,1991,14(3):7-11
    59.张天真,深蓉.棉花雄性不育杂交种选育的理论与实践[M].北京:中国农业出版社,1998:40-45
    60.张天真,朱协飞.“南农98-4”杂交棉的选育[J].中国棉花,2002,29(9):30
    61.张天真,朱协飞.南农6号的选育及栽培技术要点[J].中国棉花,2004,31(8):18-19
    62.张天真,朱协飞.南农9号杂交棉的选育及栽培技术要点[J].中国棉花,2005,32(8):19
    63.张相琼,岳福良,周宏俊,等.棉花抗虫核不育系抗A3的培育及蜜蜂传粉制种研究[J].中国棉花,2003,30(1):9-11
    64.张相琼,岳福良,周宏俊,等.抗虫杂交棉川杂12号选育[J].中国棉花,2003,30(11):32-33
    65.张相琼,张东铭,周宏俊.川杂9号主要性状特征及栽培技术[J].中国棉花,1997,24(1):26-27
    66.张相琼,周宏俊,王均明,等.优质丰产抗病高优势杂交棉川杂11号[J].中国棉花,2000,27(7):28
    67.朱春生,周世象,李建彬,等.湘棉不育系1号高产制种技术[J].中国棉花,2007,34(1):28
    68.朱桢明,邹勇,吴建功,等.优质棉花核不育系太177A选育及表现[J].江西棉花,2002,29(3):35-35
    69.周世象,毛爱莲,李建彬,等.优质湘杂棉9号的选育及其栽培技术要点[J].中国棉花,2007,33(11):21
    70.周仲华.棉花温敏雄性不育的细胞学特征、生化基础及其分子标记的研究[D].长沙:湖南农业大学,2006
    71.Aarts MGM,Wire GD,Willem JS,et al.Transposon tagging of a male sterility gene in Arabidopsis [J].Nature,1993,363:715-717
    72.Allison DC,Fisher WD.A dominant gene for male sterility in Upland cotton[J].Crop Sci,1964,4:548-549
    73.Alan C,John S,Sydney B,et al.Toward a physical map of the genome of the nematode caenorhabditis elegans[J].PNAS,1986,83:7821-7825
    74.Armstrong SJ,Franklin FCH,Jones GH.Nucleolus associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana[J].Cell Sci,2001,114:4207-4217
    75.Assigbetse K,Cuny G,Valette V,et al.Cloning and characterization of a bacterial-induced peroxidase encoding cDNA fxom cotton(GenBank accession No.AF155124)[J].Plant Physiol,1999,121:312
    76.Ayala M,Balint RF,Fernandez-de-Cossio ME,et al.New primer strategy improves precision of differential display[J].Bio Techniques,1995,18(5):842-845
    77.Badarinarayana V,Chiang YC,Denis CL.Functional interaction of CCR4-NOT proteins with TATAA-binding protein(TBP) and its associated factors in yeast[J].Genetics,2000,155:1045-1054
    78.Bakalovic N,Passardi F,Ioannidis V,et al.PeroxiBase:a class Ⅲ plant peroxidase database[J].Phytochemistry,2006,67(6):534-539
    79.Bassam B,Caetano A G,Gresshoff P.Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 1991,196: 80-83
    
    80. Becker JD, Boavida LC, Jorge Carneiro, et al. Transcriptional Profiling of Arabidopsis Tissues Reveals the Unique Characteristics of the Pollen Transcriptome [J]. Plant Physiol, 2003, 133:713-725
    
    81. Becker D, Geiger D, Dunkel M, et al. AtTPK4, an Arabidopsis tandem-pore K~+ channel, poised to control the pollen membrane voltage in a pH~- and Ca~(2+)-dependent manner [J]. PNAS, 2004,101( 44): 15621-15626
    
    82. Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition.Physiological Reviews, 1999, 79: 1127-1155
    
    83. Benson JD, Benson M, Howley PM, et al. Association of distinct yeast Not2 functional domains with components of Gcn5 histone acetylase and Ccr4 transcriptional regulatory complexes [J].EMBO J, 1998, 17: 6714-6722
    
    84. Black DL. Protein Diversity from Alternative Splicing: A Challenge for Bioinformatics and Post-Genome Biology. Cell, 2000, 27(103): 367-370
    
    85. Bowman DT, Weaver JB JR. Analysis of a dominant male sterile character in Upland cotton, II.genetic studies [J]. Crop Sci, 1979,19: 628-630
    
    86. Bowman JL, Smyth DR, Meyerowitz EM. Genes directing flower development in Arabidopsis [J].The Plant Cell, 1989,1: 37-52
    
    87. Chen C, Marcus A, Li W, et al. The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis [J]. Development, 2002, 129:2401-2409
    
    88. Cheng WH, Endo A, Zhou L, et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions [J]. Plant Cell, 2002, 14: 2723-2743
    
    89. Chiang YC, Komarnitsky P, Chase D, et al. ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB [J]. J Biol Chem, 1996, 271:32359-32365
    
    90. Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant J. 1998,16(6):735- 742
    
    91. Collart MA. The NOT, SPT3, and MOT1 genes functionally interact to regulate transcription at core promoters [J]. Mol Cell Biol, 1996,16: 6668-6676
    
    92. Collart MA, Struhl K. NOT1 (CDC39), NOT2 (CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization [J].Genes Dev, 1994, 8: 525-537
    
    93. Collinge M, Boiler T. Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding [J]. Plant Mol Biol, 2001,46: 521-529
    
    94. Curtis IS, Nam HG. Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method-plant development and surfactant are important in optimizing transformation efficiency.Transgenic Res. 2001,10(4):363- 371
    
    95. Cyril B, Anne-Marie M, Marie-Jeanne A, et al. CCR4-associated factor CAF1 is an essential factor for Spermatogenesis [J]. Mol Cell Biol, 2004,24 (13): 5808-5820
    
    96. Davies PJ. The plant hormones: their nature, occurrence, and functions. In: Davies PJ(ed) Plant hormones and their role in plant growth and development, 2nd edn. Kluwer, London, 1995,1-12
    
    97. Delannoy E, Marmey P, Jalloul A, et al. Molecular analysis of Class III peroxidases from cotton [J].The Journal of Cotton Science, 2006,10: 53-60
    
    98. Delannoy E, Jalloul A, Assigbetse K, et al. Activity of Class III peroxidases in the defense of cotton to Bacterial Blight [J]. MPMI, 2003,16(11): 1030-1038
    
    99. Denis CL, Chen J. The CCR4-NOT complex plays diverse roles in mRNA metabolism [J]. Prog Nucleic Acid Res Mol Biol, 2003, 73: 221-250
    
    100. Denis, CL. Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II [J]. Genetics, 1984,108: 833-844
    
    101. Desfeux C, Clough SJ, Bent AF. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by Arabidopsis floral-dip method. Plant physiol, 2000,123:895- 904
    
    102. Doutriaux MP, Couteau F, Bergounioux C, et al. Isolation and characterization of the RAD51 and DMC1 homologs from Arabidopsis thaliana [J]. Molecular and General Genetics, 1998, 257:283-291
    
    103. Draper MP, Salvadore C, Denis CL. Identification of a mouse protein whose homolog in Saccharomyces cerevisiae is a component of the CCR4 transcriptional regulatory complex [J]. Mol Cell Biol, 1995,15: 3487-3495
    
    104. Draper MP, Liu HY, Nelsbach AH, et al. CCR4 is a glucose-regulated transcription factor whose leucine-rich repeat binds several proteins important for placing CCR4 in its proper promoter context [J]. Mol Cell Biol, 1994,14: 4522-4531
    
    105. Eilers M, Schatz G. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria [J]. Nature, 1986, 322: 228-232
    
    106. Ellis JG, Finnegan EJ, Lawrence GJ. Developing a transposon tagging system to isolate rust-resistance genes from flax [J]. Theor Appl Genet, 1992, 85:46-54
    
    107. Emmanuel L, Marco B, Jennie WF, et al. The KH-type RNA-binding protein PSI is required for Drosophilaviability, male fertility, and cellular mRNA processing [J]. Genes & Dev, 2002, 16:72-84
    
    108. Evans NH, McAinsh MR, Hetherington AM. Calciumoscillations in higher plants [J]. Curr Opin Plant Biol, 2001, 4: 415-420
    
    109. Fedoroff NV, Furtek DB, Nelson OE. Cloning of the Bronze Locus in Maize by a Simple and Generalizable Procedure Using the Transposable Controlling Element Activator (Ac) [J]. Proc Natl Acad Sci USA, 1984, 81: 3825-3829
    
    110. Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfalls and potential [J].Biotechniques 1999, 26:112-122
    
    111. Georg J, Norris SR, Rounsley SD, et al. Arabidopsis map-based cloning in the post-genome Era [J].Plant Physiol, 2002,129: 440-450
    
    112. Glover J, Grelon M, Craig S, et al. Cloning and characterization of Ms_5 from Arabidopsis: A gene critical in male meiosis [J]. Plant J, 1998,15: 345-356
    
    113. Gottschlich S, Goeroegh T, Folz BJ,et al. Optimized diferential display and reamplification parameters for silver staining. Res Commun Mol Pathol Pharmacol, 1997, 97: 237-240
    
    114. Graveley, BR. Alternative splicing: Increasing diversity in the proteomic world. Trends Genet,2001,17: 100-107
    
    115. Grelon M, Gendrot G, Vezon D, et al. The Arabidopsis MEI1 gene encodes a protein with five BRCT domains that is involved in meiosis-specific DNA repair events independent of SPO11-induced DSBs [J]. Plant J, 2003,35:465-475
    
    116. Han ZG, Guo WZ, Song XL, et al. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboretum in allotetraploid cotton [J]. Mol Gen Genomics, 2004, 272: 308-327
    
    117. Hall TC, Ma Y, Buchbinder BU, et al. Messenger RNA for G1 protein of French bean seeds: Cell free translation and product characterization [J]. Proc Natl Acas Sci, 1978, 75: 3196 -3200
    
    118. He CH, Xiao LT, Liu ZM, et al. The research progresses in relationship between phytohormones and plant male sterility [J]. Chinese Agricultural Bulletin, 2002,18 (3): 65- 69
    
    119. Hetherington AM, Quatrano RS. Mechanisms of action of abscisic acid at the cellular level [J].New Phytol, 1991,119: 9-32
    
    120. Hepler PK, Vidali L, Cheung AY. Polarized cell growth in higher plants [J]. Annu Rev Cell Dev Biol, 2001,17: 159-187
    
    121. Hideki G, Shinichiro S, Tadao A et al. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in arabidopsis. Plant Physiol, 2004,134:1555-1573
    
    122. Hiraga S, Yamamoto K, Ito H, et al. Diverse expression profiles of 21 rice peroxidase genes [J]. FEBS Lett, 2000,471:245-250
    
    123. Hirofumi H, Ko K, Atsuhiko S et al. Auxin is required for the assembly of A-type cyclin-dependent kinase complexes in tobacco cell suspension culture. Journal of Plant Physiology, 2007,164 :1103-1112
    
    124. Hirose Y, Manley J L. RNA polymerase II and the integration of nuclear events. Genes Dev, 2000,14:1415-1429
    
    125. Holton TA, Brugliera F, Lester DR, et al. Cloning and expression of cytochrome P450 genes controlling flower colour [J]. Nature, 1993,366: 276-279
    
    126. Homer H. Microsporogenesis in normal and cytoplasmic male sterile pepper [J]. Ame J Bot, 1973,60 (4 supplement)
    
    127. Ito T, Kito K, Adati N, et al. Flourescent differential display: arbitrarily primed RT-PCR fingerprinting on an automated DNA sequencer[J]. FEBS Lett, 1994, 351(2): 231-236
    
    128. Jack T, Brockman LL, Meyerowitz EM. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens [J]. Cell, 1992, 68: 683-697
    
    129. Jones DA, Thomas CM, Hammond-Kosack KE. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging [J]. Science, 1994, 266: 789-793
    
    130. Julie G, Mathilde G, Stuart C, et al. Cloning and characterization of Ms_5 from Arabidopsis: a gene critical in male meiosis [J]. Plant J, 1998,15(3): 345-356
    
    131. Justus NL, Leinweber CL. A heritable partial male sterile character in cotton [J]. J Hered, 1960,51:191-192.
    
    132. Justus NL, Meyer JR, Roux JB. A partially male sterile character in upland cotton [J]. Crop Sci,1963, 3: 428-429
    
    133. Kay E, Dubuis C, Haas D. Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0 [J]. Proc Natl Acad Sci, 2005,102: 17136-17141
    
    134. Kaul MLH. Male sterility in higher plants [M]. Berlin: Springer Verlag, 1988
    
    135. Kenneth JL, Thomas DS. Analysis of relative gene expression data using real-time quantitative PCR and the 2~(-ΔCt) method [J]. Method, 2001, 25:402-408
    
    136. Kim R, Saxena S, Gordon D, et al. J-domain protein, Jacp of yeast mitochondria require for the iron homeostasis and activity of Fe-S cluster proteins [J]. J Biol Chem, 2001, 276: 17524-17532
    
    137. Klimyuk VI, Jones JDG. AtDMCl, the Arabidopsis homologue of the yeast DMC1 gene:characterization, transposon-induced allelic variation and meiosis-associated expression [J]. The Plant Journal, 1997,11: 1-14
    
    138. Kohel RJ, Lewis GF. Cotton [M]. ASA, CSSA, SSSA Inc Publishers, Madison, Wisconsin, 1984
    139. Kosambi DD.The estimation of map distance.[J] Ann Eugenics, 1944, 12:505-525
    
    140. Kunz C, Chang A, Faure JD, et al. Phosphorylation of style S-Rnases by Ca~(2+) dependent protein kinases from pollen tubes [J]. Sex Plant Reprod, 1996, 9: 25-34
    
    141. Lee TI, Wyrick JJ, Koh SS, et al. Interplay of positive and negative regulators in transcription initiation by RNA polymerase II holoenzyme [J]. Mol Cell Biol, 1998,18: 4455-4462
    
    142. Lemaire M, Collart MA. The TATA-binding protein-associated factor yTafII19p functionally interacts with components of the global transcriptional regulator Ccr4-Not complex and physically interacts with the Not5 subunit [J]. J Biol Chem, 2000,275: 26925-26934
    
    143. Li WX, Chen CB, Ullrich MM, et al. The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis [J]. PNAS, 2004,101(29): 10596-10601
    
    144. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica [J]. Theor Appl Genet, 2001,103: 455-461
    
    145. Liang P, Pardee AB. Differential display of eucaryotic messenger RNA by means of the polymerase chain reaction [J]. Science, 1992, 257: 967-971
    
    146. Liu HY, Badarinarayana V, Audino DC, et al. The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively [J]. EMBO J,1998,17:1096-1106
    
    147. Liu HY, Chiang YC, Pan J, et al. Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4-NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme [J]. J Biol Chem, 2001, 276: 7541-7548
    
    148. Liu YG, Whitter RF. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking [J].Genomics, 1995,10, 25 (3): 674-681
    
    149. Ma X, Xing C, Guo L, et al. Analysis of differentially expressed genes in genic male sterility cotton (Gossypium hirsutum L.) using cDNA-AFLP [J]. Genet Genomics 2007, 34(6): 536-543
    
    150. Mansfield TA, Hetherington AM, Atkinson CJ. Some current aspects of stomatal physiology [J].Annu Rev Plant Physiol Plant Mol Biol, 1990, 41: 55-75
    
    151. Maria PP, Francesca Z, Flavia B, et al. The nuclear RNA-binding protein sam68 translocates to the cytoplasm and associates with the polysomes in mouse spermatocytes [J]. Molecular Biology of the Cell, 2006,17:14-24
    
    152. Martinou JC, Green DR. Breaking the mitochondrial barrier [J]. Nat Rev Mol Cell Biol, 2001, 2:63-67
    153. McInnis SM, Costa LM, Gutierrez-Marcos JF, et al. Isolation and characterization of a polymorphic stigma-specific class III peroxidase gene from Senecio squalidus L. (Asteraceae) [J]. Plant Mol Bio,2005,57: 659-677
    
    154. McInnis SM, David CE, Robert P, et al. The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae) [J]. J Exp Bot, 2006, 57(8):1835-1846
    
    155. Mercier R, Vezon D, Bullier E, et al. Switchl (Swil): A novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis [J]. Genes Develop,2001,15:1859-1871
    
    156. Meyer, VG. A study of reciprocal hybrids between upland cotton (Gossypium hirsutum L.) and experimental lines with cytosystems plasms from seven other species [J]. Crop Sci, 1973,13:439-444
    
    157. Mi HL, Joonki K, Youn SK, et al. A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via flowering locus C [J]. The Plant Cell,2004,16: 731-740
    
    158. Morrison T, Weis J, Wittwer C. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification [J]. BioTechniques, 1998,24: 954-962
    
    159. Motamayor JC, Vezon D, Bajon C, et al. Switch (swil), an Arabidopsis thaliana mutant affected in the female meiotic switch [J]. Sex Plant Reprod, 2000,12: 209-218
    
    160. Nguyen TB, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers [J]. Theor Appl Genet, 2004,109: 167-175
    
    161. Oberholzer U, Collart MA. In vitro transcription of a TATA-less promoter: negative regulation by the Notl protein [J]. Biol Chem, 1999, 380: 1365-1370
    
    162. Ohi R, Gould KL. Regulating the onset of mitosis [J]. Current opinion in cell biology, 1999, 11:267-273
    
    163. Paroda RS, Basu AK. Cotton Scenario with particular reference to hybrid cotton in India. Proc FAO-ICAR Reg Expert Consultation Hybrid Cotton [J]. Nagpur, India: Central Inst Cotton Res,1993, 21-46
    
    164. Passardi F, Theiler G, Zamocky M, et al. Peroxibase: The peroxidase database [J]. Phytochemistry,2007,68(12): 1605-1611
    
    165. Passardi F, Zamocky M, Favet J, et al. Phylogenetic distribution of catalase-peroxidases: are there patches of order in chaos? [J] Gene, 2007, 397:101-113
    
    166. Passardi F, Bakalovic N, Teixeira FK, et al. Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes [J]. Genomics, 2007, 89(5):567-579
    
    167. Passardi F, Longet D, Penel C, et al. The class III peroxidase multigenic family in rice and its evolution in land plants [J]. Phytochemistry, 2004, 65(13): 1879-1893
    
    168. Paterson AH, Brubaker CL, Wendel JF. A rapid method for extraction of cotton genomic DNA suitable for RFLP or PCR analysis [J]. Plant Mol Biol Rep, 1993,11(2): 122-127
    
    169. Penel C, Dunand C, de Meyer M, et al. In search of function for 73 Arabidopsis peroxidase genes [J]. In: Acosta M, Rodriguez-Lopez JN, Pedreno MA, eds. Plant peroxidases: biochemistry and physiology, 2003.
    
    170. Percy RG, Turcotte EL. Inheritance of male sterile mutant ms_(13) in American Pima cotton [J]. Crop sci, 1991, 31:1520-1521
    
    171. Quisenberry JE, Kohel RJ. A leaf abnormality for the identification of a genetic male sterile in Gossypium hirsutum L. [J]. Crop Sci, 1968, 8: 369-370
    
    172. Reddy OUK, Pepper AE, Abdurakhmonov I, et al. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research [J]. J Cotton Sci, 2001, 5:103-113
    
    173. Rhyne CL. Indehiscent anthers in cotton [J]. Cotton Gr Rev, 1971, 48: 194-199
    
    174. Rhyne CL. Male-sterile ms_5ms_6 and ms_8ms_9 [J]. Proc Beltwide Cotton Prod Res Conf, 1991,532-533
    
    175. Richmond TR, Kohel RJ. Analysis of a completely male sterile character in American Upland cotton [J]. Crop Sci, 1961,1: 397-401
    
    176. Ritter D, Allen RD, Trolinder N, et al. Cotton cotyledon cDNA encoding a peroxidase [J]. Plant Physiol, 1993,102: 1351
    
    177. Ross KJ, Fransz P, Armstrong SJ, et al. Cytological characterization of four Meiotic mutants of Arabidopsis 37 meiotic mutants of Arabidopsis isolated from T-DNA transformed lines [J]. Chromosome Res, 1997, 5: 551-559
    
    178. Ross JJ. Effects of auxin transport inhibitor on gibberellins in pea [J]. Journal of Plant Growth Regulation, 1998,17 : 141-146
    
    179. Ross JJ, O'Neill DP, Wolbang CM, et al. Auxin-gibberellin interactions and their role in plant growth [J]. Journal of Plant Growth Regulation, 2002, 20: 346-353
    
    180. Sakai A, Chibazakura T, Shimizu Y, et al. Molecular analysis of POP2 gene, a gene required for glucose-derepression of gene expression in Saccharomyces cerevisiae [J]. Nucleic Acids Res, 1992,20: 6227-6233
    
    181. Sanders PM, Anhthu QB, Weterillgs K, et al. Anther developmental defects in Arabidopsis thaliana male- sterile mutants [J]. Sex Plant Reprod, 1999,11: 297-322
    
    182. SanoT, KurayaY, Amino S, et al. Phosphate as a limiting factor for the cell division of tobacco BY-2 cells [J]. Plant Cell Physiol, 1999,40:1-8
    
    183. Sano T, Toshiyuki N. The possible involvement of a phosphate-induced transcription factor encoded by phi-2 gene from tobacco in ABA-signaling pathways [J]. Plant Cell Physiol, 2002, 43(1): 12-20
    
    184. Saraste M. Oxidative phosphorylation at the find esiecle [J]. Science, 1999, 283:1488-1493
    
    185. Sawhney VK, Shukla K. A male sterility in flowering plants: Are plant growth substances involved [J]. Amer J Bot, 1994, 81(12): 1640-1647
    
    186. Schleiffer IE. A century of mitochondrial researche: Achivements and perspectives [J].Mitochondrion, 2001,1: 3-31
    
    187. Sears E R. Year book of agriculture [M]. 1947,1245-255
    
    188. Shukla A, Sawhney V K. Metabolism of dihydrozeatin in floral buds of wild-type and a genic male sterile line of rapeseed [J]. Journal of Experimental Botany, 1993,44:1497-1505
    
    189. Shihshieh H, Eric CR, Youlin Q, et al. Transgenic studies on the involvement of cytokinin and gibberellin in male development [J]. Plant Physiol, 2003,131:1270-1282
    
    190. Singh S, Sawhney VK. Temperature effects on endogenous indole-3-aceticacid levels in leaves and stamens of the normal and male sterile "stamenless22" mutant of tomato (Lycoperrsicon esculentum Mill) [J]. Plant Cell & Environment, 1992,15: 373-377
    
    191. Siddiqi I, Ganesh G, Grossniklaus U, et al. The DYAD gene is required for progression through female meiosis in Arabidopsis [J]. Development, 2000, 127: 197-207
    
    192. Simon HG, Oppenheimer S. Advanced mRNA diferential display: isolation of a new differentially regulated myosin heavy chain-encoding gene in amphibian limb regeneration. Gene, 1996, 172:175-181
    
    193. Smaili SS, Hsu YT, Yuole RJ, et al. Mitochondria in Ca~(2+)signalling and apoptosis. Journal of Bioenergetics and Biomembranes 2000, 32: 35-46
    
    194. Smith CWJ, Valcarcel J. Alternative pre-mRNA splicing: The logic of combinatorial control.Trends Biochem Sci, 2000, 25: 381-388
    
    195. Stals H, Casteels P, Van Montagu M, et al. Regulation of cyclin-dependent kinases in Arabidopsis thaliana [J]. Plant Molecular biology, 2000, 43: 583-593
    
    196. Stewart J McD. Observations of fertility restoration in D8 CMS cotton. Proc Beltwide Cotton Conf National Cotton Council, Memphis, TN, 1995, 507
    
    197. Stuber, CW. Mapping and manipulating quantitative traits in maize [J]. Trends in Genetics, 1995, 11:477-481
    
    198. Takuya Ito, Kazuo S. The male sterility 1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen mutation [J]. Plant Cell Physiol, 2002, 43:1285-1292
    
    199. Taylor PE, Glover JA, Lavithis M, et al. Genetic control of male fertility in Arabidopsis thaliana:structural analyses of postmeiotic developmental mutants [J]. Planta, 1998, 205: 492-505
    
    200. Tetsuro H, Mamoru S, Masahiro S. cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco occurence of tissue-specific alternative splicing [J].Nucleic Acids Research, 1993,21(17): 3981 -3987
    
    201. Teratani T, Watanabe T, Kuwahara F, et al. Induced transcriptional expression of calcium-binding protein S100A1 and S100A10 genes in human renal cell carcinoma. Cancer Lett, 2002,175: 71-77
    
    202. Tognolli M, Penel C, Greppin H, et al. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana [J]. Gene, 2002, 288:129-138
    
    203. Triantafyllia GD, Issidora SP, Dimitrios JS, et al. Molecular cloning and tissue-specific transcriptional regulation of the first peroxidase family member, Udp1, in stinging nettle (Urtica dioica) [J]. Gene 2005,362:57-69
    
    204. Turcotte EL, Feaster CV. Linkage tests in American Pima cotton [J]. Crop Sci, 1979,19:119-120
    
    205. Turcotte EL, Feaster CV. Inheritance of male sterile mutant Ms_(12) inAmerican Pima cotton [J]. Crop Sci, 1985,25: 688-690
    
    206. Vale'rio L, De Meyer M, Penel C, et al. Expression analysis of the Arabidopsis peroxidase multigene family [J]. Phytochemistry, 2004, 65:1331-1342
    
    207. Van Ooijen JW, Voorrips RE. JoinMap? 3.0, software for the calculation ofgenetic linkage maps [M]. Plant Research International, Wageningen, 2001
    
    208. Voisine C, Cheng YC, Ohlson M, et al. Jac1, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S clusters in Saccharomyces cerevisiae [J]. Proc Natl Acad Sci USA, 2001, 98:1483-1488
    
    209. Wang ZH, Zou YJ, Li XY, et al. Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing [J]. The Plant Cell, 2006, 18: 676-687
    
    210. Wan CH, Wilkins TA. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.) [J]. Anal Biochem, 1994, 223: 7-12
    
    211. Weaver JB JR. Analysis of a double recessive completely male sterilecotton [J]. Crop Sci, 1968, 8:597-600
    212. Weaver JB JR, Ashley T. Analysis of a dominant gene for male sterility in Upland cotton,Gossypium hirsutum L. [J]. Crop Sci, 1971,11: 596-598
    
    213. Weaver JB, Marakby E, Esmail A M. Yield, fiber and spinning performance of interspecific cotton hybrids having a common parent [J]. Crop Sci, 1984,24: 637-640
    
    214. Welinder KG. Superfamily of plant, fungal and bacterial peroxidases [J]. Curr Opi Stru Biol, 1992,2: 388-393
    
    215. Welinder KG, Justesen AF, Kj(?)rsg(?)rd IVH, et al. Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana [J]. Eur J Biochem, 2002, 269: 6063-6081
    
    216. Wellmer F, Riechmann JL, M(?)rcio AF, et al. Genome-wide analysis of spatial gene expression in Arabidopsis Flowers [J]. Plant Cell, 2004,16:1314-1326
    
    217. Wilson ZA, Morroll SM, Dawson J, et al. The Arabidopsis MALE STERILITT 1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD finger family of transcription factors [J]. Plant J, 2001, 28: 27-39
    
    218. Wolbang CM, Chandler PM, Smith JJ, et al. Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems [J]. Plant Physiology, 2004,134: 769-776
    
    219. Wolbang CM, Ross JJ. Auxin promotes gibberellin biosynthesis in decapitated tobacco plants [J].Planta, 2001,214:153-157
    
    220. Yang T, Davies PJ, Reid JB. Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas [J]. Plant Physiol,1996,110:1029-1034.
    
    221. Yang T, Law DM, Davies PJ. Magnitude and kinetics of stem elongation induced by exogenous indole-3-acetic acid in intact light-grown pea seedlings [J]. Plant Physiol, 1993,102:717-724.
    
    222. Zamocky M, Dunand C. Divergent evolutionary lines of fungal cytochrome c peroxidases belonging to the superfamily of bacterial, fungal and plant heme peroxidases [J]. FEBS Lett, 2006,580: 6655-6664
    
    223. Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora's box opens [J]. Nat Rev Mol Cell Biol, 2001,2: 67-71
    
    224. Zdravko JL, Andrea B. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana [J]. Nucleic Acids Res, 2002, 30(3): 623-635
    
    225. Zeevaart JAD, Creelman RA. Metabolism and physiology of abscisic acid [J]. Annu Rev Plant Physiol Plant MOI Biol, 1988, 39: 439-474
    
    226. Zhang J. Evolution by gene duplication: an update [J]. Trends Ecol Evol, 2003,18: 292-298
    
    227. Zhang J, WZ Guo, TZ Zhang. Molecular linkage map of alletetraploid cotton (Gossypium hirsutium L. x Gossypium barbadense L.) with a haploid population [J]. Theor Appl Genet, 2002,105:1166-1174
    
    228. Zhao Y, Hull AK, Gupta NR, et al. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3 [J]. Genes Develop, 2002,16: 3100-3112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700