用户名: 密码: 验证码:
电沉积制备铜钴系颗粒膜及其巨磁电阻效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从巨磁电阻效应于1988年发现以来,巨磁电阻(GMR)材料的开发和应用引起了广大科研人员的密切关注,带动了在物理学和材料学领域飞速进步。巨磁电阻效应可视为纳米电子学的一部分,并逐渐开辟了全新的磁电子学领域。本文采用传统的材料制备手段-电沉积工艺,制备了铜钴系颗粒膜材料,研究和分析了影响颗粒膜巨磁电阻效应的主要因素。
     首先分析了电化学沉积制备CuCo颗粒膜的影响因素,发现制备过程中膜层的组成、晶粒大小与镀液的主盐离子质量浓度、络合剂质量浓度、pH值以及沉积时的电流密度有着直接的联系;电沉积过程中膜层逐步生长,铜优先析出于阴极表面,而钴沉积于铜沉积层上,膜层处于介稳态结构。
     分析了铜钴颗粒膜中影响巨磁电阻效应的因素,发现膜层的磁阻值随着膜层中的Co浓度变化而改变,磁性组分适当增加有利于提高巨磁电阻效应,磁性组分过高使巨磁电阻效应降低当膜层中Co粒子的浓度为20%时出现最大值。面扫描元素分析和XRD分析表明:经过退火处理,膜层结构发生变化,出现了Co粒子的偏析,即出现了局部富钴的区域。
     真空退火处理可以明显提高膜层的巨磁电阻效应。铜钴颗粒膜在450℃退火后,Cu80Co20薄膜出现最大GMR值,达到3.85%。更高温度退火处理后膜层的GMR值开始下降。磁性能测量发现随着退火温度的提高,Cu80Co20膜层的饱和磁化强度Ms、矫顽力Hc和剩余磁化强度Mr也随着变大。
     应用唯象理论对Cu80Co20膜层的GMR值和磁滞回线进行了拟合,以及应用铁磁性理论分析了膜层中超顺磁性相的浓度,发现随着退火处理的进行,膜层中磁性颗粒开始生长,超顺磁性颗粒尺寸增加。唯象理论和有效媒介理论分析表明膜层中的磁性粒子的组分和尺寸是影响巨磁电阻效应的重要因素。
     为了改变膜层的相分离,通过在CuCo镀液中添加Ni2+的方法电沉积制备了CuCoNi颗粒膜,发现膜层中Ni的含量与溶液中Ni2+的含量接近直线关系。XRD分析表明适量添加Ni有利于膜层中磁性颗粒的析出,过多的Ni反而降低了膜层中磁性粒子的浓度。
     磁阻测量表明添加Ni后制备态的CuCoNi膜层较CuCo颗粒膜具有较高的GMR值,当经过退火处理后,其GMR值反而低于CuCo颗粒膜。磁性测量发现镀态样品饱和磁化强度较高,矫顽力较低,而真空退火处理使超顺磁性粒子转变为铁磁性粒子,提高了矫顽力。450℃退火处理后含Ni2.7%的CuCoNi膜层GMR达到最大值2.4%,具有最佳结构;更高温度则降低了GMR值。
     出于细化铜钻颗粒膜晶粒的目的,在稳恒磁场下电沉积制备了铜钴颗粒膜,发现磁场颗粒膜组成随磁场强度变化而改变。当B⊥J时0.6T~0.8T下沉积的膜层中Co含量较高,更强磁场下反而抑制了Co的沉积。而当B//J时膜层中Co含量均超过20%,0.7T时达到30%。这主要是由于磁场所产生的洛仑兹力及顺磁力作用,以及MHD效应综合作用的结果。
     B⊥J时对镀层有明显的细化作用,而当B//J时由于Co含量较高及磁场对镀层搅拌作用的加强,反而使膜层结晶粗大。XRD分析表明磁场对膜层的结晶有一定的影响,使铜钴镀层(111)晶面择优生长。
     B⊥J磁场下电沉积颗粒膜可提高膜层的GMR值,在0.6T下制备的CuCo颗粒膜经过500℃热处理后最大GMR值为4.81%,较未加磁场的颗粒膜最大值提高了约25%,同时最佳的退火温度也提高到500℃。磁性测量表明0.6T下制备的CuCo颗粒膜经过500℃真空热处理后,相对于其他处理温度具有更好的磁性能,膜层中磁性组分与超顺磁性组分比例合理,促进了界面相关散射,具有较高的GMR值。
Since the discovery of giant magnetoresistance(GMR) in 1988, the development and application of GMR material have attracted more attention from the scientists, and achieved great progress in the fields of physics and material science. Giant magnetoresistance can be considered as a part of nanoelectronics, and established new field of magnetoelectronics. The copper-cobalt series granular films were prepared by conventional method-electrodeposition in the paper, main influencing factors of giant magnetoresistance in granular films were studied and analyzed.
     First, influencing factors of electrodeposited process were analyzed. The components and particle size of the Cu-Co film were related with the concentration of the main salts and concentration of complexing reagent, pH value and current density. The films grown stage by stage during electrodeposited, the copper deposited on the surface of the cathode prior to cobalt, the cobalt deposited on the thin copper coating. The film was metastable state.
     Main influencing factors of giant magnetoresistance for CuCo granular film were analyzed. The results show that the MR of the films was changed by the content of Co content in the film, it was favorite to the GMR value that the content of magnetic component increase properly, the maximum of GMR was occurred when the content of cobalt is 20% in the films, the GMR would decrease if the ferromagnetic component was too much. Surface scanning for elements analysis and XRD show that the separation of Co grain was occurred during annealing, and part Co-rich regions was appeared.
     The annealing in vacuum can improve the GMR of the film. The maximum value of GMR was 3.85% which occurred at Cu80Co20 film after annealing at 450℃for 1h. With the annealing temperature increase, the electrical resistivity was dropped. The saturated magnetization Ms、coercive force Hc、remanence magnetization Mr were increased with improved annealing temperature by magnetic measurement.
     The phenomenological theory was used to fit the GMR value and magnetic data for Cu80Co20 film. The content of ferromagnetic phase was analyzed by the application of ferromagnetic theory, which indicated that the magnetic grain began to grow up and the size of supperparamagnetism particle increased in the films during annealing. The results were analyzed by phenomenological theory and effectiveness medium theory showed that the component and the size of magnetic grain in the film were important to GMR.
     In order to improve the phase separation for the film, the CuCoNi films were electrodeposited from the CuCo plating solutions added Ni2+. There was a linear relationship between Ni content in the films and Ni ion concentration in the baths. XRD results showed that the suitable content of Ni was favorable to the separation of magnetic particle in the films. More Ni addition would decrease the content of magnetic particles.
     The magnetic measurement indicated that GMR of as-deposited CuCoNi films was higher than that of the films without Ni addition, but after annealing, GMR of CuCoNi films was no more increase than the CuCo films. The saturated magnetization was bigger and coercive force was smaller than that of the films without Ni addition. The superparamagnetic particles changed to ferromagnetic particles during annealing process, and coercive force was promoted. The maximum value of GMR was 2.4% for 2.7% of Ni content in the films annealed at 450℃. The optimum structure of films was appeared. GMR decreased after annealing at temperature over 450℃.
     In order to gain the fine grain in the film, CuCo granular film was prepared by electrodeposition in the stable magnetic field. The composition of the film was changed with the intensity of the magnetic fields. When the magnetic fields was 0.6-0.8T at B⊥J, the Co content in the films was higher, and the Co deposition was restrained by stronger magnetic fields. The Co content was higher than 20% at B//J generally, and attach to 30% in 0.7T, which was due to effect of the Lorentz force and paramagnetic, and the influence of MHD.
     The magnetic field could promote the refined crystal grains of the plating at B⊥J. and the crystal grains of films were more bigger at B//J, which included more Co in the films, the condition that the agitation of the solution was strengthened at this case also effect the deposition. XRD result showed that Magnetic field effected the crystallization of the granular film at some extent, and preferred the orientation of (111) crystal plane.
     The films which deposited in magnetic fields at B⊥J promoted the value of GMR. The maximum of GMR in CuCo granular films which deposited in 0.6T magnetic field was 4.81% after 500℃annealed, which increased 25% than the films prepared without magnetic field, and the optimal annealing temperature enhanced to 500℃. The hysteresis loops indicated that granular film which prepared in 0.6T magnetic field at B⊥J after 500℃annealing 1h showed more well magnetic property than the films annealed at other temperature. The proportion of magnetic and superparamagnetic component in the films was optimal state, which promoted the scatting at interface and showed higher GMR.
引文
1.张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,(2002):17-18
    2.刘吉平,郝向阳.纳米科学与技术[M],北京:科学出版社,2002: 134-143
    3. Sattler K, Muhlbach J, Recknagel E. Tetrahedra packings-Observation of magic numbers for clusters from antimony-tetramers [J], Phys Rev Lett,1982,8(87):418-420
    4.田民波.磁性材料[M],清华大学出版社,(2001):81-89
    5.KJ克莱邦德.纳米材料化学[M],化学工业出版社2004.176-186
    6.宛德福,马兴隆.磁性物理学[M],北京:电子工业出版社,1999
    7.龙毅,张正义,李守卫.新功能磁性材料及其应用[M],北京:机械工业出版社,1997
    8. Grunberg P, Schrenber R, Pang Y. Layered Magnetic Structure Evidence for Antiferromagnetic Coupling of Fe Layers Across Cr Multilayers [J], Phys Rev Lett,1986, 57:2442-2445
    9. Baibich M N, Boroto J M, Fert A, et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices [J], Phy.Rev.Lett,1988,61(21):2472-2475
    10.焦正宽,曹光旱.磁电子学[M],杭州:浙江大学出版社,2005.10:33-38
    11. Tokura Y. Colossal Magnetoresistance Oxides Advances in Condensed Matter [J], Science, 2,(2000):157-165
    12. Dagotto E, Hotta T, Moreo A. Colossal magnetoresistance material:the key of phase separation [J], Physics Reports,344,(2001):1-153
    13.宛德福,马兴隆.磁性物理学[M],成都:电子科技大学出版社,1994:537-538.
    14.任清褒,朱维婷.磁电阻材料及其应用的研究进展[J],材料科学与工程,2002,20(2):301-305
    15. Dieny B, Speriosu V S, Parkin S S, et al. Giant Magnetoresistance in Soft Ferromagnetic Multilayers [J], Phys Rev B,1991,43:1297-1300
    16. Berkowitz A E, Mitchell J R, Carey M J, et al. Giant Magnetoresistance in Hetergeneous Cu-Co Alloys [J], Phys Rev Lett,1992,68:3745-3748
    17. Xiao J Q, Jiang J s, Chien C L. Giant Magnetoresistance in Nonmultilayer Magnetic Systems [J], Phys Rev Lett,1992 (68):3749-3752
    18. Helmolt R, Wecker J, Holzapfel B, et al. Giant Negative Magnetoresistance in perovskite like La2/3Ba1/3MnOx Ferromagnetic Films [J], Phys Rev Letter,1993,71:2331-2333
    19. Ken-ichi Chahara, Ohno T, Kasai M, et al. Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure [J], Appl. Phys. Lett.63(1993), 1990-1995
    20. Jin S, Tiefel T H, McCormack M, et al. Thousand fold change in resistivity in magnetoresistive La-Ca-Mn-O films [J], Science,264 (1994) 413-415
    21. Millis A J. Double exchange alone does not explain the resistivity of Lai-xSrxMnO3[J], Phys Rev,1995,74:5144-5147
    22. Briceno G, Chang H, Sun X, et al. A class of cobalt ixide magnetoresistance materials discovered with combinational synthesis[J], Science,270(1995):273-275
    23. Bodmacg B, Palumbo G, Gerard P, et al. Magnetoresistive properties and thermal stability of Ni-Fe/Ag multilayers[J], Journal of Magnetism and Magnetic Materials,1993,118:L11
    24. Paeker M A, Coffey K R, Howand J K, et al. Overview of progress in giant magnetoresistance sensors based on NiFe/Ag multilayers[J], IEEE Transaction Magnetics, 1996,32(1):142-148
    25. Daughton J M. GMR applications[J], Journal of Magnetism and Magnetic Materials,192 (1999):334-342
    26.胡松青,杨渭.巨磁电阻应用的现状与展望[J],青岛大学学报,2003,3(16):69-72
    27.王浩.磁电阻材料及其在电子元器件上的应用[J],磁性材料及器件,1998,29(1):41-43
    28.颜冲.磁电阻在数据存储领域的应用[J],功能材料,2001,32(5):28-31
    29.于广华,朱逢吾,赖武彦.巨磁电阻材料及其在汽车传感技术中的应用[J],新材料产业,2003,8(117):29-31
    30.赵燕平,由臣,宁保群.巨磁电阻材料及应用[J],天津理工学院学报,2003,3(19):50-53
    31. Angelakeris M, Poulopoulos P, Valassiades O. GMR study leading to sensor fabrication on the Ag-Co system [J], Sensor and actuators A,91(2001):180-183
    32. Inomata K. Giant magnetoresistance and its sensor applications [J], Journal of Electroceramics,1998,24:283-293
    33. Bahareh Behkam, Yizhang Yang, Mehdi Asheghi.Thermal property measurement of thin aluminum oxide layers for giant magnetoresistive (GMR) head applications [J], International Journal of Heat and Mass Transfer,48 (2005):2023-2031
    34. Tang D D, Wang P K, Speriosu V S, et al. Spin- valve RAM cell[J], IEEE Trans magn, 1995,31:3206-3208
    35.张燕红.纳米材料的巨磁电阻效应及其应用[J],稀有金属,2001,25(6):459-463
    36.温艳玲,钟云波,任忠鸣,等.巨磁电阻薄膜材料的研究进展[J],上海金属,2005,27(2):56-60
    37. Sugawara T, Takanashi K, Fujimori H. Appearance of GMR on Annealing in Cu-Co Granular Alloys with High Co Concentration [J],Journal of Magnetism and Magnetic Materials,177-181 (1998):951-952
    38.郭鹤桐,陈建功,刘淑兰.电镀工艺学[M],天津:天津科学技术出版社,1985.8:40-45
    39.桂枫,姚素薇.电镀纳米金属多层膜研究现状[J],电镀与环保,2000,20(1):3-5
    40. Despie A R, Tpovic V D. Electrochemical formation laminar deposits of controlled structure composition[J], Journal of Electrochemical society,1987,134(11):3004-3007
    41. Ross L A, Goldman L M, Spaepen F. An Electrodeposition technique for producing multilayer of nickel-phosphorus and other alloys[J], Journal of Electrochemical society, 1993,140(11):91-96
    42. Tench D M, White J T. Considerations in electrodeposition of compositionaly modulated alloys[J],Journal of Electrochemical society,1990,137(10):3061-3066
    43. Uhlemann M, Gebert A, M.Herrich, et al. Electrochemical deposition and modification of Cu/Co-Cu multilayer[J],Electrochimica Acta,48 (2003):3005-3011
    44. Cziraki A, Koteles M, Peter L, et al. Correlation between interface structure and giant magnetoresistance in electrodeposited CoCu/Cu multilayers [J], Thin Solid Films,433 (2003):237-242
    45. Nabiyouni G, Schwarzacher W. Growth, characterization and magnetoresistive study of electrodeposited Ni/Cu and CoNi/Cu multilayers [J],Journal of Crystal Growth,275 (2005): e1259-e1262
    46. Yamada A, Houga T, Ueda Y. Magnetism and magnetoresistance of Co/Cu multilayer films produced by pulse control electrodeposition method[J],Journal of Magnetism and Magnetic Materials,239 (2002):272-275
    47. Ueda Y, Hataya N, Zaman H. Magnetoresistance effect of Co/Cu multilayer film produced by electrodeposition method[J],Journal of Magnetism and Magnetic Materials, 156 (1996):350-352
    48. Attenborough K, Hart R, Lane S J, et al. Magnetoresistance in electrodeposited Ni-Fe-Cu/ Cu multilayers [J],Journal of Magnetism Magnetic Materials,1995,148(1/2):334-335
    49. Miyazaki K, Kainuma S, Hisatake K. Giant magnetoresistance in CoCu granular alloy films and nanowires prepared by pulsed-electrodeposition [J], Electrochimica Acta,44 (1999):3713-3719
    50. Bakohyi I, Toth J, Kiss L F, et al. Origin of giant magnetoresistance contributions in electrodeposited Ni-Cu/Cu multilayers[J], Journal of Magnetism and Magnetic Materials, 269(2004):156-167
    51. Nabiyouni G, Schwarzacher W, Rolik Z, et al. Giant magnetoresistance and magnetic properties of electrodeposited Ni-Co-Cu/Cu multilayers [J], Journal of Magnetism and Magnetic Materials,253(2002):79-85
    52.薛江云,吴继勋,杨德钧.电化学方法制备铜钻纳米多层膜[J],电化学,1996.2(3):274-278
    53.薛江云,吴继勋,杨德钧.电沉积铜钴纳米多层膜的机理研究[J],电化学,1997.3(4):402-406
    54.姚素薇,杜枫,张卫国,等.电沉积纳米金属多层膜研究[J],天津大学学报,2001,34(2):261-263
    55.姚素薇,赵瑾,张卫国,等.单晶硅上电沉积Cu/Co纳米多层膜[J],化工学报,2004,55(3):414-417
    56.姚素薇,姜莹,张卫国.自旋阀多层膜的电化学制备及其巨磁电阻效应[J],物理化学学报,2007,23(4):493-498
    57.弗利德里克,A洛温海姆.现代电镀[M],1982.9:585-596
    58.胡传忻,白韶军,安跃生等.表面处理手册,北京:北京工业大学出版社[M],2004.3:50-54
    59.屠振密,李宁,安茂忠,等.电镀合金实用技术[M],国防工业出版社,2007.1:37-40
    60.屠振密.电镀合金的原理与工艺[M],北京:国防工业出版社,1993.1:20-25
    61. Ueda Y, Houga T, Zaman H, et al. Magnetoresistance effect of Co-Cu nanostructure prepared by electrodeposition method[J], Journal of solid state chemistry,1999,147: 274-280
    62. Fedsyuk V M, Kasytich I O, Ravinder D, et al. Giant magneteresistance in granular electrodeposited CuCo films[J], Journal of Magnetism and Magnetic Materials,156 (1996):345-346
    63. Gyana R Pattanaik, Dinesh K Pandya, Subhash C Kashyap, Giant magnetoresistance and magnetic properties of electrodeposited Cu-Co granular films[J], Journal of Alloys and Compounds,326 (2001):260-264
    64. Gyana R Pattanaik, Dinesh K Pandya, Subhash C Kashyap. Giant magnetoresistance in Cu-Co films electrodepositedon n-Si[J], Journal of Magnetism and Magnetic Materials, 234 (2001):294-298
    65. Kainuma S, Takayanagi K, Hisatake K, et al. Giant magnetoresistance and particle size distribution inpulse-plated Co-Cu granular films [J], Journal of Magnetism and Magnetic Materials,246 (2002):207-212
    66. Kenane S, Voiron J, Benbrahim N, et al. Magnetic properties and giant magnetoresistance in electrodeposited Co-Ag granular films[J], Journal of Magnetism and Magnetic Materials,297 (2006):99-106
    67. Kenane S. Giant magnetoresistance in Co/Ag granular films prepared by electrodeposition [J], Eletronchemistry Communications,4(2002):167-170
    68. Williams J M, Blythe H J, Fedosyuk V M. An investigation of electrodeposited granular CuFe alloyed films [J], Journal of Magnetism and Magnetic Materials,155 (1996):355-357
    69.李浩华,黎超,李伟,等.电沉积Co-Cu颗粒膜的巨磁电阻效应,物理化学学报,2000,16(6):573-574
    70.姚素薇,吴海霞,王宏智,等.半导体Si上电沉积CuCo颗粒膜及其巨磁电阻效应[J],物理化学学报,2005,21(8):915-919
    71.姚素薇,吴海霞,王宏智,等.退火对电沉积Co/Cu多层膜GMR的影响,2004全国电子电镀学术年会[C],2004,12,重庆:275-278
    72. Lopez Anton R, M L Fdez-Gubieda, A Garcia-Arribas, et al. Preparation and characterization of Cu-Co heterogeneous alloys by potentiostatic electrodeposition[J], Materials Science and Engineering,2002 (A335):94-100
    73.都有为.纳米材料中的巨磁电阻效应[J],物理学进展,1997,2(17):180-201
    74. Miranda M G M, da Rosa A T, Hinrichs R, et al. Spinodal decomposition and giant magnetoresistance [J], Physica B,384 (2006):175-178
    75.都有为.巨磁电阻效应[J],自然杂志,1996,18(2):73-79
    76.姜莹,姚素薇,吴海霞.电沉积巨磁电阻纳米材料的研究进展[J],电镀与涂饰,2005,24(11):46-50
    77. Heman J S, Abeles B. Tunneling of spin-polarized electrons and magnetoresistance in granular Ni films[J], Phys Rev Lett,37(1976):1429-1432
    78. Moodera J S, Kinder L R, Wong T M, et al. Large magnetoresistance at room temperature in ferromagnetic thin film [J], Phys Rev Lett,74(1995):3273-3275
    79. Miyazaki T, Tezaka N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction [J], Journal of Magnetic Material,1995,139:L231-L234
    80. Fujimori H, Mitani S, Ohnoma S. Tunnel-type GMR in metal-nonmetal granular alloy thin films [J], Mater Sci Eng,1995, B31:219-233
    81. Honda S, Okada T, Nawate M. Tunneling giant magnetoresistance in heterogeneous Fe-SiO2 granular films [J], Phys Rev B,1997,56:14566-14573
    82. Fujimori H, Mitani S, Ohnoma S. Iunnel-type GMR in Co-Al-0 insulated granular system-its oxygen concentration dependence [J], J Magn Magn Matter,1996,156: 311-314
    83.张立德,谢思深.纳米材料和纳米结构[M],北京:化学工业出版社,2005,3:420-435
    84.杨志.GMR的研制及其特性研究[D],黑龙江:黑龙江大学,2006:19-25
    85.欧阳可青.自旋阀结构的GMR传感器研究[D],北京:清华大学,2005:3-7
    86.冯端,金国钧.凝聚态物理[M],北京:高等教育出版社,2003.1:246-248
    87.翁兆平.磁性多层膜电磁特性的研究[D],黑龙江:哈尔滨理工大学,2002:6-10
    88.严密.彭晓领,磁学基础与磁性材料[M],浙江:浙江大学出版社,2006.4:222-230
    89.王万平,多层膜巨磁电阻材料及其应用研究[D],四川:电子科技大学,2000:6-10
    90. White R L. Giant Magnetoresistance:A Primer [J], IEEE Transaction on Magnetics,1992, 28 (5):2482-2487
    91. Levy Y M, Zhang S, Fert A. Electrical Conductivity of Magnetic Multilayered Structures [J], Phys Rev Lett,1990,65(13):1643-1646
    92. Zhang S F,Levy P M. Conductivity and Magnetoresistance in Magnetic Films [J], J Appl Phys,1993,73(10):5315-5319
    93. Xu Chen, Li Zhen-Ya. A Phenomenological Theory of Giant Magnetoresistance in Magnetic Granular Alloys [J], Phys Lett A,258,1999:401-405
    94. Valet T, Fert A, Theory of the perpendicular magnetoresistance in magnetic multilayers[J], Phys Rev B,1993,48(10):7099-7113
    95. EI-Hilo M, O'Grady K, Chantrell R W. The effect of interactions effects in granular Solids [J], J Appl Phys,1994,76(10):6811-6813
    96. EI-Hilo M, Chantrell R W, O'Grady K. A Model of Interaction Effects in Granular Magnetic Solids [J], J Appl Phys,1998,84(9):5114-5122
    97. Kechrakos D, Trohidou K N, Dipolar interaction effects in the spin-dependent transport in nanoparticle systems, [J] Phys Stat Sol(a),2002,189(2):277-280
    98. Rubin S, Holdenried M, Micklitz H. A Model System for the GMR in Granular Systems: Well Defined Co Clusters Embedded in an Ag Matrix [J], Magn Mater,1999,203:98-102
    99. Sheng L, Gu R Y, Xing D Y, et al. Giant Mannetoresistance in Magnetic Granular Systems [J], Appl Phys,1996,79:6255-6258
    100.谢秉川.颗粒膜中的巨磁阻效应[J],广西师院学报(自然然科学版),1999,16(4):25-30
    101.Zenou V Y, Kusinski G, Yue L, et al. Structure and Magnetic Properties of Nano-structured Heterogeneous AuCo alloys [J],Journal of Materal Science,38 (2003): 2679-2688
    102.Bernardi J, Hutten A, Thomas G. Electron microscopy of giant magnetoresistive granular AuCo alloys[J], Journal of Magnetism and Magnetic Materials,157/158 (1996):153-155
    103.Takashi S ugiyama, Osamu N ittono. Structure and Giant Magnetoresistance of CoAg Granular Alloy Film Fabricated by a Multilayering Method[J],Thin Solid Films, 334(1998):206-208
    104.Errahmani H, Berrada A, Colis S, et al. Structural and magnetic studies of CoCu granular alloy obtained by ion implantation of Co into Cu matrix [J],Nuclear Instrument and Methods in Physics Research B,178 (2001):69-73
    105. Honda S, Okada T, Nawate M. Size effect on giant magnetoresistance of Co-Ag films [J],Journal of Magnetism and Magnetic Materials,165 (1997):326-329
    106. Xiao Gang, Wang Jianqing, Xiong Peng., Giant magnetoresistance and anomalous effects in Co-Ag and Fe-Cu,Ag,Au,Pt granular alloys[J], Appl Phys Lett,1993,62(4):420-426
    107. Ge Shi-hui, Zhang Zong-zhi, Xu Tao, et al. GiantMagnetoresistance and Miscrostructure of Co-Cu and FeCo-Cu Granular Films [J],Journals of Magnetism and Magnetic Materials, 1997 (168):35-42
    108. Chen Xu, Zhen-ya Li. Concentration dependence of giant magnetoresistance in magnetic granular composites [J], Physics Letters A,260,(1999):381-385
    109. Zhang Y X, Liou S H, DeAngelis R J, et al. The process-controlled magnetic properties in nanostructured Fe/Ag composite films [J]. Journal of Applied Physics,1991,69(8): 5273-5274
    110.Barnard J A, Hossain S, Parker M R, et al. Observation of giant magnetoresistance in Ag-Ni-Fe aloy films [J], Journal of Applied Physcics,1993,73, (10):6372-6274
    111.Sugawan T, K Takanashi, H Fujimori, Appearance of GMR on annealing in CuCo granular alloys with high Co concentration [J], Journal of Magnetism and Magnetic Material,177-181(1998):951-952
    112.李佐宜,彭子龙,郑远开.金属颗粒膜巨磁电阻效应的影响因素[J],物理学报,1998,47(6):1012-1017
    113.Wang J Q, Xiao G. Finite-size Effect and its Temperature Dependence of Giant Magnetoresistance in Magnetic Granular Materials[J], Phys Rev B,1994,B49(6):3982-3985
    114.王纪文,王永瑞,张寿柏等.CoAg颗粒膜巨磁阻效应的TEM研究[J],1998,17(5):479-480
    115.Song Wei-ji, Yang Rong. Giant Magnetoresistance in Magnetic Granular Systems [J], Physica B,2000,279:181-184
    116. Yang R, Song Wei-ji. The Shape and Size Dependence of Giant Magnetoresistance in Magnetic Granular Films[J], Physics Letter A,1998,244:139-143
    117. Wei Zhang, Rong Yang. Giant magnetoresistance of magnetic granular films in an effective medium theory [J], Physics Letters A,255(1999):343-348
    118. Sang H, Xu N, Du Y W, et al. Giant Magnetoresistance and Microstructures in CoAg Granular Films Fabricated Using Ion-beam Co-sputtering Technique [J], Physical Review B,1996,53(22):15023-15026
    119.Sang H, Jiang Z S, Du Y W et al. Study on GMR in CoAg thin granular films[J], ournal of Magnetism and Magnetic Material,1995,140/144:589-590
    120.Kataoka N,Kim I J,Takedah, et al. Giant Magnetoresistance of Cu-Co-X Alloys Produced by Liquid Quenching [J], Materials Science and Engineer,1994, A181/A182:888-891
    121. Wang J Q, Xiao G, Transition metal granular solids:Microstructure magnetic properties and giant magnetoresistance [J], Phys Rev B:1994,49:3982-3996
    122.Chubing Peng, Daosheng Dai. Magnetic properties and magnetoresistance in granular Fe-Cu alloys [J], Journal of Applied Physics,1994.76(5):2986-2990
    123.L Yiping, A S Murthy, G C Hadjipanayis. Giant magnetoresistance in melt-spun Cu-Mn-Al ribbons[J], Journal of Magnetism and Magnetic Mater,144 (1995):615-616
    124.Wang Feng, Zhang Z D, Zhao T, et al. Giant magnetoresistance in CoFeCu granular ribbons [J], Journal of Physics Conduction Matter,2000 (12):4829-4835
    125. Ge S H, Zhang Z Z, Lu Y Y, et al. Influence of annealing condition on giant magnetoresistance of FeCo-Cu granular films.[J], Thin Solid Films,1997,311(11):33-37
    126.Wang Feng, Zhang Z D, Zhao T, etal. Giant magnetoresistance in CoCuNi granular ribbons [J], Journal of Physics Conduction Matter,2000 (12):2525-2533
    127.王锋,张志东.快淬CoNiCu系列金属条带的巨磁电阻效应[J],中山大学学报(自然科学版),2005,(44):38-41
    128. Sun Zhanbo, Zhu Yaomin, Li Xiao yuan, et al. Compositions, magnetic properties and GMR performances of melt-spun Cu-Co-Ni ribbons[J], Journal of Magnetism and Magnetic Materials 269 (2004) 341-345
    129.王锋,张志东.掺杂B对快淬CoCu金属条带的巨磁电阻效应的影响[J],厦门大学学报(自然科学版),2003.2(42):185-187
    130. R von Helmolt, Wecker J, Samwer K. Magnetoresistance of Cu90FexCol-x heterogeneous alloys and the effect of boron addition [J], Journal of Magnetism and Magnetic Materials,139 (1995):L235-L239
    131.Shin-ichiro Kondo, Takeshi Yamamoto, Kazuhiro Yamamoto, et al. Effect of Cr addition on magnetization of Cu-Co alloy[J], J. Appl. Phys.1993,73 (5),:2453-2457
    132. Oh T S, Choo W K, Thomas G. The effect of nitrogenation on GMR and microstruc-tures of granular (Ni0.8Fe0.2)20Ag80 thin films[J], Acta Materials,1998,46(11): 3813-3820
    133. Sun Zhanbo, Song Xiaoping, Hu Zhudong. Effects of rare earth additions on GMR of melt-spun Cu-Co-Ni ribbons[J],Journal of Magnetism and Magnetic Materials,234 (2001):279-283
    134. Miranda M G M, Estevez-Ramsb E, Mart-inez G, et al. Segregation dynamics in annealed CoCu ribbons:spinodal decomposition and giant magnetoresistance [J], Physica B,320 (2002):139-142
    135.Hohl G F, Hihara T, Sakuraia M, et al. Influence of temperature on the magnetic moments of Fe clusters in an Ag matrix[J], Materials Science and Engineering, A217/218 (1996):291-294
    136.Song X, Mahon S W, Cochrane R F, et al. Microstructural Evolution and Giant Magnetoresistance in Melt-spun Cu70Co30 Ribbon [J], Journal of Alloys and Compounds, 245(1996):75-79
    137.Du J H, Liu W J, Li Q, et al. Microstructural characterization of CoAg granular films [J],Journal of Magnetism and Magnetic Materials,191 (1999):17-24
    138.Christodoulides J A, Murthy A S, Hadjipanayis G C. Structural and magnetic properties of granular Cr100-xFex [J], Materials Science and Engineering,204 (1995):30-33
    139. Wang Song-You, Shen Zuo-Cheng, Zheng Wei-Min, et al. The annealing effect on the magneto-optical properties of CoxAg100-x granular films[J], Physica B,279 (2000): 109-112
    140.Fedosyuk V M, Ravinder D, Blythe H J. The influence of anneal and composition on the superparamagnetism of inhomogeneous CuCo films[J], Journal of Magnetism and Magnetic Materials,156 (1996):77-78
    141.Nabiyouni G, Schwarzacher W. Disappearance and return of GMR on annealing electrodeposited multilayers[J], Journal of Magnetism and Magnetic Materials,198-199 (1999):116-118
    142.Yu R H, Zhang X X, Tejada J, et al. Giant magnetoresistance in magnetic granular Co15Cu85 alloys annealed by Joule-current heating [J], Journal of Magnetism and Magnetic Materials,164 (1996):80-86
    143.Prieto A Garcia, Fdez-Gubieda M L, Garcia-Arribas A, et al. Structural evolution of Co clusters in Co15Cu85 granular alloys by EXAFS spectroscopy [J], Journal of Magnetism and Magnetic Materials,221 (2000):80-86
    144.Errahmani H, Berrada A, Schmerber G, et al. Comparative study between the effect of annealing and substrate temperature on the magnetic and transport properties of Co20Cu80 granular alloys [J], Materials Letters,51(2000):48-55
    145.Errahmani H, Berrada A, Schmerber G, et al. Correlation between magnetotransport and microstructure of the Co20Cu80 granular alloy[J], Journal of Magnetism and Magnetic Materials,238(2002):145-154
    146.Kuziminski M. The effect of particle size and surface-to-volume ratio distribution on giant magnetoresistance(GMR) in melt-spun Cu-Co alloys[J], Journal of Magetism and Magnetic Materials,205(1999):7-13
    147.Allia P, Knobel M, Tiberto P, et al. Magnetic properties and giant magnetoresistance of melt-spin granular Cu100-xCox alloys [J], Phys Rev B,1995,52(21):15398-15411
    148. Liu T, Hu T D, Xie Y N, et al. High-field magnetization process of granular CoCu alloys prepared by melt spinning[J], Journal of Magnetism and Magnetic Materials,192 (1999): 467-472
    149. Gregg J F, Thompson S M, Dawson S J, et al. Effect of magnetic interactions and multitiple magnetic phase on the giant magnetoresistance of heterogeneous cobalt-silver thin films[J], Phys Rev B,1994.49(2):1064-1068
    150. Ick Jun Kima, Hideki Takeda, Jun-ichi Echigoyaa, et al. The effect of aging on GMR and microstructure of Co10Cu90 ribbons[J], Materials Science and Engineering, A217/215 (1996):363-366
    151.Marszalek M, Jaworski J, Michalik A, et al. Structural and magnetoresistive properties of Co/Cu multilayers[J], Journal of Magnetism and Magnetic Materials,226-230(2001): 1735-1737
    152.李廷举,金俊泽.材料电磁加工的现状与未来展望[J].材料导报,2000,14(12):12-19
    153.Wang Qiang, He Jicheng, Satoru Kawai. Direct Generation of Intense Compression Waves in Molten Metals by Using a High Static Magnetic Field and Their Application [J].Journal of Material Science Technology,2003,19(1):5-9
    154.王强,赫冀成,川合悟,等.磁声波对金属凝固组织的影响[J],金属学报,2002,38(9):961-965
    155.高翱,王强,王春江,等.强磁场条件下Mn-Sb梯度复合材料的制备[J],物理学报,2008,2(57):767-771
    156.李廷举,温斌,张志峰,等.电磁作用下的材料加工新技术[J],大连理工大学学报,2000,40(11):61-64
    157.W F休斯,JA布莱顿,著.徐燕侯,译.流体动力学[M],北京:科学出版社,2002,233-240
    158. Ma Yanwei, Xiao Liye, Yan Luguang. Application of high magnetic fields in advanced materials processing[J]. Chinese Science Bulletin,2006,24(51):2944-2950
    159.陈祝平.特种电镀技术[M].北京:化学工业出版社,2004,172-180
    160.王强,王恩刚,赫冀成.静磁场在材料生产过程中的应用研究评述[J].材料科学与工程学报,2003,21(4):590-595
    161.Hisayoshi Matsushima, Adriana Ispas, Andreas Bund,et al. Magnetic field effects on microstructural variation of electrodeposited cobalt films[J]. J Solid State Electrochem, (2007) 11:737-743
    162.庞雪君,王强,王春江,等.强磁场对铝合金中溶质组元分布状态的影响效果[J],物理学报,2006,10(55):5129-5134
    163.汤永新,李寒旭,葛琦.电磁场对水煤浆性能的影响[J],煤炭科学技术,2000,28 (12):30-31
    164.李冠成,康永林,李明,等.水在电场、磁场作用下物理性质变化及其影响[J],现代物理知识,2001,13(2):30-31
    165.卢贵武.磁场对水作用机制的计算机模拟研究[J],物理,1997,26(11):679-682
    166.高诚辉,周白杨,黄水兴.外加磁场镀铁槽内电磁特性研究[J],电镀与环保,1990,20(3):8-11
    167.Eimutis Juzeliunas. Advances in detection of magnetic fields induced by electrochemical reactions-a review[J], Journal of Solid State Electrochemistry,2007(11):791-798
    169.Matsushiama H, Nohira Y, Mogi L, et al. Effect of magnetic filed on iron electroposotion [J], Surface and Coatings Technology,2004,179:245-251
    170.高诚辉,周白杨,黄水兴.施加磁场对氯化亚铁镀铁溶液电化学性能的影响[J].电镀与环保,1994,14(2):5-7
    171.Krause A, Uhlemann M, Gebert A, et al. The effect of magnetic fields on the electrodeposition of cobalt [J], ElectrochimicaActa,2004,49:4127-4134
    172.O'Reilly C, Hinds G, Coey J M D. Effect of a Magnetic Field on Electrodeposition Chronoamperometry of Ag, Cu, Zn and Bi [J], Journal of Electrochemistry Society, 2001,(148):674-678
    173. Coey J M D, Hinds G. Magnetic Electrodepositions [J], Journal of Alloys and Compound, 2001,326:238-245
    174.张景双,安茂忠,杨哲龙,等.稳恒磁场对电沉积锌镍合金的影响[J].电镀与环保,1995,15(5):16-18
    175.王森林,洪亮亮.平行电极表面磁场对电沉积钴镍镀层的影响[J],稀有金属,2007,31(2):211-215
    176.Hu F, Chan K C, Qu N S. Effect of magnetic field on electrocodeposition behaviorof Ni-SiC composites[J], J Solid State Electrochem, (2007) 11:267-272
    178.Devos O, Olivier A, Chopart J P, et al. Magnetic Field on Nickel Electrodoposition [J], Electrochem Soc,1998,145 (2):401-405
    179.Olivier A, Chopart J P, Douglade J, et at. Investigation of magnetic effects on mass transport at the electrode/electrolyte interface by impedance techniques[J]. Journal of Electroanalytical Chemistry,1987,217(2):443-452
    180.Mhiochain T R Ni, Coey J M D.Adapted diffusion limited aggregation model for the effects of magnetic fields on fractal electrodeposits[J]. Journal of Magnetism and Magnetic Materials,2001,226-230:1281-1283
    181.温艳玲,钟云波,任忠鸣,等.强磁场对电沉积镍铁合金膜显微组织的影响[J],中国有色金属学报,2006,16(4):715-721
    182.Yoshimura S, Yoshihara S, Shirakashi T, et al. Preferred orientation and morphology of electrodeposited iron from iron (II) chloride solution [J]. Electrochem Acta,1994,39: 589-592
    183.Li D Y, Szpunar J A. Monte Carlo A. Simulation approach to the texture formation during electrodeposition II:Simulation and experiment[J]. Electrochem Acta,1997,42: 47-52
    184.Asai S, Sassa K, Tahashi M. Crystal Orientation of Non-magnetic Materials by imposition of a High Magnetic field [J], Science and Technology of Advanced Materials, 2003,4:455-460
    185.Taniguchi T, Sassa K, Asai S. Control of crystal orientation in zinc electrodeposits by imposition of a high magnetic field[J], Mater Trans JIM,2000,41:981-984
    186.葛世慧,黎超,马骁,等.外加磁场对Co纳米线生长过程的影响[J],物理学报,2001,50(1):149-152
    187.Nakano H, Nakahara K, Kawano S, et al. Effect of electrolysis factors on crystal orientation and morphology of electrodeposited cobalt[J], Journal of Applied electrochemistry,2002,32:43-46
    188.张辉毅,张国衡.外加磁场下电沉积非晶态镍-磷合金的研究[J],材料保护,1991,3(24):17-20
    189.大竹芳文,山田隆志,浅井滋生.强磁塌印加にょるNi-Zn系电析物の组织制御[J],日本金属学会志,2003,(1):1-6
    190.杨中东,高鹏,薛向欣,等.稳恒磁场下Ni-W合金镀膜的制备与耐蚀性[J],中国有色金属学报,2006,10(16):1710-1715
    191.Thomas Z Fahidy. Characteristics of surfaces produced via magnetoelectrolytic deposition [J], Progress in Surface Science,68(2001):155-188
    192.Cohen-Hyams T, Plitzko J M, Hetherington C J D. Microstructural dependence of giant magnetoresistance in electrodeposited CuCo alloys[J], Journal of materials Science,39 (2004):5701-5709
    193.阿伦J巴德,拉里R福克纳,著.邵元华,朱国逸,董献堆,等译.电化学方法:原理和应用[M],北京:化学工业出版社,2005,5:2-8
    194.中南矿冶学院分析化学教研室.分析化学手册[M].北京:科学出版社,1982.1,639-672
    195.渡边徹,著.陈祝平,杨光,译.纳米电镀[M],北京:化学工业出版社,2007.1:8-15
    196.李荻.电化学原理[M],北京:北京航空航天大学,1999.8.1:419-421
    197.王鸿建.电镀工艺学[M],黑龙江:哈尔滨工业大学出版社,1995.10:9-13
    198. V V Hiep, N Chau, D M Hong, et al. High coercivity and giant magnetoresistance of CoAg, CoCu granular films[J]. Journal of Magnetism and Magnetic Materials,2007 (310):2524-2526
    199. A Zhukov, J Gonzalez, V Zhukova. Magnetoresistance in thin wires with granular structure [J]. Journal of Magnetism and Magnetic Materials,294 (2005):165-173
    200. D Schmool, A Garcia-Arribas, E Abad, et al. Magnetic and structural changes in Cu90Co10 during the annealing process. Journal of Magnetism and Magnetic Materials,1999,203:73-75
    201.T A Tochitskii, G A Jones, H J Blythe, et al. Fine structure and possible growth mechanisms of some electrodeposited CuCo granular films s[J]. Journal of Magnetism and Magnetic Materials,2001,224:221-232
    202.姜寿亭,李卫.凝聚态磁性物理[M],北京:科学出版社,2003:273-281
    203.徐东然,张一清,王长征.金属-金属颗粒膜巨磁电阻效应的尺寸效应[J],江西师范大学学报(自然科学版),2007,1(37):48-55
    204.杨文伟,宋为基.颗粒巨磁阻的唯象理论[J],苏州城建环保学院学报,2001,1(14):88-93
    205.杨文伟.颗粒巨磁阻的唯象理论[D],江苏:苏州大学,2001.5:45-50
    206. Gu Y, Sheng L, Xing D Y, et al. Microscopic theory of giant magnetoresistance in magnetic granule metals [J], Phys Rev B,1996,53(17):11685-11688
    207. Sun Zhanbo, Song Xiaoping, Hu Zhudong, et al. Effects of Ni addition on liquid phase separation of Cu-Co alloys[J], Journal of Alloys and Compounds,319 (2001):276-279R
    208.Zhan S Yg, Cao Q Q. The influence of Ni on the microstructure and GMR of the Co-Cu alloy granular films[J], Journal of Applied Physics,1996,79 (8):6261-6365
    209.Karahan I H, Bakkaloglu O F, Bedir M. Giant magnetoresistance of electrodeposited CuCoNi alloy films[J], Indian Academy of Sciences.2007,1(68):83-90
    210.Uhlemann M, Krause A, Gebert A. Effect of a Magnetic Field on the Local pH Value in front of the Electrode Surface During Electrodeposition of Co [J], Journal of Electro analytic Chemistry,2005,577:19-25
    211.Waskaas M, Khartkats Y. Effect of Magnetic Fields on Convection in Solutions Containing Paramagnetic Ions [J], Journal of Electroanalytic Chemistry,2001,502:51-57
    212.王长征,周宁,戎咏华,等.金属颗粒膜巨磁电阻效应的机制和影响因素[J].功能材料,2003,3(34):238-241

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700