用户名: 密码: 验证码:
固定化洋葱伯克霍尔德菌脂肪酶催化合成生物柴油工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以脂肪酶为催化剂制备生物柴油是一种先进的、制造工艺,已成为生物柴油新工艺的主要发展方向之一。本论文拟通过酰基受体选择、工艺参数优化和具有协同效应复合酶法催化等三种途径减轻底物对酶的负面影响,提高反应效率,以降低生产成本。本研究以所在实验室筛选得到的具优良催化性质的洋葱伯克霍尔德菌脂肪酶为催化剂,以甲醇和乙酸甲酯为酰基受体,探讨了固定化洋葱伯克霍尔德菌脂肪酶催化大豆油酯交换制备生物柴油的可行性,系统考察了酶用量、醇油比、含水量、反应温度、反应时间等因素对生物柴油转化率的影响,并采用响应面方法优化了以甲醇为酰基受体的工艺参数。主要结果如下:
     (1)研究了采用乙酸甲酯为酰基受体制备生物柴油工艺。在加酶量15%、加水量4.0%、反应温度40.0℃、反应时间12.0 h、乙酸甲酯与豆油摩尔比为9.0时,甲酯得率可达80%以上。
     (2)甲醇是生物柴油制备的常用酰基受体。通过单因素实验,考察了洋葱伯克霍尔德菌固定化脂肪酶催化合成生物柴油的工艺条件如反应温度、酶用量、甲醇流加次数、底物摩尔比和体系含量水对脂肪酸甲酯得率的影响,并在单因素试验的基础上,利用响应面设计优化了各主效因子,建立了甲酯得率的二次多项回归模型方程,获得了最优工艺条件:加酶量2.4%、加水量7.1%、反应温度40.4℃、反应时间10.7 h、醇油比4.5,预测甲酯得率为96.9%。为检验模型可靠性,实验实测甲酯得率为97.2%,与响应面模型预测值非常吻合。
     (3)本实验室已证实具不同特异性脂肪酶之间存在协同效应,可有效降低酶的总用量,且能显著提高酶催化效率,缩短反应时间。尝试了将最常用的两种固定化脂肪酶Novozym 435、Lipozyme TLIM与固定化洋葱伯克霍尔德菌脂肪酶进行混合催化转酯反应。结果显示,复合脂肪酶能有效解决单一脂肪酶在有机溶剂体系中加酶量过高和甲酯得率低的问题,有可能发展出一条新的酶法制备生物柴油新工艺。
Enzymatic preparation of biodiesel with lipase is a green manufacturing process, which is becoming one of the main directions of new biodiesel techniques. In order to improve catalyzing effeciency and reduce production costs of biodiesel, three probable ways: the choice of new acyl receptor, optimization of process parameters, utilization of synergistic effect of combined lipases, can be employed. In this study, with methanol and methyl acetate as acyl receptor,the Burkholderia cepacia lipase isolated by ourself was applied to catalyze production of biodiesel through transesterification of soybean oil. The effects of enzyme loading, methanol/ oil molar ratio,water content, reaction temperature and reaction time on the conversion rate of biodiesel were studied in details, the parameters of biodiesel preparation with methanol as acyl receptor were optimized by using response surface methodology. The results were showed as follows:
     (1) With methyl acetate as acyl receptor, under the following conditions: enzyme loading15%, water content 4.0%, reaction temperature 40.4℃,reaction time 12 h, methyl acetate /oil molar ratio 9.0, yield of methyl ester were over 80%.
     (2) Methanol is usually used as acyl receptor in biodiesel preparation. In the single factorial experiments, the effects of conditions of immobilized Burkholderia cepacia lipase catalyzed production of biodiesel such as the enzyme loading, methanol/ oil molar ratio,water content, reaction temperature and reaction time on the conversion rate of biodiesel were studied. Based on the single factorial experiments, the major impact factors were optimized by response surface method, the quadric regression equation on the yield of methyl ester was established. The results showed that the optimum conditions were: enzyme loading 2.4%, water content 7.1%, reaction temperature 40.4℃, reaction time 10.7 h, methanol/ oil molar ratio 4.5,the predicted yield of methyl ester were 96.9%. In order to check up the reliability of the model, the measuring yield of methyl ester were 97.2%, which coincided with the predicted value 96.9% very well.
     (3) The synergistic effect which has been proved between lipases with different characteristics can effectively reduce the total amount of enzyme loading, and significantly improve the catalyzing efficiency, so as to shorten the reaction time. The respective combination of two usual immobilized enzymes Novozym 435, Lipozyme TLIM with immobilized B. cepacia lipase from was tried. The results showed that the compound lipases could effectively solve the problems of high enzyme loading and relative lower yield of methyl ester in organic solvent system when single lipase was applied. This suggests that a new biodiesel preparation technique may be developed with the above immobilized lipases.
引文
[1] Jim R. Sustainable production systems for bioenergy: Forest energy in practice[J]. Biomass and Bioenergy, 2006(30): 999-1000
    [2]贾振航.绿色的生物质能[J].节能与环保, 2004(5): 53-54
    [3] Ma F, Milford A H. Biodiesel production: a review[J]. Bioresource Technology, 1999(70): 1-15
    [4] Krawczyk T. Biodiesel-Alternative fuel makes inroads but hurdles remain[J]. Information, 1996(7): 801-829
    [5]王学伟.假丝酵母脂肪酶醇解制备生物柴油的研究[D].北京:北京化工大学, 2006
    [6]谭天伟.生物柴油的开发与应用[J].现代化工, 2002, 22(2): 7-9
    [7]张包钊,郭风华.低污染可再生生物柴油的商业化进展[J].实用节能技术, 2002, l: 35-39
    [8]范航,张大年.生物柴油的研究与应用[J].上海环境科学, 2000, 19(11): 516-518
    [9]范航.生物柴油试制研究[J].化学世界, 2000, (41): 65-66
    [10]冀星,范小林.我国生物柴油产业发展展望[J].中国能源, 2002, 5: 16-18
    [11] Ziejewski M, Kaufman K R, Schwab A W, et al. Diesel engine evalution of a nonionic sunflower oil-aqueous ethanol microemulsion[J]. Journal of the American Oil Chemistry Society, 1984, 61: 1620-1626
    [12] Schwab A W, Bagby M O, Freedman B. Preparation and properties of diesel fuels from vegetable oils[J]. Fuel, 1987, 66: 1372-1378
    [13] Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils[J]. Journal of Bioscience and Bioengineering, 2001, 92: 405-416
    [14]李为民,姚超.酯交换法制备生物柴油研究进展[J].粮食与食品工业2009, 16(1): 9-13
    [15]鞠庆华,曾昌凤,郭卫军等.酯交换法制备生物柴油的研究进展[J].化工进展2004, 23(10): 1053-1057
    [16] Alcantara R, Amores J, Canoira L, et al. Catalytic production of biodiesel fromsoy-bean oil, used frying oil and tallow[J]. Biomass and Bioenergy, 2000, 18: 515-527
    [17]杨继国,林炜铁,吴军林等.酶法合成生物柴油的研究进展[J].化工环保, 2004, 24(2): 116-120
    [18]徐兆瑜.催化酯化技术与生物柴油产业化[J].甘肃石油和化工, 2007, 6(2): 8-15
    [19]陈新,里伟,杜伟等.生物酶法制备生物柴油研究现状及展望[J].现代化工, 2007, 27(8): 23-25
    [20]陈玉峰,张钧,陈力.酯交换法制备生物柴油的研究进展[J].河北化工, 2008 31(10): 17-18
    [21] Kusidiana D, Sake S.Methyl esterification of free fatty acids of rapeseed oil as treated in supercritical methanol[J].Fuel, 2001, (34): 383-387
    [22] Kamini N R, Iefuji H.Lipase catalyzed methanolysis of vegetable oils in aqueous medium by cryptococcus sp S-2[J].Process Biochemistry, 2001, 37(4): 405-410
    [23] Matsumoto T, Takahashi S, Kaieda M, et al. Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production[J]. Microbiology and Biotechnology, 2001, (57): 515-520
    [24] Ban K, Kaieda M, Matsumoto T, et al. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles[J]. Biochemical Engineering Journal, 2001, (8): 39-43
    [25] Ban K, Hama S, Nishizuka K, et al. Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production[J]. Journal of Molecular Catalysis B: Enzymatic, 2002, (17):157-165
    [26] Hama S, Yamaji H, Kaieda M, et al. Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production[J]. Biochemical Engineering Journal, 2004(21):155-160
    [27] Hama S, Yamaji H, Fukumizu T, et al. Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles[J]. Biochemical Engineering Journal, 2007, (34):273-278
    [28]里伟,杜伟,刘德华.固定化R. oryzae细胞发酵产胞内脂肪酶及其催化制备生物柴油[J].高校化学工程学报, 2008,22(5): 822-827
    [29]司耀彬,马传国.酯交换法制备生物柴油研究进展[J].中国油脂2006, 31(11): 60-64
    [30]段炼.全球生物柴油产业的发展[J].日用化学品科学, 2009, 32(1): 7-11
    [31]高庆.生物柴油及生产概述[J].工业经纬, 2007, 14(1): 28-35
    [32]唐凤仙. A. niger Li-38产脂肪酶及其催化棉籽油合成生物柴油的研究[D].石河子,石河子大学, 2008
    [33]孙纯,刘金迪.国内外生物柴油的开发应用现状[J].中外能源, 2006, 11(3): 97-102
    [34]黄忠水,纪威,李淑艳.国外生物柴油的应用[J].节能与环保, 2003, 30(1): 34-35
    [35]张传利,林良斌,刘雅婷等.生物质柴油生产现状及其生产技术进展[J].云南农业大学学报, 2007, 22(5): 747-752
    [36]王仰东.基于技术路线图应用的生物柴油产业链研究[J].科技管理研究, 2009(2): 139-140
    [37]孟祥梅,张晓东,陈雷.制取生物柴油的新型原料油源的探讨[J].现代化工, 2006, 26(增刊): 1-4
    [38]宋东辉,侯李君,施定基.生物柴油原料资源高油脂微藻的开发利用[J].生物工程学报:2008, 24(3): 341-348
    [39]徐炜枫.固定化脂肪酶催化菜籽油醇解反应制备生物柴油的研究[D].南京:南京农业大学, 2007
    [40]马蓁,朱玮,尉芹.木本油料生产生物柴油研究[J].西北林学院学报, 2007, 22(6): 125-130
    [41]黄瑛,郑海,闫云君.叔丁醇体系中动物油脂制备生物柴油[J].北京化工大学学报, 2007, 34(5): 549-552
    [42]刘云,商伟胜,辛红玲,闫云君.乌桕梓油酶法制备生物柴油的研究[J].应用化工, 2008, 37(9): 977-980
    [43]邓利,刘柳,董贤等.固定化假丝酵母99-125脂肪酶催化酯化脂肪酸低碳醇酯反应条件的研究[J].现代化工, 22(9): 30-33
    [44]艾俊哲,梅平.非水介质中的酶催化反应[J].化学通报, 2002, 11: 752-757
    [45]盛梅,郭登峰.固定化脂肪酶催化菜籽油合成生物柴油稳定性研究[J].中国油脂, 2005, 30(5): 68-70
    [46]阮新,曾健青,张镜澄.有机溶剂中脂肪酶催化酯交换反应的研究[J].广州化学, 1998(1): 26-31
    [47]陈文伟,荫榆,林向阳.生物柴油副产物甘油精制新法[J].中国油脂, 2006, 31(5): 62-64
    [48]郭磊.生物柴油副产物甘油的开发利用[D].南昌:南昌大学, 2007
    [49] Takaaki W, Masakatsu S, Manabu S, et al. Diacylglycerol production in a packed bed bioreactor[J]. Process Biochemistry, 2005, 40(2): 637-643
    [50] Clark D S. Can immobilization be exploited to modify enzyme activity[J]. Trends in Biotechnology, 1994, 12: 439-443
    [51] Ting W J, Tung K Y, Giridhar R, et al. Application of binary immobilized Candida rugosa lipase for hydrolysis of soybean oil[J]. Journal of Molecular Catalysis: B Enzymatic, 2006, 42: 32-38.
    [52]辛嘉英,李树本等.脂肪酶的固定化及其在有机酶促反应中稳定性研究[J].分子催化, 1999, 13(2):103-108
    [53]杨继国,林炜铁,吴军林.酶法合成生物柴油的研究进展[J].化工环保, 2004, 24(2): 116-120
    [54]侯继贤,鲁吉珂,聂开立等.固定化Candida sp. 99-125脂肪酶催化大豆油合成脂肪酸乙酯[J].过程工程学报, 2008, 8(2): 355-358
    [55]舒正玉,杨江科,黄瑛等.生物柴油生产用脂肪酶资源及研发现状[J].湖北农业科学, 2007, 46(6): 1027-1030
    [56]贾彬,杨江科,闫云君.基于T7表达系统的洋葱伯克霍尔德菌G63脂肪酶同源高效表达[J].生物工程学报, 2009, 25(2): 215-222
    [57]汪小锋,杨江科,闫云君.洋葱假单胞菌(Pseudomonas cepacia)PCL-3产脂肪酶发酵条件研究[J]. 2008, 28(10): 72-78
    [58] Yang J K, Guo D Y, Yan Y J. Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant lipase from Burkholderia cepacia strain G63 [J]. Journal of Molecular Catalysis B: Enzymatic, 2007, 45(3-4): 91–96
    [59]尹利,阎金勇,杨江科等.响应面法优化洋葱假单胞菌产脂肪酶液体发酵工艺[J]. 2007, 27(3): 11-15
    [60]刘涛.大孔树脂固定化洋葱假单胞菌脂肪酶工艺及催化合成生物柴油研究[D].武汉:华中科技大学, 2008
    [61] Du W, Xu Y Y, Liu D H. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors[J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 30: 125-129
    [62] Xu Y Y, Du W , Liu D H , et al. A novel enzymatic route for biodiesel production from renewable oils in a solvent free medium[J]. Biotechnology Letters , 2003 , 25 : 1239-1241
    [63]周丽亚,高静,马丽等.固定化脂肪酶催化废餐饮油合成生物柴油[J].河北工业大学学报, 2008, 37(4): 14-18
    [64]孙琪,雷永诚,付超等.以三乙酸甘油酯为底物制备光学活性戊醇的探索[J].化学研究与应用, 2006, 18(5): 561-563
    [65]中华人民共和国国家技术监督局. GB17376.中华人民共和国国家标准-动植物油脂-脂肪酸甲酯制备.北京:中国标准出版社, 1998-12-01
    [66]傅红,裘爱泳.鱼油质构脂质的高温气相色谱分析[J].中国粮油学报, 2005, 20(4): 101-104
    [67]刘祥华,刘灿明,吴苏喜等.气相色谱法测定生物柴油中脂肪酸甲酯含量[J].化学研究与应用, 2006, 18(5): 591-593
    [68]李玉芹,曾虹燕.生物柴油中脂肪酸甲酯成分的气相色谱法测定[J].浙江海洋学院学报, 2006, 25(1): 50-53
    [69]周丽亚,高静,侯丽媛等.乙酸甲酯体系酶法催化煎炸废油制备生物柴油[J].食品研究与开发, 2009, 30(3): 8-12
    [70]陈志锋,吴虹,宗敏华.固定化脂肪酶催化高酸废油脂酯交换生产生物柴油[J].催化学报, 2006, 27(2): 146-150
    [71]李俐林,杜伟,刘德华等.乙酸甲酯萃取菜籽油制备生物柴油的研究[J].食品与发酵工业, 2006, 32(5): 5-8
    [72]黄瑛,高欢,郑海等.脂肪酶协同催化猪油合成生物柴油工艺研究[J].中国生物工程杂志, 2008, 28(1): 30-35
    [73]李俐林,杜伟,刘德华等.新型反应介质中脂肪酶催化多种油脂制备生物柴油[J].过程工程学报, 2006, 6: 799-803
    [74]吕鹏梅,袁振宏,马隆龙等.酶法制备生物柴油的动力学及其影响因素[J].现代化工, 2006, 26(增刊): 19-22
    [75]徐圆圆,杜伟,刘德华.非水相脂肪酶催化大豆油脂合成生物柴油的研究[J].现代化工, 2003, 23(增刊): 167-169
    [76]高阳,谭天伟,聂开立等.大孔树脂固定化脂肪酶及在微水相中催化合成生物柴油的研究[J].生物工程学报, 2006, 22(1): 114-118
    [77] Selmi B, Thomas D. Immolibized lipase-catalyzed ethanolysis of sunflower oil in a solvent-free medium [J]. Journal of American Oil Chemical Society; 1998, 75, (6): 691-395
    [78] Xu X B, Lydia B F, Casimir C A. Synthesis of structured triacylglycerols by lipase-catalyzed acidolysis in a packed bed bioreactor [J]. Journal of Agricultural and Food Chemistry, 2000, 48(1): 3-10
    [79] Kusdiana D, Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment [J]. Bioresource Technology, 2004, 91(3): 289–295
    [80]杨文雄,高彦祥.响应面法及其在食品工业中的应用[J].中国食品添加剂2005, (2): 68-71
    [81]吴晓磊.重要的统计分析软件—SAS应用编程[J].沿海企业与科技, 2006, 76(9): 69-70
    [82]禹斌,司淑云,李德亮等. SAS统计软件在地球化学找矿预测中的应用及效果[J].河北软件职业技术学院学报, 2008, 10(3): 48-51
    [83]阮美娟,郭福旺.应用SAS软件优化酶水解大豆蛋白质工艺[J].食品研究与开发, 2006, 127(7): 112-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700