用户名: 密码: 验证码:
澜沧江火山岩带官房铜矿区矿床地球化学与成矿模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
澜沧江火山岩带是“三江”构造岩浆带中一个重要的地质构造单元,也是十分重要的铜、铅、锌、银、金、钨、锡、钼多金属成矿带,资源潜力巨大。
     笔者在省院省校合作项目的支持下,以“官房铜矿地质地球化学与成矿模式”为题,开展了博士论文工作。首先对澜沧江火山岩带云县段岩浆岩的形成演化,弧火山岩的成矿机理及成矿规律进行了研究,接着重点探索了官房铜矿的矿床地质和地球化学特征及控矿因素,总结了关键找矿标志,建立了成矿模式。持续四年的矿床研究成果,及时地指导了云县江天公司的勘查与开发工作,使官房铜矿点,发展成为了一个中大型铜银矿床和中型矿山,取得了良好的经济与社会效益,实现了理论研究成果及时转化为现实生产力的目标。
     滇西云县官房铜矿定位于“三江”特提斯构造域澜沧江火山弧内,历经洋壳俯冲造山、碰撞造山、造山后伸展、走滑转换造山几个构造演化阶段;多期次构造岩浆活动和澜沧江深大断裂及与之相交的东西向隐伏断裂和次级构造,控制了官房铜矿田的产出。
     官房铜矿是近年来澜沧江火山岩带南段取得较大突破的铜矿床之一。矿床产在三叠系弧火山岩中,含矿围岩为晚三叠世小定西组中基性火山岩,为高钾钙碱性—钾玄岩系列,岩石地球化学具明显的活动大陆边缘弧火山岩的特征;微量元素和Sr、Nd同位素特征既表现出壳源岩石的特点,又具有幔源岩石的特征,显示其源区具有壳幔混源性质,这种源区的形成是特提斯澜沧江洋板块向东俯冲消减作用的结果。与弧火山岩毗邻的云县花岗岩体具有略贫硅、富钾、过铝、钙碱性“S”型花岗岩特征,地球化学特征显示成岩物质主要为壳源;锆石颗粒U-Pb同位素测年结果表明岩体为多期次复式岩体,主体形成于华力西晚期-印支期,系洋壳板块俯冲消减后兰坪-思茅陆块与保山陆块开始碰撞形成的同碰撞花岗岩;侵位于弧火山岩中的燕山早期老毛村花岗岩株(Rb-Sr等时线年龄为169Ma±5Ma),具高硅、富钾、过铝、钙碱性“S”型花岗岩特征,在地球化学特征上,与中三叠世忙怀组“碰撞型”高钾流纹质火山岩十分相似,均为碰撞后陆壳重融的产物,反映了区内岩浆活动由碰撞前、同碰撞至碰撞后的演化特征;岩株富含成矿物质与挥发分,与官房铜矿关系密切。区内如此强烈的岩浆活动为成矿作用提供了动力源和部分物源。
     官房铜矿矿体严格受火山机构与三叠纪火山岩相控制,主要产于火山喷发旋回顶部的紫红色杏仁状玄武岩、安山玄武质角砾岩的断裂破碎带,呈似层状、透镜状、囊状、陡倾脉状产出,展现出似层状为楼,陡倾脉状为梯的“楼-梯”分布格局。矿体在平面和剖面上的蚀变矿化分带特征明显,主要蚀变类型有硅化、黄铁绢英岩化、碳酸盐化、绿泥石化、绿帘石化、绢云母化和沸石化等,其中以硅化和黄铁绢英岩化与成矿关系最为密切。矿石矿物类型较为复杂,以一套中低温热液矿物组合为特征,铜矿物中均含银,含金量微;银在矿石中的分布有较明显的选择性,多以类质同象的方式赋存在含铜硫化矿物中,而在方铅矿中不含银,这种现象是官房铜矿有别于其它金属矿床之处,反映了弧火山-岩浆侵入成矿的热液演化特征。
     矿床地球化学研究表明,官房铜矿床赋矿地层不足以提供全部成矿物质,成矿物质绝大部分来自于深部岩浆和热水对流循环过程中的陆壳基底及岩浆途经的围岩。含矿流体介质水为以大气降水为补给的岩浆水,属低—中盐度的H_2O-NaCl-CO_2体系,从早期到晚期由酸性向弱碱性演化,矿床形成于一个相对开放的环境。
     矿床成因研究结果显示,深大断裂、岩浆通道有利于深部物质上侵;火山喷发后期才真正涉及到成矿事件,有火山喷发期后火山热液,次火山岩浆侵入及燕山期岩浆侵入所带来的部分岩浆热液,大部分为加热的地下水溶液;成矿物质为深部物质及热水所经过的地层浸取出来的物质。因此,确定矿床成因类型为与火山-岩浆侵入有关的热液型铜多金属矿床。区内自上而下明显增强的硅化和扩大的黄铁绢英岩化晕圈,昭示了隐伏的中酸性岩株或次火山岩体的存在。由此建立了官房铜矿床成矿模式,同时总结出了构造、岩性、露头、矿化蚀变、地球物理和地球化学异常及遥感等6项关键找矿标志,肯定了研究区的找矿前景。推测深部可见有斑岩型和接触交代型铜矿。
Langcangjiang volcanic belt is one of the most important tectonic units in Sanjiang tectonomagmatic belt (the three rivers: Jinsha, Langcang, and Nujiang River), and it is also a very important metallogenic belt of polymetals as copper, lead, zinc, silver, gold, tungsten, tin, molybdenum, and so on, with a great resource potential.
     For over four years, with the support of the college cooperative project and taking "Geochemistry and Metallogenic Model of Guanfang Copper Deposit" as topic, the author has conducted the studies about the formation and evolution of the magmatic rock, the ore-forming mechanism and metallogenic regularity of arc volcanic rocks. Furthermore, the author has focused on its geology, geochemical characteristics and ore-controlling factors of Guanfang Copper Deposit, summed up key prospecting signs, and set up a metallogenic model. These researching results have provided good guidance for the exploration and development work of Jiangtian Company in Yunxian, and have brought good economic and social benefits.
     Guanfang Copper deposit is located in Langcangjiang volcanic rock arc in the Sanjiang Tethyan structural domains in the west Yunnan, which has experienced several orogenic stages including subduction of oceanic crust, collision extension of the post-collision, strike-slip transfer and it is controlled by multi-phase tectonic and magmatic activity and Lancangjiang deep fault and the intersection with the east-west hidden fault and secondary structures.
     Guanfang Copper Deposit is one of productive copper deposits in south segment of Langcangjiang. Produced within arc volcanic rocks of Triassic, its wallrock is the neutral-basic volcanic rock of Xiaodingxi Formation, Later Triassic epoch, a series of potassium-high calc-alkaline to shoshonite. The geochemical result shows the arc volcanic rock of active continental margin characteristics, and the microelements, isotope of Sr and Nd indicates that it is crustal mixing by mantled, which shows that the source zone is mixed, the resulted of eastward subduction of the Tethyan Lancangjiang plate. While its neighbour Yunxian granite mass is a calc-alkaline S-type of weakly poor silicon, potassium-rich and peraluminous. The geochemical result shows that the crust source characteristics of ore-forming material, and the U-Pb isotope dating of zircon grain indicates that it is a multistage compound massif, of which the main body come into being at late stage of Variscan to Indo-Chinese epoch . It is the product of continent collision after the subduction of oceanic crust, formed at primary tectogenesis stage (between Lanping-simao plate and Baoshan plate) in this region. Laomaocun granite stock which intruded in the arc volcanic-hosted during the early Yanshan movement (Rb-Sr isochron age is 169Ma±5Ma) is also a calc-alkali S-type of high silicon, potassium-rich and peraluminous, which is very similar to those of collisive and K-high liparite arc volcanic rock of Manghuai Formation, Middle Triassic Epoch. Both of these are continental crust re-melting product after the collision and it reflects the evolution of the region characteristic of magmatic activity which has undergone form pre-collision period to the collision period to post-collision period. It is closely related with Guanfang Copper deposit that the stock rich in minerals and volatile. In this region, such intensive magmatic activity has supplied enough power sources and some ore-forming material for the mineralization.
     Controlled by volcanic mechanism and Triassic volcanic suite, the ore bodies mostly developed within the faulted and shattered zone consisted of amaranth amygdaloidal basalt and andesitic-basaltic breccias. They assumed in bedded, lentoid, pocketed and steeply dipping forms, and a "storey-ladder" distributive structure. In plane and cross-sectional view, the mineralized alteration zonation is very obvious of the main alteration style including silicification, pyrite-sericite-quartz alteration, carbonation, chloritization, epidotization, sericitization, and zeolitization, and so on, on which the silicification and pyrite-sericite-quartz alteration have close relationship with the mineralization. The ore mineral style is relatively complex, characterised by a suit of middle-low temperature hydrothermal mineral combination, with silver and weak gold content being in copper minerals. The silver element would exist in copper-bearing sulphide ore by isomorphous type rather than galena ore, which made Guanfang Copper Deposit differ from other metallic deposits, and also reflected that the hydrothermal evolution feature of ore-forming by volcantic arc magma intrusion in this area.
     The geochemical studies indicated that most of the ore-forming materials come from continental basement and enclosing rock where hypomagma-thermal convection happened and the magmatic fluid passed. The medium water of ore-bearing fluid is magmatic water recharged from the precipitation; it is a H_2O-NaCl-CO_2 system of low-middle salinity evoluted from an acidic to weakly basic. It is proved that the deposits formed in a kind of relatively open environment.
     The metallogenic studies show that deep fault, magmatic passageways are beneficial to the upward intrusion of deep material. The ore-forming materials including volcanic hydrothermal solution of post-effusive period, some magmatic hydrothermal fluid brought along the intrusion of subvolcanic magma and Yanshanian magma and most of heated groundwater solution could test that the ore-forming event roots in the later period of volcanic eruption. Therefore, it is concluded that Guanfang Copper Deposit is a hydrothermal Cu-polymetallic deposit related with volcano-magma intrusion. Increased obviously from top to bottom of the silicification and broadened the pyrite-sericite-quartz alteration halo in this ore area shows the existence of hidden neutral-acid stock and subvolcanic rock mass. This paper set up the metallogenic model of Guanfang Copper Deposit and summarized some key ore-hunting evidence as structure, lithology, outcrop, mineralized alteration, geophysics and geochemical anomalies and remote sensing, et al. Furthermore, the author delineats the targets for exploration in studied region. At present the large area of pyrite-sericite-quartz alteration and silicification exposed by prospecting work could infer that large-scale porphyry and contact metasomatism copper ore is likely presented in the deep part of minefield.
引文
[1]莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿。北京:地质出版社,1993.1-267
    [2]莫宣学,沈上越,朱勤文,等。三江中南段火山岩-蛇绿岩与成矿。北京:地质出版社,1998.1-128
    [3]陈毓川。中国主要矿区带资源远景评价.北京:地质出版社,1999
    [4]李朝阳,徐贵忠、胡瑞忠,等.中国铜矿主要类型特征及其成矿远景。北京:地质出版社,2000.1-251
    [5]李兴振,刘文均,王义昭,等。1999,西南三江地区特提斯构造演化与成矿(总论).北京:地质出版社,1999.1-276
    [6]Morrison G.W.Characteristics and tectonic setting of the shoshonite rock association.Lithos,1980,13:97-108
    [7]Foley S.& Peccerillo A.Potassic and ultrapoassic magmas and their origin.Lithos,1992,28:181-185
    [8]Muller D.,Rock N.M.S.& Groves D.I.Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic setting:A pilot study.Mineral Petrol,1992,46:259-289
    [9]Muller D.& Groves D.I.Potassic Igneous Rocks and Associated Gold-Copper Mineralization(3rd ed).Berlin:Springer-Verlag.2000.1-252
    [10]邱检生,徐夕生,蒋少涌.地壳深俯冲与富钾火山岩成因.地学前缘,2002。10(3):192-199
    [11]Wilson M.Igneous Petrogenesis.London:Unwin Hyman,1989
    [12]云南省地质矿产局.云南省区域地质志.北京:地质出版社,1990.1-728
    [13]罗君烈.滇西特提斯造山带的演化及基本特征.云南地质,1990.9(4):247-290
    [14]陈炳蔚,李永森,曲景川,等.“三江”地区主要大地构造问题与成矿.北京:地质出版社,1991
    [15]吕伯西,王增,张能德,等.三江地区花岗岩类及其成矿专属性.北京:地质出版社,1993.1-328
    [16]罗建宁,张正贵,等.三江特提斯沉积地质与成矿.北京:地质出版社,1992
    [17]罗君烈,杨友华,赵准,等。滇西特提斯的演化及主要金属矿床成矿作 用。北京:地质出版社,1994
    [18]叶庆同,胡云中,杨岳清,等。三江地区区域地球化学背景和金银铅锌成矿作用.北京:地质出版社,1992.1-279
    [19]王义昭,李兴林,段丽兰,等。三江地区南段大地构造与成矿。北京:地质出版社,2000.1-122
    [20]王义昭,林尧明。云南大地构造演化概述.云南地质,1989,(7):32-35
    [21]沈敢富,吕伯西。西南三江新生代侵入岩的成岩与成矿.北京:地质出版社,2000.1-143
    [22]李兴振,江新胜,孙志明,等.西南三江地区碰撞造山过程.北京:地质出版社,2002.1-213
    [23]李定谋,王立全,须同瑞,等.金沙江构造带铜金矿成矿与找矿.北京:地质出版社,2002.1-251
    [24]潘桂棠,徐强,侯增谦,等。西南“三江”多岛弧造山过程成矿系统与资源评价.北京:地质出版社,2003.1-420
    [25]任治机,刘继顺,罗荣生,等。“三江”南段试验区Cu、Au等矿产区域成矿条件及区域综合找矿模型研究(96-914-01-03-5),国家“九五”科技攻关项目研究报告,2000
    [26]刘继顺,张洪培,张彩华,刘德利。云南澜沧江弧火山型斑岩铜矿成矿模式与次生富集机制(40072032),国家自然科学基金结题报告,2003
    [27]Irvine,T.N.A global convection framework:concepts of symmetry,stratification and system in the Earth's dynamic structure.Econ.Geol,1989,Vol.84,pp.2059-2114
    [28]张彩华.澜沧江火山弧云县段铜矿床地质特征、成矿模式与找矿预测:[博士学位论文]。长沙:中南大学,2007
    [29]刘继顺,张彩华,刘德利,等。澜沧江火山弧云县段铜银矿带找矿预测与增储研究。云南省省院省校合作科技研究报告,2007
    [30]钟大莱等,滇川西部古特提斯造山带.北京:科学出版社,1998.1-231
    [31]彭兴阶,罗万林.滇西澜沧江南段蓝闪片岩带的发现及大地构造意义.中国区域地质,1982,(2):69-75
    [32]范承钧,张翼飞.云南西部地质构造格局。云南地质,1993,12(2):101-110
    [33]段建中,薛顺荣,钱祥贵。滇西“三江”地区新生代地质构造格局及其演化。云南地质,2001,20(3):243-252
    [34]葛良胜,杨嘉禾,郭晓东等。滇西北地区(近)东西向隐伏构造带的存在 及证据.云南地质,1999,18(2):155-167
    [35]阙梅英,程敦模,张立生等.兰坪—思茅盆地铜矿床。北京:地质出版社,1998.1-109
    [36]郑庆鳌,俞国芬,王维贤。云南地质(断裂)构造骨架新认识.云南地质,2006,25(2):119-124
    [37]高建国,朱悦荣,念红良,等.云南省区域构造格局与金成矿区带分布和资源潜力评估.昆明理工大学学报(理工版),2004,(29)4:62-68
    [38]薛春纪,陈毓川,杨建民等.滇西兰坪盆地构造体制和成矿背景分析。矿床地质,2002,21(1):36-44
    [39]朱勤文。滇西南澜沧江带三叠纪火山岩大地构造环境。岩石矿物学杂志,1993,12(2):134-143
    [40]陈炳蔚,王铠元,刘万熹,等.怒江-澜沧江-金沙江地区大地构造。北京:地质出版社,1987
    [41]潘桂棠,陈智梁,李兴振,等。东特提斯地质构造形成演化。北京:地质出版社,1997.1-218
    [42]李春昱,王荃,刘雪亚,等.亚洲大地构造图及说明书.北京:地图出版社,1982
    [43]黄汲清,陈炳蔚。中国及邻区特提斯海的演化.北京:地质出版社,1987
    [44]方宗杰,等。滇缅马生物区系及其在古特提斯中的位置.古生物学报,1991,30(4)
    [45]方宗杰,等。从地层学的角度探讨昌宁-孟连缝合带的若干问题.地层学杂志,1992,16(4):292-303
    [46]李兴振.二叠纪是全球泛大陆解体时期吗?中国西部特提斯构造演化及成矿作用学术讨论会文集,电子科技大学出版社.1991
    [47]李达周,等.云南孟连地区火山岩的岩石化学和地球化学特征及其地质意义.青藏高原研究——横断山考察专集,北京科学技术出版社,1986
    [48]刘本培.滇西南昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化.地球科学,1993,18(5):529-538
    [49]刘本培,冯庆来,C.CHONGLAKIVIANI,等.滇西古特提斯多岛洋的结构及其南北延伸。地学前缘,2002,9(3):161-171
    [50]丛柏林,等.中国滇西地区古特提斯演化的岩石学记录.见:亚洲的增生.北京:地震出版社,1993
    [51]熊家镛,林尧明,覃胜荣.临沧混合杂岩的基本特征与成因探讨.青藏高原地质文集(13).北京:地质出版社,1983.1-19
    [52]李峰,段嘉瑞.滇西地区板块.地体构造.昆明理工大学学报,1999,24(1):29-35
    [53]段锦荪,侯增谦,等.滇西地区晚古生代裂谷作用与成矿.北京:地质出版社,2000
    [54]朱勤文,沈上越,杨开辉.澜沧江带火山岩构造-岩浆类型与特提斯演化。青藏高原地质文集(21).北京:地质出版社,1991.125-140
    [55]朱勤文,何昌祥。滇西南云县三叠纪火山岩组合及系列的厘定及其构造意义.现代地质,1993,7(2):151-159
    [56]李文昌,莫宣学。西南“三江”地区新生代构造及其成矿作用。云南地质,2001,20(4):333-346
    [57]董树文.造山带构造岩浆演化与成矿作用.见:陈毓川,主编。当代矿产资源勘查评价的理论与方法.北京:地震出版社,1999.74-82
    [58]王铠元,孙克祥,薛啸锋.川滇交界金河.洱海深断裂带的形成机理和构造属性探讨.地震研究,1987,10(3):92-105
    [59]刘增乾,李兴振,叶庆同,等.三江地区构造岩浆带的划分与矿产分布规律.北京:地质出版社,1993
    [60]朱勤文.云县三叠纪火山岩中熔结凝灰岩的重新厘定.云南地质,1992,11(3):289-294
    [61]朱勤文,张双全,谭劲.南澜沧江结合带火山岩岩浆成因--洋脊-洋岛与弧岩浆作用的性质.现代地质,1999,13(2):138-142
    [62]谢力华.滇西澜沧江岩浆-变质-构造活动带铜(金)多金属找矿远景研究。博士论文:[博士学位论文].长沙:中南大学,2000
    [63]胡斌.滇西澜沧江成矿带铜成矿学研究:[博士学位论文]。长沙:中南大学,2002
    [64]黄震.云南省澜沧江火山-侵入岩的区域成岩成矿地质地球化学:[博士学位论文]。合肥:合肥工业大学,2005
    [65]彭头平,王岳军,范蔚茗,等。澜沧江南段早中生代酸性火成岩SHRIMP 锆石U-Pb定年及构造意义.中国科学D辑地球科学,2006,36(2):123-132
    [66]彭头平。澜沧江南带三叠纪碰撞后岩浆作用、岩石成岩及其构造意义:[博士学位论文].广州:中国科学院广州地球化学研究所,2006
    [67]王自廉,等著.云南省澜沧江南段三叠纪火山岩系地层划分及岩石类型(内部报告).1984
    [68]赵大升,刘祥品.滇西北碰撞型火山岩的地球化学特征.地球化学,1994,33.235-244
    [69]Le Maitre R W,Bateman P,Dudek A,et al.A Classification of Igneous Rocks and Glossary of Terms:Recommendation of the International Union of the Geological Subcommission on the Systematic of Igneous Rocks.Oxford:Blackwell Scientific,1989.193
    [70]王碧香,沈昆,毕立君译。火成岩分类及术语词典.北京:地质出版社,1991
    [71]Rickwood P C.Boundary lines within petrologic diagrams which use oxides of major and miner elements.Lithos,1989,22:247-263
    [72]王焰,钱青,刘良,等.不同构造环境中双峰式火山岩的主要特征。岩石学报,2000,16(2):169-173
    [73]Sun S S and McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders A D and Norry M J.Magmatism in the ocean basins.London:Geol Soc Spec Publ,1989,42:313-345
    [74]Singh A K.,Singh R K B.,Villinayagam G.An orogenic acid volcanic rocks in the Kundal area of the Malani Igneous Suite,Northwestern India:geochemical and petrogenetic studies.Journal of Asian Earth Sciences,2006.1-14
    [75]Menuge J F.,Brewer T S.,Seeger C M.Petrogenesis of metaluminous A-type rhyolites from the St Francois mountains,Missouri and the mesoproterozoic evolution of the southern laurentian margin.Precambrian Research,2002.113,269-291
    [76]Marsh B D.Some Aleutian andesites:their nature and source.Journal of Geology,1976,84:27-45
    [77]Brophy J G and Marsh B D.On the origin of high-A1 arc basalt and the mechanics of melt extraction.Journal of Petrology,1986,27:763-789
    [78]Luhr J.and Haldar D.Barren island volcano(NE Indian Ocean):island-alumina basalts produced by troctolite contamination.Journal of Volcanology and Geothermal Research,2006,149:177-212
    [79]O(?)erov A.The evolution of high-alumina basalts of the Klyuchevskoy volcano,Kamchatka,Russia,based on microprobe analyses of mineral inclusions.Journal of Volcanology and Geothermal Research,2000,95:65-79
    [80]Pearce J A.Trace element characteristics of Lavas from destructive plate boundaries.In:Thorpe R S.ed.Andesite:Orogenic andesites and related rocks.Chichester:Wiley,1982.525-548
    [81]Taylor S R.,and McLennan S M.The continental crust:Its composition and evolution.Blackwell,Oxford Press,1985.312
    [82]Norman M D,Leeman W P.Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting,southwestem Idaho,U.S.A..Earth Planet.Sci.Lett.,1989,94(1-2):78-96
    [83]邓万明,孙宏娟.青藏北部板内火山岩的同位素地球化学与源区特征.地学前缘,1998,5(4):307-317
    [84]Kyser T K.Stable isotope variations in the mantle.In:Vlley J W,Taylor H P (eds.),Stable isotope in high temperature geological processes,reviews in mineralogy 16,mineralogy of society of America,1986.141-163
    [85]Depaolo D J.Neodymium isotope geochemistry:an introduction.Berlin:Springer-Verlag.1988.189
    [86]Jacobsen S B,Wasserburg G J.The mean age of mantle and crustal reservoirs.J.Geophys,Res,1979,84:7411-7427
    [87]夏林圻.造山带火山岩研究.岩石矿物学杂志,2001,20(3):223-232
    [88]Rogers N W.Potassic magmatism as a key to trace-element enrichment processes in the upper mantle.Volcanology and Geothermal Research,1992,50:85-99
    [89]Pearce J A.The role of sub-continental lithosphere in magma genesis at destructive plate margins.In:Hawkesworth C J and Norry M J,eds.Continental basalts and mantle xenoliths.Nantwich:Shiva,1983.230-249
    [90]Claoue-Long J C,Compston W,Roberts J,et al.Two Carboniferous Ages:a Comparison of SHRIMP Zircon Dating with Conventional Zircon Ages and ~(40)Ar/~(39)Ar Analysis.Berggren W A,Kent D V,Aubry M P,et al.Geo.chronology Time Scales and Global Stratigraphic Correlation.SEPM Special Publication,1995,5(4):3-21
    [91]陈吉琛.滇西花岗岩类形成的构造环境及岩石特征.云南地质,1989,8(3、4):205-212
    [92]刘昌实,朱金初,徐夕生,等。.滇西临沧复式岩基特征研究.云南地质,1989,8(3、4):189-204
    [93]秦元季.滇西临沧花岗岩基的基本特征和构造侵位机制:[博士学位论文].北京:中国科学院地质研究所,1991
    [94]杨振德.一条巨型花岗岩推覆体。云南地质,1995,14(2):99-108
    [95]李兴林.临沧复式花岗岩基的基本特征及形成构造环境的研究.云南地质,1996,15(1):1-18
    [96]俞赛赢,李昆琼,施玉萍,等。临沧花岗岩基中段花岗闪长岩类研究.云南地质,2003,22(4):426-442
    [97]Peccerillo R,Taylor S R.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey.Contrib.Mineral Petrol,1976,58:63-81
    [98]Middlemost E A K.Magmas and Magmatic Rocks.London:Longman,1985.1-266
    [99]Collins W J,Beams S D,White A J R,et al.Nature and origin of A-type granite with particular reference to southeastern Austrlia.Contrib Mineral Petrol,1982,80(2):189-200
    [100]Maniar P D,Piccoli P M.Tectonic discrimination of granitoids.Geol.Soc.Am.Bull.1989,101:635-643
    [101]李昌年.火成岩微量元素岩石学.武汉:中国地质大学出版社,1992.1-195
    [102]Pearce J A,Harris N B W and Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks.Journal of Petrology,1984,25:956-983
    [103]黎彤,倪守斌.中国大陆岩石圈的化学元素丰度。地质与勘探,1997,6(1):13-27
    [104]Defant M J,Drummond M S.Derivation of some modern arc magmas by melting of young subducted lithosphere.Nature,1990,347:662-665
    [105]刘红涛,张旗,刘建民,等。埃达克岩与Cu-Au成矿作用:有待深入研究的岩浆成矿关系。岩石学报,2004,20(2):205-218
    [106]McDonough W F,Sun S S.Isotopic and geochemical systematics in Tertiary-Recent basalts from southeastern Australia and implication for the sub-continental lithesphers.Geochim Cosmochim Acta,1985,49:2051-2067
    [107]Boynton W V.Cosmochemistry of the rare earth elements:meteoraie studies.Hederson P.Rare Earth Element Geochemistry.Amsteadam:Elsevier Science,1984.63-114
    [108]Ludwig R K.ISOPLOT:A plotting and regression program for radiogenic-isotope data(Version.2.90).U.S.Geological Survey Open File Report,1996,91(445):1-47
    [109]苗来成,罗镇宽,黄佳展,等.山东招液金矿带内花岗岩类侵入体锆石SHRIMP研究及其意义.中国科学(D辑),1997,27(3):207-213
    [110]Chappell B W,White A J R.Two contrasting granite types.Pacific Geol.1974,8:173-174
    [111]Chappell B W,White A J R.I and S-type granites in the Lachlan Fold Belt.Trans.R.Soc.Edinburgh:Earth Sci.1992,83:1-26
    [112]张彩华,刘继顺,刘德利.滇西南澜沧江带官房地区三叠纪火山岩地质地球化学特征及其构造环境。岩石矿物学杂志,2006,25(5):377-386
    [113]肖庆辉,邓晋福,马大铨,等。花岗岩研究思维与方法。北京:地质出版社,2002.1-294
    [114]涂绍雄,汪雄武.20世纪90年代国外花岗岩类研究的某些重大进展.岩石矿物学杂志,2002,21(2):107-118,130
    [115]Chappell B W,White A J R,Wybom D.The importance of residual source material(retite) in granite petrogenes-is.Journal of Petrology,1987.28:1111-1136
    [116]Pitcher W S.Granite type and tectonic environment.Hsuk.Mountain Building Processes.London:AcademicPress,1983.19-40
    [117]White A J R,Chappell B W.Granitoid types and their distributionin the Lacklan foldbelt,southeast Australia.Mem Geol Soc Am,1983,159:21-34
    [118]Batchelor R A,Bowden P.Petrogenitic interpretation of granitiod rock series using multication parameters.Che-m Geol,1985,48:43-55
    [119]Barbarin B.Granitoids:main petrogenetic classifications in relation to origin and tectonic setting.Geol J,1990,25:227-238
    [120]Sylvester P J.Post-collisional strongly peraluminous granites.Lithos,1998,45:29-44
    [121]鄢明才,迟清华,顾铁新,等.中国火成岩化学元素的丰度与分布.地球化学,1996,25(5):409-424
    [122]张彩华,刘继顺,刘德利.滇西南澜沧江带官房铜矿矿床成因与成矿模式探讨.大地构造与成矿学,2006,30(3):369-380
    [123]蔡光顺,周崇智,吴湘斌.南澜沧江东带火山岩铜矿遥感地质调查报告.中南工业大学,1990
    [124]王濮,潘兆橹,翁玲宝.系统矿物学(上册).北京:地质出版社,1982。1-666
    [125]黄崇轲,朱裕生等.中国银矿床及其时空分布.北京:地震出版社,2002.1-447
    [126]王雁宾.五部铅锌矿床Ⅰ号矿体中银的赋存状态的初步研究.地质论评,1983,29(6):534-537
    [127]朱锡涛。苏州潭山方铅矿-闪锌矿-黄铁矿矿床中银的成矿作用.地质论评,1988,34(5):414-421
    [128]王静纯,简晓忠。银的赋存状态研究.有色金属矿产与勘探,1996,5(2):89-93
    [129]Doe B R.The application of the lead isotopes to the problems of ore genesis and prospect evolution:A review.Econ.Geol.,1974.69:757-776
    [130]朱炳泉.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化。北京:科学出版社,1998
    [131]Ohmoto H and Rye R O.Isotopes of surfer and carbon.In:Geochemistry of hydrothermal ore deposits.John Wiley and sons,New York,1979.509-567
    [132]Taylor H P.The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposit.Econ.Geol,1974,69:843-883
    [133]沈渭洲等.稳定同位素地质.北京:原子能出版社,1987.1-425
    [134]赵振华。微量元素地球化学原理.北京:科学出版社,1997
    [135]何明友.若尔盖铀矿床含矿热液特性的热力学研究.矿物学报,1997,17(1):30-37
    [136]何明友。西秦岭铀矿床含矿热液物理化学条件改变对铀沉淀影响.矿物岩石,1996,16(2):90-95
    [137]李保华,曹志敏,金景福,等.大水沟碲矿床成矿物理化学条件研究.地质科学,1999,34(4):463-472
    [138]刘显凡,倪师军,朱赖民.微细浸染型金矿矿后热液和表生溶液的物理化学条件研究。长春科技大学学报,1998,28(4):393-398
    [139]Roedder E.Fluid inclusion:rewiews in mineralogy.Mineralogical Society of America,1984,12:644-649
    [140]何知礼。包体矿物学.北京:地质出版社,1982.1-304
    [141]Vapnik Y,Moroz I.Compositions and formation conditions of fluid inclusions in emerald from the Maria deposit(Mozambique).Mineralogical Magazine,2002,66(1):201-203
    [142]卢焕章,李秉伦,沈昆,等.包裹体地球化学.北京:地质出版社,1990.1-242
    [143]崔银亮,蒋顺德,陈光耀.云南金平龙脖河铜矿床的成矿流体特征.地质与勘探,2008,44(2):55-61
    [144]Crerar D A,Wood S A,Brantley S,et al.Chemical controls on solubility of ore-forming minerals in hydrothemical solution.CAN.Miner,1985,(23):333-352
    [145]Kudrin A V,Varyash L N,Pashkov Y N,et al.The geochemical behaviour of copper and molebde-num in ore-forming processes.Geology and Metallogeny of Copper Deposit.Heidelberg:Spring-Verlag,1996.209-215
    [146]甫为民,颜文,李峰.天然黝铜矿的溶解实验初步研究矿物学报,1994,14(3):279-284
    [147]Candela P A and Holland H D.A mass tranfer model for Copper and molybdenum in magmatic hydrothermal system:the origin of porhyry type ore deposit.Econ Geol,1986,81:1-19
    [148]Kepper H and Willie.Partitioning of Cu,Sn,Mo,W,U and Th between melt and aqueous fluid in the system haplogranite-H_2O-HCl and hyplogranite -H_2O-HF,Contrib Mineral Petrol,1991,109:139-150
    [149]刘家军,李朝阳,潘家永.兰坪.思茅盆地砂页岩中脉状铜矿床的特征及成因.地质找矿论从,2000,15(3):216-223
    [150]Barnes H L.Geochemistry of hydrothermal ore deposit.2nd edition,John willy,New York,1979
    [151]陈毓川,翟裕生.中国矿床成矿模式.北京:地质出版社,1993.1-367
    [152]Giordano T H.Metal transport in ore fluids by organic ligand complexation.In:Pittman,E D and Lewan M D eds.,Organic acids in geological processes.Springer-Verlag Berlin Heidelberg.1994.319-354
    [153]Wang Cansheng,Xia Weihua.Granite-related mineralizing fluids and ore-forming metals:A Review.地学前缘,1994,1(3-4):35-44
    [154]陈繁荣。成矿过程流体地球化学模拟及其矿床学意义。地质论评,1995,41(1):42-47
    [155]於崇文,岑况,鲍征宇,等.成矿作用动力学.北京:地质出版社,1998
    [156]张德会,龚庆杰.初论元素富集成矿的地球化学机理-以岩浆热液矿床的形成为例.地质地球化学,2001,29(3):8-14
    [157]Oftedal T.Vesuvianite as a host mineral for boron.Contribution to the mineralogy of Norway.1964 No.29,Norsk Geol.Tidsskr.,No.44:377-383
    [158]胡受奚,周顺之,刘存善,等。矿床学(上册)。北京:地质出版社,1982
    [159]Hofstra A.H.,Ixventhal J.S.,Northrop H.R.,et al.Genesis of sediment-hosted disseminated-gold deposits by fluid mixing and sulfidizatio:Chemical-reaction-path modeling of ore-depositional processes documented in the Jerritt Canyon district.Nevada.Geology,1991,19:36-40
    [160]Haynes D.W.,Cross K.C.,Bills R.T.,et al.Olympic Dam ore genesis:A fluid- mixing modal.Econ Geol.1995.90:281-307
    [161]张德会.关于成矿流体地球化学研究的几个问题.地质地球化学,1997,29(3):49-57
    [162]Garcia P F.Rio Tinto deposits.London:Institution of Mining and Metallurgy,1990.17-35
    [163]张贻侠.矿床模型导论.北京:地震出版社,1993.1-228
    [164]葛良胜.成矿模式研究若干问题.黄金地质科技,1994,3:22-27
    [165]裴荣富.中国矿床模式.北京:地质出版社,1995.1-357
    [166]朱裕生,梅燕雄.成矿模式研究的几个问题。地球学报,1995,2:182-189
    [167]Thomas M D and Parkhill M.Gravity and magnetic prospecting for massive sulfided eposits.AtlanticGeology,1996,32(1):87-88
    [168]张均.矿床定位预测的研究现状与趋向.地球科学进展,1997,12(3):242-246
    [169]Cooke D R and Large R R.Practical uses of chemical modeling;defining new exploration in sedimentary basins.A GSO J.Australian Geology and Geophysics,1998,17(4):259-275
    [170]Zaw K,Huston D L and Large R R.A chemical model of the Devonian remobilization process in the Cambrian volcanic_hosted massive sulfide Rosebery Deposit,western Tasmania.Economic Geology and the Bulletin of the Society of Economic Geologists,1999,94(4):529-546
    [171]翟裕生.走向21世纪的矿床学.矿床地质,2001,20(1):10-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700