用户名: 密码: 验证码:
直接驱动惯性约束聚变点火模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前实现惯性约束聚变(ICF)点火以中心点火方式为主,流体不稳定性破坏内爆压缩和点火燃烧,对驱动均匀性和靶丸制作提出苛刻要求,是减少实现点火的驱动器能量和降低激光器造价的关键问题。本论文工作从较简化的物理模型出发,在原有LARED-S程序柱球版本的基础上,发展了考虑α粒子加热的直接驱动二维点火模拟程序,进行直接驱动点火靶的一维和二维模拟研究,加深了有关物理规律的认识和物理过程的理解。
     论文程序工作主要完成了热核反应和α粒子加热部分程序模块的编制,并解决了直接驱动一维和二维点火模拟中的一些技术问题,所编程序的一维模拟结果与α粒子热传导自相似解很好地相符。对直接驱动ICF内爆点火进行了数值模拟研究。首先,参照美国国家点火装置(NIF)的直接驱动全DT点火靶设计进行一维球内爆点火模拟,对一维点火的物理过程有了较全面的理解,模拟结果与美国直接驱动NIF点火靶设计的一些主要指标符合。其次,对α粒子加热在点火中的作用及点火边缘情况进行了分析研究,表明在点火边缘情况α粒子对中心热斑的加热对能否点火起关键作用,较小驱动能量情况需要靠电子和α粒子对热斑边缘冷DT的烧蚀增大热斑的ρR值,才能实现点火,但点火要求的热斑ρR值在最大压缩之后才达到,流体对外膨胀减慢热斑温度的提高,冷DT密度快速降低严重影响聚变燃烧,轻则聚变增益明显减少,重则不能点火。第三,对减速阶段流体不稳定性进行二维数值模拟研究,结果表明:减速阶段流体不稳定性导致内界面扰动快速增长,破坏对称压缩,产生向中心快速运动的冷尖顶,明显增大了内界面热传导降温作用,热斑体积减小,直接破坏点火热斑的形成,对点火构成威胁,即使点火仍能成功,聚变放能和增益也会明显降低;减速阶段后期,电子热传导和α粒子加热对高阶模扰动增长有明显抑制作用,扰动增长截止波长随电子温度的升高和α粒子加热的增大而逐渐变长;减速阶段扰动模2D<l<45有较大的增长;减速阶段初期扰动幅度一般较大,内界面经受一次冲击减速期间,高次谐波被快速激发,非线性作用很强,因温度较低高阶模扰动增长较大,后期烧蚀致稳作用增强,高阶模扰动增长变慢,低阶模扰动增长变快,非线性作用变弱;随着模数l增大,点火失败对应的低阶模扰动幅度明显降低,对于l≥10扰动模,存在与一维对应的点火临界ρR值,而较低阶的扰动模(如l=2,3)热斑二维效应明
Demonstration of Inertial Confinement Fusion (ICF) ignition is currently in the central ignition manner. The hydrodynamic instability violates implosion, compression, ignition and burn, and imposes the stringent restricts on the requirement of drive symmetry and target fabrication. It is the critical issue for reducing laser energy and expense for the ignition facility. Based on the simplified physical model and the sphere and cylinder version of LARED-S code, this work developed the ignition code for ICF ignition study, performed 1D and 2D simulations of direct-drive ignition target, deepened the understanding of relative physical processes.
    The code work was included in programming of thermonuclear reaction and α-particle heating and techniques used in 1D and 2D ignition simulations. The 1D simulation result agreed well with the self-similarity solution of α-particle heat conduction. The simulation work was carried out in study of direct-drive implosion and ignition. Firstly, 1D direct-drive implosion and ignition was simulated according to the designs of the direct-drive all-DT ignition target of the LLE in University of Rochester for National Ignition facility (NIF). The comprehensive understanding was obtained for 1D ignition physics, and the 1D result agreed well with the most parameters of the NIF design. Secondly, the marginal ignition and the effect of α-particle heating to ignition were investigated and the results show: α-particle heating plays a central role for ignition in the marginal ignition case, ignition primarily depends on the enlarged of the hot-spot arising from the ablation of electron and α-particle conductions to the cold DT material for the less driven energy, but the required ρR for ignition is achieved after the maximum compression, therefore fusion gain reduces largely, even ignition fails, due to slow increase of temperature and quick drop of the cold DT density because of fluid expansion outside. Thirdly, 2D simulation study of the hydrodynamic instability was performed during the
引文
[1] 全俄实验物理研究院高能量密度物理文学,萨洛夫,俄罗斯,1997.
    [2] J. H. Nuckolls, L. Wood, A. Thiessen and G. B. Zimmermann, Laser compression of matter to super-high densities: thermonuclear (CTR) applications, Nature 239 (1972) 139.
    [3] J. W. Daiber, A. Hertzberg and C. E. Wittliff, Laser generated implosions, Phys. Fluids 9 (1966) 617.
    [4] J. M. Dawson, On the production of plasmas by giant lasers, Phys. Fluids 7 (1964) 981.
    [5] N. G. Basov and O. N. Krokhin, in Third International Conference Quantum Elect., Columbia University Press, New York, 1964.
    [6] 王淦昌,原子能科学技术,22,1,7(1988)
    [7] G. I. Taylor, Proc. Roy. Soc., A201 (1950) 192.
    [8] S. E. Bodner, Rayleigh-Taylor instability and laser-pellet fusion, Phys. Rev. Lett. 33 (1974) 761.
    [9] H. Takabe, K. Mima, L. Montierth and R. L. Morse, Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma, Phys. Fluids 28 (1985) 3676.
    [10] B. A. Remington, S. W. Haan, S. G. Glendinning, et al., Large growth Rayleigh-Taylor experiments using shaped laser pulses, Phys. Rev. Lett. 67 (1991) 3259.
    [11] J. P. Dahlburg and J. H. Gardner, Ablative Rayleigh-Taylor instability in three dimensions, Phys. Rev. A41 (1990) 5695.
    [12] J. Po Dahlburg, D. E. Fyfe, J. H. Gardner, et al., Three-dimensional multimode simulations of the ablative Rayleigh-Taylor instability, Phys. Plasmas 2 (1995) 2453.
    [13] M. M. Marinak, B. A. Remington, S. V. Weber, et al., Three-Dimensional Single Mode Rayleigh-Taylor Experiments on Nova, Phys. Rev. Lett. 75 (1995) 3677.
    [14] M. M. Marinak, R. E. Tipton, O. L. Landen, et al., Three-dimensional simulations of Nova high growth factor capsule implosion experiments, Phys. Plasmas 3 (1996) 2070.
    [15] M. M. Marinak, G. D. Kerbel, N. A. Gentile, et al., Three-dimensional simulations of National Ignition Facility targets, Phys. Plasmas 8 (2001) 2275.
    [16] J. D. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933.
    [17] M. D. Campbell and W. J. Hogan, Plasmas Phys. Control. Fusion 41 (1999) B39.
    [18] R. Betti, V. N. Goncharov, R. L. McCrory, et al., Self-consistent stability analysis of ablation fronts in inertial confinement fusion, Phys. Plasmas 3 (1996) 2122.
    [19] R. Betti, V. N. Goncharov, R. L. McCrory and C. P. Verdon, Growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion, Phys. Plasmas 5 (1998) 1446.
    [20] 吴俊峰,叶文华,张维岩,柱几何Rayleigh-Taylor不稳定性数值模拟,强激光与粒子束15(2003)64.
    [21] 吴俊峰,叶文华,张维岩,直接驱动柱内爆流体不稳定数值模拟,强激光与粒子束17(2005)373.
    [22] J. W. Grove, R. Holmes, D. H. Sharp, et al.,Quantitative theory of the Richtmyer-Meshkov instability, Phys. Rev. Lett. 71 (1993) 3473.
    [23] R. H. Lehmberg and S. P. Obenschain, Use of induced spatial incoherence for uniform illumination of laser fusion targets, Opt. Commun. 46 (1983) 27.
    [24] S. Skupsky, R. W. Short, T. Kessler, et al., J. Appl. Phys. 66 (1989) 3456.
    [25] R. Kishony, D. Shvarts, Ignition condition and gain prediction for perturbed inertial confinement fusion targets, Phys. Plasmas 8 (2001) 4925.
    [26] S. E. Bodner, D. G. Colombant, J. H. Gardner, et al., Direct-drive laser fusion: Status and prospects, Phys, Plasmas 5 (1998) 1901.
    [27] J. D. Lindl, P. Amendt, R. L. Berger, et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas 11 (2004) 339.
    [28] Wenhua Ye, Weiyan Zhang, and X. T. He, Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number, Phys. Rev. E 65 (2002) 057401.
    [29] 王继海,二维非定常流和激波,北京,科学出版社(1994).
    [30] 叶文华,张维岩,贺贤土,烧蚀瑞利泰勒不稳定性线性增长率的预热致稳公式,物理学报,49(2000)762.
    [31] S. Atzeni, 2-D Lagrangian Studies of Symmetry and Stability of Laser Fusion Targets, Computer Physics Communications 43 (1986) 107.
    [32] G. S. Fraley, E. J. Linnebur, R. J. Mason and R. L. Morse, Thermonuclear bum characteristics of compressed deuterium-tritium microspheres, Phys. Fluids 17 (1974) 474.
    [33] E. G. Corman, W. E. Loewe, G. E. Cooper and A. Winslow, Multi-group diffusion of energetic charged particles, Nucl. Fusion 15 (1975) 377.
    [34] T. Johzaki, A. Oda, Y. Nakao and K. Kudo, Accuracy validation of flux limited diffusion models for calculating alpha particle transport in ICF plasmas, Nucl. Fusion 39 (1999) 753.
    [35] S. Atzeni, Report ENEA 84, 1/cc (Frascati, Italy, 1984).
    [36] S. Atzeni and A. Caruso, An ignition criterion for isobarically compressed, inertially confined D-T plasmas. Physics Letters 85 A(1981a) 345.
    [37] S. Atzeni and A. Caruso, Energy gain of DT targets for inertial confinement fusion, Nuclear Fusion 23 (1983) 1092.
    [38] S. Atzeni and A. Caruso, A Diffusive Model for α-Particle Energy Transport in a Laser Plasma, Nuovo Cimento 64B (1981) 383.
    [39] S. Atzeni, The physical basis for numerical fluid simulations in laser fusion, Plasma Physics and Controlled Fusion 27 (1987) 1535.
    [40] S. Atzeni, Thermonuclear bum performance of volume-ignited and centrally ignited bare deuterium-tritium microspheres, Japanese Journal of Applied Physics 34 (1995) 1980.
    [41] R. L. McCrory, R. E. Bahr, R. Betti, et al.,OMEGA ICF experiments and preparation for direct drive ignition on NIF, Nucl. Fusion 41 (2001) 1413.
    [42] R. Betti, M. Umansky, R. L. McCrory, et al., Hot-spot dynamics and deceleration-phase Rayleigh-Taylor instability of imploding inertial confinement fusion capsules, Phys. Plasmas 8 (2001) 5257.
    [43] S. Atzeni and M. Temporal, Mechanism of growth reduction of the deceleration-phase ablative Rayleigh-Taylor instability, Phys. Rev. E 67 (2003) 057401.
    [44] R. Betti, K. Anderson, V. N. Goncharov, et al., Deceleration phase of inertial confinement fusion implosions, Phys. Plasmas 9 (2002) 2277.
    [45] S. Atzeni, A. Schiavi, M. Temporal, Converging geometry Rayleigh-Taylor instability and central ignition of inertial confinement fusion targets, Plasma Phys. Control. Fusion 46 (2004) B111.
    [46]M. S. Plesset, J. Appl. Phys. 25 (1954) 96.
    
    [47]Campbell, M.D. and Hogan, W.J., Plasma Phys.Control.Fusion, 41,B39,1999.
    [48]Mead, W.C., et al., Phys.Rev.Lett., 47,1289,1981.
    [49]Priedhorsky, W., et al., Phys.Rev.Lett., 47,1661,1981.
    [50]Campbell, E., et al., Bull.Amer.Phys.Soc, 28,1165,1983.
    [51] Johnson, T.H., Proc.of the IEEE, 72,548,1984.
    [52] M. Tabak, J. Hammer, M. E. Glinsky, et al., Ignition and high gain with ultrapowerful laser, Phys. Plasmas 1 (1994) 1626.
    [53] S. Atzeni and M. L. Ciampi, Burn performance of fast ignited, Tritium-poor ICF fuels, Nucl. Fusion 37 (1997) 1665.
    [54] P. A. Norreys, R. Allott, R. J. Clarke, et al., Experimental studies of the advanced fast ignitor scheme, Phys. Plasmas 7 (2000) 3721.
    [55] S. Atzeni, Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel, Phys. Plasmas 6 (1999) 3316.
    [56] A. Caruso and V. A. Pais, The ignition of dense DT fuel by injected triggers, Nucl. Fusion 36 (1996) 745.
    
    [57] 张钧,常铁强,激光核聚变靶物理基础,北京,国防工业出版社(2004).
    [58] China-Japan Workshop on ICF simulation, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700